Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):15–20. doi: 10.1107/S2056989017017510

Crystal structures of bis­[4-(di­methyl­amino)­pyridinium] tetra­kis­(thio­cyanato-κN)manganate(II) and tris­[4-(di­methyl­amino)­pyridinium] penta­kis(thio­cyanato-κN)manganate(II)

Tristan Neumann a, Inke Jess a, Christian Näther a,*
PMCID: PMC5778477  PMID: 29416883

The crystal structures of the title salts consist of discrete anionic complexes, in which the MnII atom is either in a distorted tetra­hedral or a trigonal–bipyramidal coordination environment by terminal N-bonding thio­cyanate ligands. The complex anions are charge-balanced by two or three 4-(di­methyl­amino)­pyridinium cations.

Keywords: crystal structure, discrete complexes, thio­cyanato­manganate(II), fivefold coordination, fourfold coordination, 4-(di­methyl­amino)­pyridine, hydrogen bonding

Abstract

The crystal structures of the title salts, (C7H11N2)2[Mn(NCS)4] (1) and (C7H11N2)3[Mn(NCS)5] (2), consist of manganese(II) cations that are tetra­hedrally (1) or trigonal–bipyramidally (2) coordinated to four or five terminal N-bonded thio­cyanate ligands, respectively, into discrete anionic complexes. The negative charge is compensated by two (1) or three (2) 4-(di­methyl­amino)­pyridinium cations, which are protonated at the pyridine N atom. The asymmetric unit of compound 1 consists of one anionic complex and two 4-(di­methyl­amino)­pyridinium cations, whereas that of compound 2 consists of two anionic complexes and six 4-(di­methyl­amino)­pyridinium cations, all of them located in general positions. These complexes are linked by N—H⋯S, C—H⋯S and C—H⋯N hydrogen-bonding inter­actions between the 4-(di­methyl­amino)­pyridinium cations and the thio­cyanate ligands into three-dimensional network structures.

Chemical context  

Thio­cyanate anions are versatile ligands that can be coordinated to metal cations in different ways. The most prominent coordin­ation modes include the terminal and the μ-1,3 coord­ination modes. The latter mode is of special importance for compounds showing cooperative magnetic phenomena (Palion-Gazda et al., 2015; Massoud et al., 2013; Mousavi et al., 2012). In this context, we have reported a number of compounds based on M(NCS)2 moieties (M = Mn, Fe, Co and Ni) that show different magnetic properties including single-chain magnetism (Werner et al., 2015a ,b ; Rams et al., 2017a ,b ). In the majority of structures, the metal cations are linked by pairs of μ-1,3 bridging ligands into chains, but 2D networks are also realized in which the cations are linked by pairs and single anionic ligands into layers (Suckert et al., 2016; Wöhlert et al., 2012a , 2013). In some cases, compounds comprising bridging anionic ligands need to be prepared by thermal decomposition of precursors that consist of discrete octa­hedral complexes with terminal N-bonded thio­cyanate anions. In this regard, we became inter­ested in mixed crystals based on MnII and CoII atoms with the strong N-donor co-ligand 4-di­methyl­amino­pyridine that might be prepared by thermal decomposition of mixed crystals of the corresponding discrete precursor complexes. To prove mixed crystal formation, the X-ray diffraction powder pattern of all samples needs to be compared with physical mixtures with the same metal-to-metal ratio. We therefore attempted to prepare [Mn(NCS)2(4-(di­methyl­amino)­pyridine)4], but in all cases obtained only the salt-like crystals 1 and 2, in which the MnII atom is solely coordinated by thio­cyanate ligands, either in a tetra­hedral (1) or trigonal–bipyramidal (2) configuration, and charge-balanced by 4-(di­methyl­amino)­pyridinium cations. The formation of these cations might be traced back to the fact that the neutral mol­ecule is a strong base because of the electron-donating di­methyl­amino substituent and therefore can easily be protonated. It should be mentioned that neither of the two compounds could be prepared in larger amounts as a pure crystalline phase, because mixtures were always obtained. However, both compounds are of inter­est from a structural point of view, because negatively charged manganate complexes with a fivefold coordination by thio­cyanate ligands are scarce. Moreover, a manganate(II) complex with 4-di­methyl­amino­pyridine has already been reported in the literature (Wöhlert et al., 2012b ; Fig. 1). In the structure of this compound, the MnII atom is octa­hedrally coordinated to four terminal N-bonded thio­cyanate anions and two neutral 4-(di­methyl­amino)­pyridine ligands, and the twofold negative charge is compensated by two 4-(di­methyl­amino)­pyridinium cations. Therefore, the crystal structures of the title compounds 1 and 2 supplement the coordination polyhedra realized for thio­cyanato­manganate(II) complexes with 4-(di­methyl­amino)­pyridinium as counter-cationic species.graphic file with name e-74-00015-scheme1.jpg

Figure 1.

Figure 1

View of the Mn coordination in bis­[4-(di­methyl­amino)­pyridinium] bis­[4-(di­methyl­amino)­pyridine-κN]tetra­kis­(thio­cyanato-κN)manganate(II). Data taken from Wöhlert et al. (2012b ).

Structural commentary  

In the crystal structure of compound 1, the MnII atom is surrounded by four terminal N-bonded thio­cyanate ligands within a considerably distorted tetra­hedral coordination sphere. The N—Mn—N bond angles vary from 93.83 (7)° to 123.57 (7)° (Fig. 2 and Table 1). The asymmetric unit of 1 comprises two cations and one complex anion. In contrast, the asymmetric unit of compound 2 comprises six cations and two anionic complexes, and the two MnII atoms in 2 are fivefold coordinated to the thio­cyanato anions. The resulting coord­in­ation polyhedra around the two central metal atoms can be described as distorted trigonal bipyramids (Fig. 3 and Table 2). This is supported by calculation of the structural parameter τ 5 (Addison et al., 1984), which leads to a value of 0.85 for Mn1 and of 0.93 for Mn2 (ideal value for a trigonal–bipyramidal coordination is 1, that of an ideal square-pyramidal coordination is 0). The Mn—N bond lengths in both independent complexes are comparable, but in both of them the distances to the thio­cyanate N atom in axial positions are significantly elongated, which might be the result of steric effects between the anionic ligands in the equatorial position (Tables 1 and 2). In the structure of 1, three Mn—N bond lengths are similar, whereas the fourth is significantly elongated by about 0.07 Å (Table 1). When comparing the Mn—N bond lengths of 1 and 2 with those of bis­(4-(di­methyl­amino)­pyridinium) [bis­(4-(di­methyl­amino)-pyridine-κN)tetra­kis­(thio­cyanato-κN)manganate(II)] (Wöhlert et al., 2012b ), it becomes obvious that they increase with increasing coordination number. The negative charge of the anionic complexes in compounds 1 and 2 is compensated by two or six, respectively, crystallographically independent 4-(di­methyl­amino)­pyridinium cations that are located in general positions (Figs. 2 and 4).

Figure 2.

Figure 2

View of the asymmetric unit of 1, with atomic labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °) for compound 1 .

Mn1—N1 2.0495 (17) Mn1—N3 2.0810 (16)
Mn1—N2 2.0600 (16) Mn1—N4 2.1336 (17)
       
N1—Mn1—N2 118.35 (7) N1—Mn1—N4 101.27 (7)
N1—Mn1—N3 112.93 (6) N2—Mn1—N4 93.83 (7)
N2—Mn1—N3 123.57 (7) N3—Mn1—N4 97.99 (6)

Figure 3.

Figure 3

View of the Mn coordination in 2, with atomic labelling and displacement ellipsoids drawn at the 50% probability level.

Table 2. Selected geometric parameters (Å, °) for compound 2 .

Mn1—N4 2.099 (4) Mn2—N6 2.100 (5)
Mn1—N1 2.104 (4) Mn2—N8 2.100 (4)
Mn1—N3 2.128 (4) Mn2—N9 2.103 (4)
Mn1—N2 2.198 (5) Mn2—N10 2.205 (4)
Mn1—N5 2.205 (4) Mn2—N7 2.217 (4)
       
N4—Mn1—N1 115.03 (17) N6—Mn2—N8 121.35 (19)
N4—Mn1—N3 123.99 (19) N6—Mn2—N9 121.77 (19)
N1—Mn1—N3 120.97 (18) N8—Mn2—N9 116.88 (18)
N4—Mn1—N2 91.71 (19) N6—Mn2—N10 90.22 (18)
N1—Mn1—N2 91.61 (18) N8—Mn2—N10 89.77 (17)
N3—Mn1—N2 86.71 (17) N9—Mn2—N10 89.23 (18)
N4—Mn1—N5 90.38 (17) N6—Mn2—N7 92.53 (18)
N1—Mn1—N5 91.55 (17) N8—Mn2—N7 90.07 (16)
N3—Mn1—N5 88.42 (17) N9—Mn2—N7 88.06 (17)
N2—Mn1—N5 175.07 (16) N10—Mn2—N7 176.88 (18)

Figure 4.

Figure 4

View of the six crystallographically independent 4-(di­methyl­amino)­pyridinium cations in 2, with atomic labelling and displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal structure of 1, the negatively charged tetra­kis­(thio­cyanato)­manganese(II) complex mol­ecules are linked to the 4-(di­methyl­amino)­pyridinium cations by inter­molecular N—H⋯S and C—H⋯S hydrogen bonding between the pyridinium N—H group and C—H hydrogen atoms, and the thio­cyanate S atoms into a three-dimensional network (Fig. 5 and Table 3). There are two additional C—H⋯N contacts between the pyridinium C—H hydrogen atoms and the thio­cyanate N atom N4, which is exactly the N atom of the ligand that shows the elongated Mn—N bond length. In the crystal structure of 2, inter­molecular N—H⋯S, C—H⋯S and C—H⋯ N hydrogen bonding between the thio­cyanate anions of the anionic complexes and the 4-(di­methyl­amino)­pyridinium cations is also observed, leading likewise to a three-dimensional hydrogen-bonded network (Fig. 6 and Table 4). The 4-(di­methyl­amino)­pyridinium cations are stacked along the a axis into columns, but are slightly shifted one to the other within these columns. More importantly, the two penta­kis(thio­cyanato)­manganese(II) complexes point in the same direction relative to the crystallographic b axis, from which the polar and non-centrosymmetric arrangement becomes obvious (Fig. 6).

Figure 5.

Figure 5

Crystal structure of compound 1 in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines.

Table 3. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯S3 0.88 2.45 3.3129 (18) 166
C12—H12⋯N4i 0.95 2.67 3.548 (2) 155
C14—H14⋯S1 0.95 2.94 3.788 (2) 149
N21—H21A⋯S4ii 0.88 2.51 3.2771 (19) 147
C21—H21⋯N4iii 0.95 2.64 3.440 (3) 142
C24—H24⋯S2iv 0.95 2.85 3.548 (2) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 6.

Figure 6

Crystal structure of compound 2 in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines. The polar character of this structure is emphasized by the same orientation of the complex anions relative to the b axis.

Table 4. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯S2 0.88 2.37 3.224 (4) 163
C11—H11⋯S9i 0.95 3.02 3.945 (5) 166
C15—H15⋯S8ii 0.95 2.86 3.728 (5) 153
C16—H16B⋯S9iii 0.98 3.02 3.954 (6) 160
C17—H17B⋯S9iii 0.98 2.96 3.930 (6) 170
N21—H21A⋯S1iv 0.88 2.82 3.520 (5) 138
N21—H21A⋯S7 0.88 2.81 3.485 (6) 134
C25—H25⋯N1iv 0.95 2.62 3.567 (7) 175
C26—H26B⋯N5 0.98 2.58 3.500 (7) 157
N31—H31A⋯S10 0.88 2.41 3.266 (5) 164
C31—H31⋯S3v 0.95 2.99 3.838 (6) 150
C35—H35⋯S1vi 0.95 2.96 3.512 (6) 118
C36—H36B⋯S3vii 0.98 2.99 3.868 (6) 149
N41—H41A⋯S5 0.88 2.45 3.302 (4) 163
C41—H41⋯S6 0.95 2.94 3.804 (5) 152
C45—H45⋯S8viii 0.95 2.88 3.445 (5) 119
C47—H47C⋯S2ix 0.98 2.98 3.717 (5) 133
N51—H51A⋯S7 0.88 2.43 3.288 (5) 163
C51—H51⋯S4x 0.95 2.99 3.931 (5) 169
C55—H55⋯S1iv 0.95 2.93 3.746 (5) 145
C57—H57C⋯N7iv 0.98 2.69 3.539 (7) 146
N61—H61A⋯S8iv 0.88 2.78 3.507 (5) 141
C65—H65⋯N8iv 0.95 2.66 3.513 (7) 150
C66—H66A⋯S4x 0.98 2.92 3.767 (6) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic.

Database survey  

There are only two MnII thio­cyanate coordination polymers with 4-(di­methyl­amino)­pyridine reported in the Cambridge Structural Database (Version 5.38; Groom et al., 2016). They include the bis­(4-(di­methyl­amino)­pyridinium) [bis­(4-(di­methyl­amino)­pyridine-κN)tetra­kis­(thio­cyanato-κN)mang­anate(II)] mentioned above (Wöhlert et al., 2012b ) and the discrete complex bis­[4-(di­methyl­amino)­pyridine-κN]bis(methanol-κO)bis(thio­cyanato-κN)manganese(II), in which the MnII cations are octa­hedrally coordinated to two terminal N-bonding thio­cyanate anions, two 4-(di­methyl­amino)­pyridine ligands and two methanol mol­ecules (Suckert et al., 2015). There are a few compounds reported that are built up of discrete anionic manganate(II) complexes, in which the MnII atoms are in an octa­hedral coordination by six terminal N-bonding thio­cyanate ligands with different charge-compensating cations. They include tetra­kis­(tetra­methyl­phospho­nium) [hexa­kis­(thio­cyanato)­manganese(II)] (Li et al., 2015), tetra­kis­(tetra­methyl­ammonium) [hexa­kis­(thio­cyanato)­mang­anese(II)] (Savard & Leznoff, 2013) and tetra­kis­(tris­(amino­eth­yl)amine)(thio­cyanato)­copper(II) [hexa­kis­(thio­cyanato)­manganese(II)] (Bose et al., 2006). Similar compounds with five thio­cyanate anions coordinating to MnII are also known, but only a few have been reported (Matoga et al., 2015; Savard & Leznoff, 2013; Hill et al., 2008). Finally, some discrete MnII complexes with a fourfold thio­cyanate coordination are also known, such as in the salt bis­(tetra­phenyl­phospho­nium) [tetra­kis­(thio­cyanato)­manganese(II)] (Kushch et al., 2014).

Synthesis and crystallization  

MnSO4·H2O was obtained from Merck and Ba(NCS)2·3H2O from Alfa Aesar. Equimolar amounts of both compounds were reacted in water. The resulting white precipitate of BaSO4 was filtered off, and the filtrate was evaporated until complete dryness. The purity of the white residue of Mn(NCS)2 was checked by X-ray powder diffraction (XRPD) and thermogravimetry. For the synthesis of complex 1, Mn(NCS)2 (1.0 mmol, 170 mg) was reacted with 4-(di­methyl­amino)­pyridine (0.5 mmol, 61.0 mg) in 1.0 ml of water. The precipitate was filtered off and the filtrate was allowed to stand under ambient conditions. After a few days, single crystals suitable for single-crystal X-ray diffraction had formed. For the synthesis of complex 2, Mn(NCS)2 (1.0 mmol, 170 mg) was reacted with 4-(di­methyl­amino)­pyridine (1.0 mmol, 122 mg) in 4.0 ml of water. Single crystals formed from the filtrate at room temperature in a closed test tube after a few days. XRPD measurements proved that mixtures were always obtained, sometimes consisting of compound 1 and 2 or one of these compounds contaminated with additional crystalline phases.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The C—H and N—H hydrogen atoms were initially located in difference maps but were finally positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined with fixed isotropic displacement parameters U iso(H) = 1.2U eq(C, N) for aromatic and U iso(H) = 1.5U eq(C) for methyl H atoms. For 2, the Flack (1983) parameter did not refine to zero within the estimated standard deviation. Therefore, a twin refinement was performed leading to a BASF parameter of 0.028 (18). However, the non-centrosymmetric and polar arrangement is clearly seen in Fig. 6.

Table 5. Experimental details.

  1 2
Crystal data
Chemical formula (C7H11N2)2[Mn(NCS)4] (C7H11N2)3[Mn(NCS)5]
M r 533.61 714.87
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21
Temperature (K) 170 170
a, b, c (Å) 8.5079 (4), 10.4356 (5), 14.9899 (7) 10.8320 (2), 28.1610 (5), 11.3392 (2)
α, β, γ (°) 93.748 (4), 90.464 (4), 112.585 (3) 90, 90.098 (1), 90
V3) 1225.39 (10) 3458.90 (11)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.90 0.72
Crystal size (mm) 0.22 × 0.12 × 0.06 0.25 × 0.18 × 0.10
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)
T min, T max 0.593, 0.915 0.789, 0.915
No. of measured, independent and observed [I > 2σ(I)] reflections 17932, 5342, 4633 45580, 13568, 12684
R int 0.046 0.037
(sin θ/λ)max−1) 0.639 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.098, 1.06 0.039, 0.099, 1.05
No. of reflections 5342 13568
No. of parameters 285 789
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.53 0.33, −0.24
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.028 (18)

Computer programs: X-AREA (Stoe & Cie, 2008), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) Compound1, Compound2. DOI: 10.1107/S2056989017017510/wm5426sup1.cif

e-74-00015-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) Compound1. DOI: 10.1107/S2056989017017510/wm5426Compound1sup2.hkl

Structure factors: contains datablock(s) Compound2. DOI: 10.1107/S2056989017017510/wm5426Compound2sup3.hkl

CCDC references: 1589470, 1589469

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

supplementary crystallographic information

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Crystal data

(C7H11N2)2[Mn(NCS)4] Z = 2
Mr = 533.61 F(000) = 550
Triclinic, P1 Dx = 1.446 Mg m3
a = 8.5079 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.4356 (5) Å Cell parameters from 17932 reflections
c = 14.9899 (7) Å θ = 2.1–27.0°
α = 93.748 (4)° µ = 0.90 mm1
β = 90.464 (4)° T = 170 K
γ = 112.585 (3)° Block, colorless
V = 1225.39 (10) Å3 0.22 × 0.12 × 0.06 mm

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Data collection

Stoe IPDS-2 diffractometer 4633 reflections with I > 2σ(I)
ω scans Rint = 0.046
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) θmax = 27.0°, θmin = 2.1°
Tmin = 0.593, Tmax = 0.915 h = −10→10
17932 measured reflections k = −13→13
5342 independent reflections l = −19→19

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0944P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098 (Δ/σ)max = 0.003
S = 1.06 Δρmax = 0.31 e Å3
5342 reflections Δρmin = −0.53 e Å3
285 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.017 (3)

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.90952 (3) 0.88265 (3) 1.18620 (2) 0.03782 (10)
N1 0.6639 (2) 0.74716 (16) 1.15632 (11) 0.0426 (3)
C1 0.5334 (2) 0.65751 (19) 1.13644 (12) 0.0388 (4)
S1 0.35333 (7) 0.53200 (6) 1.10859 (4) 0.05316 (15)
N2 1.0772 (2) 0.80600 (17) 1.23903 (11) 0.0451 (4)
C2 1.1541 (2) 0.76211 (19) 1.28340 (12) 0.0402 (4)
S2 1.26376 (9) 0.70138 (7) 1.34362 (4) 0.06153 (18)
N3 0.9843 (2) 1.05670 (15) 1.11196 (10) 0.0415 (3)
C3 0.9911 (2) 1.13584 (17) 1.05982 (12) 0.0356 (3)
S3 0.99897 (6) 1.24678 (4) 0.98674 (3) 0.04241 (13)
N4 0.8810 (2) 0.98070 (17) 1.31098 (11) 0.0470 (4)
C4 0.8722 (2) 1.04124 (18) 1.37713 (13) 0.0400 (4)
S4 0.85130 (7) 1.12578 (5) 1.46840 (3) 0.05017 (14)
N11 0.6345 (2) 1.00661 (18) 0.90468 (12) 0.0496 (4)
H11A 0.7252 1.0809 0.9219 0.060*
C11 0.5288 (3) 1.0139 (2) 0.84009 (15) 0.0488 (5)
H11 0.5525 1.0994 0.8137 0.059*
C12 0.3886 (2) 0.90088 (19) 0.81197 (14) 0.0427 (4)
H12 0.3155 0.9081 0.7660 0.051*
C13 0.3498 (2) 0.77195 (18) 0.85038 (12) 0.0370 (4)
C14 0.4655 (2) 0.7706 (2) 0.91879 (13) 0.0441 (4)
H14 0.4458 0.6875 0.9474 0.053*
C15 0.6036 (3) 0.8871 (2) 0.94344 (14) 0.0498 (5)
H15 0.6802 0.8844 0.9890 0.060*
N12 0.2129 (2) 0.65910 (15) 0.82409 (11) 0.0418 (3)
C16 0.0935 (3) 0.6621 (2) 0.75498 (14) 0.0514 (5)
H16A 0.0405 0.7267 0.7753 0.077*
H16B 0.0053 0.5686 0.7429 0.077*
H16C 0.1545 0.6930 0.7002 0.077*
C17 0.1683 (3) 0.5301 (2) 0.86837 (16) 0.0534 (5)
H17A 0.2515 0.4884 0.8543 0.080*
H17B 0.0544 0.4651 0.8473 0.080*
H17C 0.1691 0.5500 0.9332 0.080*
N21 0.2097 (2) 0.34211 (19) 0.56590 (13) 0.0546 (4)
H21A 0.1323 0.2595 0.5488 0.066*
C21 0.3276 (3) 0.3541 (2) 0.62914 (15) 0.0523 (5)
H21 0.3262 0.2730 0.6550 0.063*
C22 0.4485 (3) 0.4792 (2) 0.65702 (13) 0.0465 (4)
H22 0.5300 0.4850 0.7024 0.056*
C23 0.4545 (2) 0.60157 (19) 0.61898 (12) 0.0389 (4)
C24 0.3267 (3) 0.5837 (2) 0.55258 (14) 0.0483 (4)
H24 0.3240 0.6623 0.5250 0.058*
C25 0.2088 (3) 0.4556 (2) 0.52819 (15) 0.0550 (5)
H25 0.1237 0.4454 0.4837 0.066*
N22 0.5730 (2) 0.72629 (17) 0.64412 (12) 0.0487 (4)
C26 0.7061 (3) 0.7430 (3) 0.71058 (18) 0.0656 (6)
H26A 0.6552 0.6923 0.7626 0.098*
H26B 0.7660 0.8420 0.7292 0.098*
H26C 0.7870 0.7061 0.6847 0.098*
C27 0.5877 (4) 0.8505 (2) 0.59983 (18) 0.0678 (7)
H27A 0.6025 0.8358 0.5357 0.102*
H27B 0.6864 0.9301 0.6255 0.102*
H27C 0.4842 0.8691 0.6085 0.102*

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.03611 (17) 0.03304 (15) 0.04112 (17) 0.00946 (11) −0.00592 (11) 0.00585 (11)
N1 0.0365 (8) 0.0408 (8) 0.0474 (9) 0.0115 (7) −0.0022 (7) 0.0034 (6)
C1 0.0397 (10) 0.0410 (9) 0.0364 (9) 0.0158 (8) −0.0009 (7) 0.0064 (7)
S1 0.0411 (3) 0.0541 (3) 0.0484 (3) 0.0003 (2) −0.0078 (2) 0.0083 (2)
N2 0.0444 (9) 0.0483 (9) 0.0439 (8) 0.0191 (7) −0.0069 (7) 0.0058 (7)
C2 0.0434 (10) 0.0411 (9) 0.0353 (9) 0.0162 (8) −0.0011 (7) −0.0007 (7)
S2 0.0784 (4) 0.0761 (4) 0.0476 (3) 0.0500 (3) −0.0149 (3) 0.0008 (3)
N3 0.0451 (9) 0.0358 (7) 0.0408 (8) 0.0126 (6) −0.0011 (7) 0.0028 (6)
C3 0.0335 (9) 0.0313 (8) 0.0382 (9) 0.0088 (6) −0.0014 (7) −0.0010 (7)
S3 0.0471 (3) 0.0316 (2) 0.0448 (3) 0.01048 (18) −0.00020 (19) 0.00712 (17)
N4 0.0538 (10) 0.0439 (8) 0.0413 (9) 0.0171 (7) −0.0050 (7) 0.0015 (7)
C4 0.0387 (9) 0.0323 (8) 0.0438 (10) 0.0070 (7) −0.0065 (7) 0.0091 (7)
S4 0.0552 (3) 0.0454 (3) 0.0440 (3) 0.0139 (2) −0.0023 (2) −0.0027 (2)
N11 0.0346 (8) 0.0458 (9) 0.0599 (10) 0.0069 (7) 0.0021 (7) −0.0013 (8)
C11 0.0402 (10) 0.0386 (9) 0.0672 (13) 0.0135 (8) 0.0091 (9) 0.0106 (9)
C12 0.0377 (10) 0.0396 (9) 0.0523 (11) 0.0153 (8) 0.0011 (8) 0.0114 (8)
C13 0.0351 (9) 0.0358 (8) 0.0412 (9) 0.0143 (7) 0.0033 (7) 0.0051 (7)
C14 0.0408 (10) 0.0472 (10) 0.0451 (10) 0.0165 (8) 0.0008 (8) 0.0107 (8)
C15 0.0396 (10) 0.0616 (12) 0.0461 (10) 0.0171 (9) −0.0024 (8) 0.0052 (9)
N12 0.0430 (9) 0.0338 (7) 0.0458 (8) 0.0117 (6) −0.0038 (7) 0.0043 (6)
C16 0.0472 (11) 0.0502 (11) 0.0503 (11) 0.0124 (9) −0.0109 (9) 0.0003 (9)
C17 0.0568 (13) 0.0335 (9) 0.0645 (13) 0.0108 (8) −0.0009 (10) 0.0085 (9)
N21 0.0515 (10) 0.0440 (9) 0.0579 (11) 0.0078 (8) 0.0016 (8) −0.0020 (8)
C21 0.0605 (13) 0.0422 (10) 0.0512 (11) 0.0154 (9) 0.0049 (10) 0.0108 (8)
C22 0.0476 (11) 0.0489 (10) 0.0439 (10) 0.0185 (9) −0.0011 (8) 0.0124 (8)
C23 0.0360 (9) 0.0418 (9) 0.0379 (9) 0.0132 (7) 0.0029 (7) 0.0063 (7)
C24 0.0536 (12) 0.0473 (10) 0.0469 (10) 0.0227 (9) −0.0086 (9) 0.0039 (8)
C25 0.0521 (12) 0.0583 (12) 0.0535 (12) 0.0220 (10) −0.0133 (10) −0.0056 (10)
N22 0.0433 (9) 0.0448 (9) 0.0498 (9) 0.0073 (7) −0.0026 (7) 0.0083 (7)
C26 0.0434 (12) 0.0719 (15) 0.0663 (15) 0.0060 (11) −0.0124 (11) 0.0028 (12)
C27 0.0812 (17) 0.0412 (11) 0.0683 (15) 0.0083 (11) 0.0008 (13) 0.0123 (10)

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Geometric parameters (Å, º)

Mn1—N1 2.0495 (17) C16—H16A 0.9800
Mn1—N2 2.0600 (16) C16—H16B 0.9800
Mn1—N3 2.0810 (16) C16—H16C 0.9800
Mn1—N4 2.1336 (17) C17—H17A 0.9800
N1—C1 1.165 (2) C17—H17B 0.9800
C1—S1 1.6169 (19) C17—H17C 0.9800
N2—C2 1.159 (2) N21—C21 1.339 (3)
C2—S2 1.6133 (19) N21—C25 1.348 (3)
N3—C3 1.159 (2) N21—H21A 0.8800
C3—S3 1.6286 (18) C21—C22 1.351 (3)
N4—C4 1.159 (3) C21—H21 0.9500
C4—S4 1.627 (2) C22—C23 1.416 (3)
N11—C11 1.342 (3) C22—H22 0.9500
N11—C15 1.344 (3) C23—N22 1.332 (2)
N11—H11A 0.8800 C23—C24 1.418 (3)
C11—C12 1.356 (3) C24—C25 1.351 (3)
C11—H11 0.9500 C24—H24 0.9500
C12—C13 1.419 (2) C25—H25 0.9500
C12—H12 0.9500 N22—C26 1.454 (3)
C13—N12 1.333 (2) N22—C27 1.458 (3)
C13—C14 1.420 (3) C26—H26A 0.9800
C14—C15 1.354 (3) C26—H26B 0.9800
C14—H14 0.9500 C26—H26C 0.9800
C15—H15 0.9500 C27—H27A 0.9800
N12—C16 1.455 (2) C27—H27B 0.9800
N12—C17 1.458 (2) C27—H27C 0.9800
N1—Mn1—N2 118.35 (7) H16B—C16—H16C 109.5
N1—Mn1—N3 112.93 (6) N12—C17—H17A 109.5
N2—Mn1—N3 123.57 (7) N12—C17—H17B 109.5
N1—Mn1—N4 101.27 (7) H17A—C17—H17B 109.5
N2—Mn1—N4 93.83 (7) N12—C17—H17C 109.5
N3—Mn1—N4 97.99 (6) H17A—C17—H17C 109.5
C1—N1—Mn1 171.10 (15) H17B—C17—H17C 109.5
N1—C1—S1 179.42 (18) C21—N21—C25 120.47 (18)
C2—N2—Mn1 166.86 (16) C21—N21—H21A 119.8
N2—C2—S2 178.85 (18) C25—N21—H21A 119.8
C3—N3—Mn1 164.22 (15) N21—C21—C22 121.43 (19)
N3—C3—S3 179.51 (17) N21—C21—H21 119.3
C4—N4—Mn1 175.99 (16) C22—C21—H21 119.3
N4—C4—S4 177.36 (18) C21—C22—C23 120.43 (19)
C11—N11—C15 120.80 (18) C21—C22—H22 119.8
C11—N11—H11A 119.6 C23—C22—H22 119.8
C15—N11—H11A 119.6 N22—C23—C22 122.04 (17)
N11—C11—C12 120.89 (18) N22—C23—C24 121.91 (17)
N11—C11—H11 119.6 C22—C23—C24 116.06 (18)
C12—C11—H11 119.6 C25—C24—C23 120.49 (18)
C11—C12—C13 120.75 (18) C25—C24—H24 119.8
C11—C12—H12 119.6 C23—C24—H24 119.8
C13—C12—H12 119.6 N21—C25—C24 121.1 (2)
N12—C13—C12 122.07 (16) N21—C25—H25 119.4
N12—C13—C14 122.04 (16) C24—C25—H25 119.4
C12—C13—C14 115.89 (17) C23—N22—C26 121.46 (18)
C15—C14—C13 120.35 (18) C23—N22—C27 121.96 (18)
C15—C14—H14 119.8 C26—N22—C27 116.23 (19)
C13—C14—H14 119.8 N22—C26—H26A 109.5
N11—C15—C14 121.32 (19) N22—C26—H26B 109.5
N11—C15—H15 119.3 H26A—C26—H26B 109.5
C14—C15—H15 119.3 N22—C26—H26C 109.5
C13—N12—C16 121.63 (16) H26A—C26—H26C 109.5
C13—N12—C17 121.40 (16) H26B—C26—H26C 109.5
C16—N12—C17 116.78 (16) N22—C27—H27A 109.5
N12—C16—H16A 109.5 N22—C27—H27B 109.5
N12—C16—H16B 109.5 H27A—C27—H27B 109.5
H16A—C16—H16B 109.5 N22—C27—H27C 109.5
N12—C16—H16C 109.5 H27A—C27—H27C 109.5
H16A—C16—H16C 109.5 H27B—C27—H27C 109.5

Bis[4-(dimethylamino)pyridinium] tetrakis(thiocyanato-κN)manganate(II) (Compound1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11A···S3 0.88 2.45 3.3129 (18) 166
C12—H12···N4i 0.95 2.67 3.548 (2) 155
C14—H14···S1 0.95 2.94 3.788 (2) 149
N21—H21A···S4ii 0.88 2.51 3.2771 (19) 147
C21—H21···N4iii 0.95 2.64 3.440 (3) 142
C24—H24···S2iv 0.95 2.85 3.548 (2) 131

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1, y−1, z−1; (iii) −x+1, −y+1, −z+2; (iv) x−1, y, z−1.

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Crystal data

(C7H11N2)3[Mn(NCS)5] F(000) = 1484
Mr = 714.87 Dx = 1.373 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 10.8320 (2) Å Cell parameters from 45580 reflections
b = 28.1610 (5) Å θ = 1.5–26.0°
c = 11.3392 (2) Å µ = 0.72 mm1
β = 90.098 (1)° T = 170 K
V = 3458.90 (11) Å3 Block, colorless
Z = 4 0.25 × 0.18 × 0.10 mm

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Data collection

Stoe IPDS-2 diffractometer 12684 reflections with I > 2σ(I)
ω scans Rint = 0.037
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) θmax = 26.0°, θmin = 1.5°
Tmin = 0.789, Tmax = 0.915 h = −13→13
45580 measured reflections k = −34→34
13568 independent reflections l = −13→13

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0506P)2 + 1.5196P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039 (Δ/σ)max = 0.001
wR(F2) = 0.099 Δρmax = 0.33 e Å3
S = 1.05 Δρmin = −0.24 e Å3
13568 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
789 parameters Extinction coefficient: 0.0053 (7)
1 restraint Absolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sites Absolute structure parameter: 0.028 (18)

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.45124 (7) 0.33957 (2) −0.02498 (5) 0.04095 (16)
N1 0.4568 (4) 0.41385 (15) −0.0058 (3) 0.0519 (10)
C1 0.4812 (4) 0.45416 (16) −0.0112 (4) 0.0415 (9)
S1 0.51506 (14) 0.50955 (5) −0.02592 (13) 0.0588 (3)
N2 0.2830 (4) 0.34375 (18) −0.1331 (4) 0.0635 (12)
C2 0.1876 (5) 0.34774 (16) −0.1793 (4) 0.0455 (10)
S2 0.05434 (12) 0.35258 (5) −0.24442 (11) 0.0533 (3)
N3 0.5353 (4) 0.30569 (17) −0.1721 (4) 0.0583 (11)
C3 0.5780 (4) 0.28033 (17) −0.2411 (4) 0.0444 (10)
S3 0.63768 (14) 0.24496 (6) −0.33664 (12) 0.0636 (4)
N4 0.3576 (4) 0.30326 (16) 0.1095 (4) 0.0561 (10)
C4 0.3062 (5) 0.28207 (16) 0.1821 (4) 0.0462 (10)
S4 0.23426 (17) 0.25235 (5) 0.28177 (12) 0.0688 (4)
N5 0.6269 (4) 0.33145 (15) 0.0716 (3) 0.0504 (9)
C5 0.7204 (5) 0.33024 (16) 0.1210 (4) 0.0435 (10)
S5 0.85205 (14) 0.32725 (6) 0.19012 (13) 0.0694 (4)
Mn2 0.98322 (6) 0.58569 (2) 0.49368 (6) 0.04102 (16)
N6 0.8987 (5) 0.55087 (17) 0.3511 (4) 0.0623 (11)
C6 0.8649 (5) 0.52786 (18) 0.2728 (4) 0.0507 (11)
S6 0.8161 (2) 0.49483 (7) 0.16721 (14) 0.0859 (5)
N7 0.8142 (4) 0.58111 (16) 0.6030 (4) 0.0520 (9)
C7 0.7313 (4) 0.59084 (16) 0.6640 (4) 0.0428 (9)
S7 0.61231 (12) 0.60318 (5) 0.74658 (11) 0.0538 (3)
N8 0.9804 (4) 0.66003 (15) 0.5084 (4) 0.0522 (10)
C8 1.0076 (4) 0.70025 (16) 0.5056 (4) 0.0409 (9)
S8 1.04620 (13) 0.75529 (4) 0.49639 (13) 0.0574 (3)
N9 1.0767 (4) 0.54807 (16) 0.6268 (4) 0.0556 (10)
C9 1.1319 (4) 0.52764 (16) 0.6988 (4) 0.0428 (9)
S9 1.20997 (14) 0.49886 (5) 0.79725 (12) 0.0594 (3)
N10 1.1573 (4) 0.59021 (16) 0.3939 (4) 0.0566 (10)
C10 1.2582 (4) 0.58970 (16) 0.3575 (4) 0.0447 (10)
S10 1.39824 (12) 0.58848 (6) 0.30722 (11) 0.0585 (3)
N11 0.1399 (4) 0.39353 (17) −0.4969 (4) 0.0570 (11)
H11A 0.1338 0.3825 −0.4246 0.068*
C11 0.1660 (5) 0.4390 (2) −0.5146 (5) 0.0585 (13)
H11 0.1807 0.4587 −0.4480 0.070*
C12 0.1727 (5) 0.45877 (17) −0.6236 (4) 0.0506 (11)
H12 0.1910 0.4915 −0.6327 0.061*
C13 0.1516 (4) 0.42950 (16) −0.7241 (4) 0.0409 (9)
C14 0.1284 (4) 0.38056 (16) −0.7017 (4) 0.0462 (10)
H14 0.1169 0.3592 −0.7656 0.055*
C15 0.1227 (5) 0.36442 (18) −0.5888 (5) 0.0541 (12)
H15 0.1062 0.3318 −0.5749 0.065*
N12 0.1540 (4) 0.44690 (14) −0.8332 (3) 0.0489 (9)
C16 0.1790 (6) 0.4965 (2) −0.8554 (5) 0.0652 (14)
H16A 0.1216 0.5161 −0.8097 0.098*
H16B 0.1684 0.5032 −0.9396 0.098*
H16C 0.2639 0.5039 −0.8318 0.098*
C17 0.1250 (6) 0.4171 (2) −0.9341 (4) 0.0662 (15)
H17A 0.1778 0.3888 −0.9330 0.099*
H17B 0.1395 0.4349 −1.0070 0.099*
H17C 0.0382 0.4074 −0.9304 0.099*
N21 0.5064 (5) 0.4907 (2) 0.6673 (4) 0.0686 (13)
H21A 0.5138 0.5111 0.7258 0.082*
C21 0.5188 (6) 0.5055 (2) 0.5574 (6) 0.0695 (15)
H21 0.5324 0.5383 0.5425 0.083*
C22 0.5126 (5) 0.47491 (19) 0.4656 (5) 0.0566 (12)
H22 0.5234 0.4861 0.3873 0.068*
C23 0.4903 (4) 0.42656 (18) 0.4869 (4) 0.0432 (10)
C24 0.4738 (5) 0.4129 (2) 0.6041 (4) 0.0556 (12)
H24 0.4562 0.3808 0.6226 0.067*
C25 0.4826 (5) 0.4452 (3) 0.6904 (4) 0.0663 (16)
H25 0.4718 0.4354 0.7699 0.080*
N22 0.4861 (4) 0.39534 (16) 0.3968 (4) 0.0597 (11)
C26 0.4996 (7) 0.4112 (3) 0.2744 (5) 0.085 (2)
H26A 0.4245 0.4278 0.2496 0.128*
H26B 0.5132 0.3837 0.2233 0.128*
H26C 0.5703 0.4328 0.2685 0.128*
C27 0.4662 (7) 0.3451 (2) 0.4156 (8) 0.087 (2)
H27A 0.4620 0.3386 0.5005 0.131*
H27B 0.5345 0.3271 0.3810 0.131*
H27C 0.3884 0.3355 0.3782 0.131*
N31 1.3593 (4) 0.6433 (2) 0.0561 (4) 0.0711 (15)
H31A 1.3637 0.6341 0.1302 0.085*
C31 1.3821 (5) 0.6886 (2) 0.0291 (5) 0.0633 (14)
H31 1.4006 0.7105 0.0903 0.076*
C32 1.3792 (5) 0.70398 (18) −0.0866 (4) 0.0502 (11)
H32 1.3973 0.7361 −0.1052 0.060*
C33 1.3490 (4) 0.67117 (15) −0.1779 (4) 0.0405 (9)
C34 1.3235 (5) 0.62408 (17) −0.1419 (5) 0.0545 (12)
H34 1.3016 0.6008 −0.1990 0.065*
C35 1.3302 (5) 0.6120 (2) −0.0266 (6) 0.0681 (16)
H35 1.3135 0.5801 −0.0043 0.082*
N32 1.3453 (4) 0.68469 (15) −0.2895 (3) 0.0501 (9)
C36 1.3831 (7) 0.7329 (2) −0.3241 (5) 0.0726 (17)
H36A 1.3123 0.7545 −0.3178 0.109*
H36B 1.4128 0.7326 −0.4057 0.109*
H36C 1.4494 0.7439 −0.2718 0.109*
C37 1.3129 (6) 0.6522 (2) −0.3847 (5) 0.0686 (16)
H37A 1.3423 0.6202 −0.3653 0.103*
H37B 1.3516 0.6629 −0.4581 0.103*
H37C 1.2230 0.6516 −0.3947 0.103*
N41 0.8097 (4) 0.38604 (16) 0.4387 (4) 0.0545 (10)
H41A 0.8123 0.3756 0.3656 0.065*
C41 0.8374 (5) 0.4314 (2) 0.4627 (4) 0.0547 (12)
H41 0.8600 0.4519 0.3999 0.066*
C42 0.8341 (5) 0.44863 (17) 0.5732 (4) 0.0487 (11)
H42 0.8533 0.4811 0.5871 0.058*
C43 0.8021 (4) 0.41871 (15) 0.6694 (4) 0.0397 (9)
C44 0.7732 (4) 0.37120 (16) 0.6395 (4) 0.0460 (10)
H44 0.7502 0.3493 0.6993 0.055*
C45 0.7785 (4) 0.35695 (18) 0.5256 (5) 0.0521 (11)
H45 0.7590 0.3249 0.5072 0.063*
N42 0.7971 (3) 0.43422 (13) 0.7805 (3) 0.0422 (8)
C46 0.8383 (5) 0.48182 (18) 0.8139 (5) 0.0551 (12)
H46A 0.9288 0.4828 0.8144 0.083*
H46B 0.8073 0.4895 0.8928 0.083*
H46C 0.8066 0.5050 0.7570 0.083*
C47 0.7646 (5) 0.40293 (18) 0.8784 (4) 0.0555 (12)
H47A 0.6905 0.3847 0.8579 0.083*
H47B 0.7485 0.4220 0.9489 0.083*
H47C 0.8331 0.3811 0.8940 0.083*
N51 0.6896 (4) 0.64325 (18) 1.0088 (4) 0.0593 (11)
H51A 0.6857 0.6310 0.9375 0.071*
C51 0.7084 (5) 0.6894 (2) 1.0227 (4) 0.0569 (13)
H51 0.7190 0.7086 0.9546 0.068*
C52 0.7132 (5) 0.71033 (17) 1.1305 (4) 0.0490 (11)
H52 0.7275 0.7435 1.1372 0.059*
C53 0.6965 (4) 0.68204 (16) 1.2337 (4) 0.0410 (9)
C54 0.6802 (4) 0.63271 (16) 1.2136 (5) 0.0486 (11)
H54 0.6718 0.6119 1.2790 0.058*
C55 0.6763 (5) 0.61493 (19) 1.1044 (5) 0.0554 (12)
H55 0.6640 0.5818 1.0937 0.066*
N52 0.6956 (4) 0.70091 (14) 1.3407 (3) 0.0456 (8)
C56 0.7191 (6) 0.75123 (19) 1.3597 (5) 0.0598 (13)
H56A 0.7894 0.7612 1.3114 0.090*
H56B 0.7380 0.7567 1.4432 0.090*
H56C 0.6458 0.7696 1.3374 0.090*
C57 0.6639 (6) 0.6725 (2) 1.4439 (4) 0.0602 (14)
H57A 0.5838 0.6572 1.4312 0.090*
H57B 0.6593 0.6931 1.5134 0.090*
H57C 0.7273 0.6482 1.4565 0.090*
N61 1.0625 (5) 0.7312 (2) 1.1934 (5) 0.0788 (16)
H61A 1.0731 0.7508 1.2531 0.095*
C61 1.0528 (6) 0.7490 (2) 1.0834 (5) 0.0693 (16)
H61 1.0596 0.7823 1.0710 0.083*
C62 1.0336 (5) 0.71981 (18) 0.9909 (4) 0.0531 (12)
H62 1.0273 0.7325 0.9135 0.064*
C63 1.0228 (4) 0.67040 (16) 1.0088 (4) 0.0405 (9)
C64 1.0364 (5) 0.6541 (2) 1.1262 (4) 0.0565 (12)
H64 1.0310 0.6211 1.1427 0.068*
C65 1.0566 (6) 0.6847 (3) 1.2137 (4) 0.0682 (16)
H65 1.0669 0.6732 1.2918 0.082*
N62 0.9989 (4) 0.64083 (14) 0.9185 (4) 0.0494 (9)
C66 0.9958 (6) 0.6572 (2) 0.7978 (4) 0.0632 (14)
H66A 0.9126 0.6687 0.7788 0.095*
H66B 1.0174 0.6310 0.7449 0.095*
H66C 1.0552 0.6832 0.7879 0.095*
C67 0.9799 (6) 0.59025 (19) 0.9366 (6) 0.0702 (15)
H67A 1.0601 0.5742 0.9413 0.105*
H67B 0.9324 0.5772 0.8705 0.105*
H67C 0.9345 0.5852 1.0102 0.105*

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0469 (4) 0.0414 (3) 0.0345 (3) −0.0005 (3) −0.0011 (3) −0.0013 (3)
N1 0.067 (3) 0.046 (2) 0.043 (2) 0.0004 (19) 0.0006 (18) −0.0003 (16)
C1 0.046 (2) 0.044 (2) 0.034 (2) 0.0030 (19) −0.0026 (17) −0.0016 (17)
S1 0.0689 (8) 0.0426 (6) 0.0648 (8) −0.0032 (6) −0.0125 (6) −0.0045 (6)
N2 0.065 (3) 0.073 (3) 0.053 (2) 0.017 (2) −0.018 (2) −0.016 (2)
C2 0.054 (3) 0.045 (3) 0.038 (2) 0.007 (2) −0.002 (2) −0.0031 (18)
S2 0.0493 (7) 0.0650 (8) 0.0456 (6) 0.0016 (5) −0.0038 (5) 0.0087 (5)
N3 0.056 (3) 0.070 (3) 0.049 (2) 0.000 (2) −0.0003 (19) −0.015 (2)
C3 0.046 (2) 0.052 (2) 0.036 (2) −0.003 (2) 0.0021 (18) 0.0002 (19)
S3 0.0702 (9) 0.0738 (9) 0.0470 (7) 0.0103 (7) 0.0079 (6) −0.0144 (6)
N4 0.058 (3) 0.063 (3) 0.048 (2) −0.008 (2) 0.0065 (19) 0.0034 (19)
C4 0.051 (3) 0.046 (2) 0.041 (2) −0.004 (2) 0.000 (2) −0.0018 (19)
S4 0.0985 (11) 0.0599 (8) 0.0480 (7) −0.0245 (8) 0.0151 (7) 0.0002 (6)
N5 0.054 (2) 0.053 (2) 0.045 (2) −0.0017 (19) −0.0054 (18) 0.0007 (17)
C5 0.051 (3) 0.044 (2) 0.035 (2) −0.0018 (19) 0.0022 (19) −0.0019 (17)
S5 0.0549 (8) 0.0944 (12) 0.0588 (8) 0.0104 (7) −0.0132 (6) −0.0238 (7)
Mn2 0.0451 (4) 0.0395 (3) 0.0385 (3) −0.0017 (3) 0.0036 (3) 0.0007 (3)
N6 0.061 (3) 0.067 (3) 0.059 (3) −0.005 (2) −0.005 (2) −0.003 (2)
C6 0.057 (3) 0.056 (3) 0.040 (2) −0.002 (2) −0.005 (2) 0.002 (2)
S6 0.1235 (16) 0.0809 (11) 0.0533 (8) −0.0148 (10) −0.0296 (9) −0.0062 (7)
N7 0.051 (2) 0.051 (2) 0.054 (2) −0.0028 (19) 0.0101 (18) 0.0062 (18)
C7 0.050 (2) 0.040 (2) 0.039 (2) −0.0039 (19) 0.0021 (18) 0.0033 (18)
S7 0.0526 (7) 0.0610 (7) 0.0479 (6) −0.0016 (5) 0.0104 (5) −0.0098 (5)
N8 0.062 (3) 0.046 (2) 0.048 (2) −0.0048 (19) 0.0068 (19) −0.0021 (18)
C8 0.044 (2) 0.043 (2) 0.036 (2) 0.0013 (18) 0.0044 (17) −0.0020 (17)
S8 0.0638 (8) 0.0422 (6) 0.0661 (8) −0.0086 (6) 0.0106 (6) −0.0089 (5)
N9 0.059 (3) 0.058 (2) 0.050 (2) 0.008 (2) 0.002 (2) 0.003 (2)
C9 0.046 (2) 0.041 (2) 0.041 (2) −0.0019 (19) 0.0022 (19) −0.0005 (18)
S9 0.0634 (8) 0.0674 (8) 0.0474 (6) 0.0149 (6) −0.0055 (6) 0.0034 (6)
N10 0.055 (2) 0.058 (2) 0.057 (2) −0.004 (2) 0.0150 (19) −0.002 (2)
C10 0.054 (3) 0.042 (2) 0.038 (2) −0.003 (2) 0.0042 (18) 0.0003 (18)
S10 0.0489 (6) 0.0768 (8) 0.0497 (6) 0.0023 (6) 0.0081 (5) 0.0151 (6)
N11 0.054 (2) 0.072 (3) 0.045 (2) 0.013 (2) 0.0027 (18) 0.013 (2)
C11 0.062 (3) 0.070 (3) 0.043 (3) 0.011 (3) −0.005 (2) −0.013 (2)
C12 0.063 (3) 0.043 (2) 0.046 (3) 0.005 (2) −0.002 (2) −0.0074 (19)
C13 0.042 (2) 0.042 (2) 0.038 (2) 0.0014 (18) 0.0009 (18) −0.0025 (17)
C14 0.048 (3) 0.041 (2) 0.049 (3) −0.0019 (19) 0.002 (2) 0.0000 (19)
C15 0.050 (3) 0.051 (3) 0.062 (3) 0.001 (2) −0.001 (2) 0.012 (2)
N12 0.061 (3) 0.047 (2) 0.0382 (19) −0.0014 (18) 0.0054 (17) −0.0016 (16)
C16 0.082 (4) 0.057 (3) 0.056 (3) −0.007 (3) 0.004 (3) 0.015 (2)
C17 0.085 (4) 0.073 (4) 0.040 (2) −0.004 (3) −0.001 (3) −0.009 (2)
N21 0.070 (3) 0.076 (3) 0.060 (3) 0.015 (3) −0.007 (2) −0.030 (2)
C21 0.071 (4) 0.058 (3) 0.079 (4) 0.002 (3) −0.015 (3) −0.008 (3)
C22 0.067 (3) 0.055 (3) 0.047 (3) −0.002 (2) −0.006 (2) 0.005 (2)
C23 0.042 (2) 0.051 (3) 0.037 (2) 0.0027 (19) −0.0066 (18) −0.0073 (18)
C24 0.054 (3) 0.066 (3) 0.047 (3) 0.007 (2) 0.002 (2) 0.009 (2)
C25 0.065 (3) 0.102 (5) 0.032 (2) 0.018 (3) −0.002 (2) −0.005 (3)
N22 0.065 (3) 0.061 (3) 0.053 (2) 0.009 (2) −0.010 (2) −0.020 (2)
C26 0.089 (5) 0.128 (6) 0.039 (3) 0.018 (4) −0.001 (3) −0.029 (3)
C27 0.078 (4) 0.059 (4) 0.125 (6) 0.009 (3) −0.029 (4) −0.033 (4)
N31 0.053 (3) 0.108 (4) 0.052 (3) 0.016 (3) 0.012 (2) 0.031 (3)
C31 0.059 (3) 0.090 (4) 0.041 (3) 0.007 (3) −0.001 (2) −0.006 (3)
C32 0.061 (3) 0.049 (3) 0.041 (2) 0.002 (2) −0.005 (2) −0.006 (2)
C33 0.038 (2) 0.042 (2) 0.041 (2) 0.0004 (17) 0.0016 (18) −0.0019 (17)
C34 0.055 (3) 0.040 (2) 0.068 (3) −0.001 (2) 0.014 (2) −0.003 (2)
C35 0.058 (3) 0.064 (3) 0.082 (4) 0.012 (3) 0.020 (3) 0.027 (3)
N32 0.052 (2) 0.060 (2) 0.0378 (19) −0.0007 (19) −0.0016 (17) −0.0042 (17)
C36 0.093 (5) 0.071 (4) 0.053 (3) −0.004 (3) 0.003 (3) 0.020 (3)
C37 0.066 (4) 0.093 (4) 0.047 (3) −0.003 (3) −0.005 (3) −0.022 (3)
N41 0.051 (2) 0.068 (3) 0.044 (2) 0.006 (2) −0.0032 (18) −0.0072 (19)
C41 0.054 (3) 0.069 (3) 0.041 (2) 0.000 (2) −0.001 (2) 0.007 (2)
C42 0.050 (3) 0.045 (2) 0.051 (3) −0.003 (2) 0.002 (2) 0.008 (2)
C43 0.034 (2) 0.041 (2) 0.044 (2) 0.0022 (17) 0.0007 (17) 0.0040 (18)
C44 0.047 (3) 0.041 (2) 0.050 (2) 0.0006 (19) −0.004 (2) 0.0024 (19)
C45 0.043 (2) 0.051 (3) 0.062 (3) 0.007 (2) −0.005 (2) −0.008 (2)
N42 0.045 (2) 0.0417 (19) 0.0402 (19) −0.0029 (16) 0.0031 (15) 0.0020 (15)
C46 0.063 (3) 0.052 (3) 0.050 (3) −0.011 (2) 0.002 (2) −0.003 (2)
C47 0.065 (3) 0.054 (3) 0.047 (3) 0.000 (2) 0.013 (2) 0.008 (2)
N51 0.050 (2) 0.078 (3) 0.050 (2) 0.010 (2) 0.0034 (19) −0.014 (2)
C51 0.057 (3) 0.071 (3) 0.043 (3) 0.012 (3) 0.002 (2) 0.009 (2)
C52 0.052 (3) 0.048 (2) 0.047 (3) 0.005 (2) 0.001 (2) 0.010 (2)
C53 0.034 (2) 0.043 (2) 0.045 (2) 0.0005 (17) −0.0001 (17) 0.0049 (18)
C54 0.044 (2) 0.041 (2) 0.061 (3) 0.0004 (19) 0.003 (2) 0.003 (2)
C55 0.051 (3) 0.052 (3) 0.064 (3) 0.000 (2) 0.005 (2) −0.012 (2)
N52 0.050 (2) 0.047 (2) 0.0399 (19) −0.0011 (17) −0.0011 (16) 0.0052 (16)
C56 0.068 (3) 0.048 (3) 0.063 (3) −0.002 (2) −0.012 (3) −0.003 (2)
C57 0.069 (4) 0.070 (3) 0.041 (3) −0.009 (3) 0.003 (2) 0.010 (2)
N61 0.090 (4) 0.090 (4) 0.056 (3) −0.015 (3) 0.006 (3) −0.030 (3)
C61 0.091 (4) 0.057 (3) 0.060 (3) −0.016 (3) 0.017 (3) −0.014 (3)
C62 0.066 (3) 0.046 (3) 0.047 (3) −0.001 (2) 0.013 (2) −0.003 (2)
C63 0.042 (2) 0.045 (2) 0.035 (2) 0.0045 (18) 0.0013 (17) −0.0019 (17)
C64 0.062 (3) 0.065 (3) 0.043 (3) 0.008 (2) 0.005 (2) 0.009 (2)
C65 0.078 (4) 0.095 (5) 0.032 (2) 0.013 (3) 0.000 (2) −0.003 (3)
N62 0.054 (2) 0.046 (2) 0.048 (2) 0.0043 (17) 0.0004 (18) −0.0066 (17)
C66 0.073 (4) 0.078 (4) 0.040 (3) 0.017 (3) −0.008 (2) −0.012 (2)
C67 0.081 (4) 0.044 (3) 0.086 (4) −0.001 (3) 0.012 (3) −0.010 (3)

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Geometric parameters (Å, º)

Mn1—N4 2.099 (4) C32—C33 1.425 (6)
Mn1—N1 2.104 (4) C32—H32 0.9500
Mn1—N3 2.128 (4) C33—N32 1.323 (6)
Mn1—N2 2.198 (5) C33—C34 1.415 (7)
Mn1—N5 2.205 (4) C34—C35 1.352 (8)
N1—C1 1.167 (6) C34—H34 0.9500
C1—S1 1.611 (5) C35—H35 0.9500
N2—C2 1.162 (6) N32—C37 1.458 (6)
C2—S2 1.627 (5) N32—C36 1.472 (7)
N3—C3 1.156 (6) C36—H36A 0.9800
C3—S3 1.608 (5) C36—H36B 0.9800
N4—C4 1.160 (6) C36—H36C 0.9800
C4—S4 1.608 (5) C37—H37A 0.9800
N5—C5 1.157 (6) C37—H37B 0.9800
C5—S5 1.628 (5) C37—H37C 0.9800
Mn2—N6 2.100 (5) N41—C45 1.325 (7)
Mn2—N8 2.100 (4) N41—C41 1.339 (7)
Mn2—N9 2.103 (4) N41—H41A 0.8800
Mn2—N10 2.205 (4) C41—C42 1.344 (7)
Mn2—N7 2.217 (4) C41—H41 0.9500
N6—C6 1.158 (7) C42—C43 1.421 (6)
C6—S6 1.605 (5) C42—H42 0.9500
N7—C7 1.166 (6) C43—N42 1.334 (6)
C7—S7 1.632 (4) C43—C44 1.415 (6)
N8—C8 1.171 (6) C44—C45 1.354 (7)
C8—S8 1.609 (5) C44—H44 0.9500
N9—C9 1.163 (6) C45—H45 0.9500
C9—S9 1.617 (5) N42—C47 1.461 (6)
N10—C10 1.168 (6) N42—C46 1.463 (6)
C10—S10 1.622 (5) C46—H46A 0.9800
N11—C11 1.328 (7) C46—H46B 0.9800
N11—C15 1.339 (7) C46—H46C 0.9800
N11—H11A 0.8800 C47—H47A 0.9800
C11—C12 1.357 (7) C47—H47B 0.9800
C11—H11 0.9500 C47—H47C 0.9800
C12—C13 1.424 (6) N51—C51 1.325 (7)
C12—H12 0.9500 N51—C55 1.354 (7)
C13—N12 1.331 (6) N51—H51A 0.8800
C13—C14 1.424 (6) C51—C52 1.359 (7)
C14—C15 1.360 (7) C51—H51 0.9500
C14—H14 0.9500 C52—C53 1.427 (6)
C15—H15 0.9500 C52—H52 0.9500
N12—C16 1.446 (7) C53—N52 1.325 (6)
N12—C17 1.454 (6) C53—C54 1.419 (6)
C16—H16A 0.9800 C54—C55 1.336 (7)
C16—H16B 0.9800 C54—H54 0.9500
C16—H16C 0.9800 C55—H55 0.9500
C17—H17A 0.9800 N52—C56 1.456 (6)
C17—H17B 0.9800 N52—C57 1.459 (6)
C17—H17C 0.9800 C56—H56A 0.9800
N21—C21 1.321 (8) C56—H56B 0.9800
N21—C25 1.334 (9) C56—H56C 0.9800
N21—H21A 0.8800 C57—H57A 0.9800
C21—C22 1.353 (8) C57—H57B 0.9800
C21—H21 0.9500 C57—H57C 0.9800
C22—C23 1.404 (7) N61—C65 1.332 (8)
C22—H22 0.9500 N61—C61 1.348 (8)
C23—N22 1.349 (6) N61—H61A 0.8800
C23—C24 1.394 (7) C61—C62 1.349 (7)
C24—C25 1.339 (8) C61—H61 0.9500
C24—H24 0.9500 C62—C63 1.411 (7)
C25—H25 0.9500 C62—H62 0.9500
N22—C27 1.448 (8) C63—N62 1.345 (6)
N22—C26 1.466 (8) C63—C64 1.415 (6)
C26—H26A 0.9800 C64—C65 1.333 (8)
C26—H26B 0.9800 C64—H64 0.9500
C26—H26C 0.9800 C65—H65 0.9500
C27—H27A 0.9800 N62—C66 1.445 (7)
C27—H27B 0.9800 N62—C67 1.453 (7)
C27—H27C 0.9800 C66—H66A 0.9800
N31—C35 1.326 (9) C66—H66B 0.9800
N31—C31 1.333 (8) C66—H66C 0.9800
N31—H31A 0.8800 C67—H67A 0.9800
C31—C32 1.383 (7) C67—H67B 0.9800
C31—H31 0.9500 C67—H67C 0.9800
N4—Mn1—N1 115.03 (17) C35—C34—H34 119.9
N4—Mn1—N3 123.99 (19) C33—C34—H34 119.9
N1—Mn1—N3 120.97 (18) N31—C35—C34 121.9 (5)
N4—Mn1—N2 91.71 (19) N31—C35—H35 119.0
N1—Mn1—N2 91.61 (18) C34—C35—H35 119.0
N3—Mn1—N2 86.71 (17) C33—N32—C37 122.3 (5)
N4—Mn1—N5 90.38 (17) C33—N32—C36 120.8 (4)
N1—Mn1—N5 91.55 (17) C37—N32—C36 116.7 (5)
N3—Mn1—N5 88.42 (17) N32—C36—H36A 109.5
N2—Mn1—N5 175.07 (16) N32—C36—H36B 109.5
C1—N1—Mn1 165.5 (4) H36A—C36—H36B 109.5
N1—C1—S1 177.1 (4) N32—C36—H36C 109.5
C2—N2—Mn1 172.6 (4) H36A—C36—H36C 109.5
N2—C2—S2 179.2 (5) H36B—C36—H36C 109.5
C3—N3—Mn1 168.4 (4) N32—C37—H37A 109.5
N3—C3—S3 179.8 (6) N32—C37—H37B 109.5
C4—N4—Mn1 178.2 (4) H37A—C37—H37B 109.5
N4—C4—S4 179.4 (5) N32—C37—H37C 109.5
C5—N5—Mn1 175.6 (4) H37A—C37—H37C 109.5
N5—C5—S5 178.7 (4) H37B—C37—H37C 109.5
N6—Mn2—N8 121.35 (19) C45—N41—C41 119.7 (4)
N6—Mn2—N9 121.77 (19) C45—N41—H41A 120.1
N8—Mn2—N9 116.88 (18) C41—N41—H41A 120.1
N6—Mn2—N10 90.22 (18) N41—C41—C42 121.9 (5)
N8—Mn2—N10 89.77 (17) N41—C41—H41 119.1
N9—Mn2—N10 89.23 (18) C42—C41—H41 119.1
N6—Mn2—N7 92.53 (18) C41—C42—C43 120.5 (5)
N8—Mn2—N7 90.07 (16) C41—C42—H42 119.8
N9—Mn2—N7 88.06 (17) C43—C42—H42 119.8
N10—Mn2—N7 176.88 (18) N42—C43—C44 121.8 (4)
C6—N6—Mn2 171.3 (5) N42—C43—C42 122.7 (4)
N6—C6—S6 178.2 (5) C44—C43—C42 115.5 (4)
C7—N7—Mn2 162.7 (4) C45—C44—C43 120.0 (5)
N7—C7—S7 178.0 (5) C45—C44—H44 120.0
C8—N8—Mn2 163.4 (4) C43—C44—H44 120.0
N8—C8—S8 177.8 (4) N41—C45—C44 122.5 (5)
C9—N9—Mn2 177.8 (4) N41—C45—H45 118.8
N9—C9—S9 179.1 (5) C44—C45—H45 118.8
C10—N10—Mn2 169.0 (4) C43—N42—C47 122.0 (4)
N10—C10—S10 179.5 (5) C43—N42—C46 122.1 (4)
C11—N11—C15 120.2 (4) C47—N42—C46 115.4 (4)
C11—N11—H11A 119.9 N42—C46—H46A 109.5
C15—N11—H11A 119.9 N42—C46—H46B 109.5
N11—C11—C12 123.0 (5) H46A—C46—H46B 109.5
N11—C11—H11 118.5 N42—C46—H46C 109.5
C12—C11—H11 118.5 H46A—C46—H46C 109.5
C11—C12—C13 118.9 (5) H46B—C46—H46C 109.5
C11—C12—H12 120.6 N42—C47—H47A 109.5
C13—C12—H12 120.6 N42—C47—H47B 109.5
N12—C13—C14 121.7 (4) H47A—C47—H47B 109.5
N12—C13—C12 121.8 (4) N42—C47—H47C 109.5
C14—C13—C12 116.5 (4) H47A—C47—H47C 109.5
C15—C14—C13 120.0 (4) H47B—C47—H47C 109.5
C15—C14—H14 120.0 C51—N51—C55 120.0 (5)
C13—C14—H14 120.0 C51—N51—H51A 120.0
N11—C15—C14 121.4 (5) C55—N51—H51A 120.0
N11—C15—H15 119.3 N51—C51—C52 122.5 (5)
C14—C15—H15 119.3 N51—C51—H51 118.7
C13—N12—C16 121.4 (4) C52—C51—H51 118.7
C13—N12—C17 121.0 (4) C51—C52—C53 119.4 (5)
C16—N12—C17 117.5 (4) C51—C52—H52 120.3
N12—C16—H16A 109.5 C53—C52—H52 120.3
N12—C16—H16B 109.5 N52—C53—C54 122.6 (4)
H16A—C16—H16B 109.5 N52—C53—C52 121.9 (4)
N12—C16—H16C 109.5 C54—C53—C52 115.5 (4)
H16A—C16—H16C 109.5 C55—C54—C53 121.3 (5)
H16B—C16—H16C 109.5 C55—C54—H54 119.3
N12—C17—H17A 109.5 C53—C54—H54 119.3
N12—C17—H17B 109.5 C54—C55—N51 121.2 (5)
H17A—C17—H17B 109.5 C54—C55—H55 119.4
N12—C17—H17C 109.5 N51—C55—H55 119.4
H17A—C17—H17C 109.5 C53—N52—C56 121.6 (4)
H17B—C17—H17C 109.5 C53—N52—C57 121.2 (4)
C21—N21—C25 120.5 (5) C56—N52—C57 117.1 (4)
C21—N21—H21A 119.7 N52—C56—H56A 109.5
C25—N21—H21A 119.7 N52—C56—H56B 109.5
N21—C21—C22 121.3 (6) H56A—C56—H56B 109.5
N21—C21—H21 119.3 N52—C56—H56C 109.5
C22—C21—H21 119.3 H56A—C56—H56C 109.5
C21—C22—C23 119.6 (5) H56B—C56—H56C 109.5
C21—C22—H22 120.2 N52—C57—H57A 109.5
C23—C22—H22 120.2 N52—C57—H57B 109.5
N22—C23—C24 122.6 (5) H57A—C57—H57B 109.5
N22—C23—C22 120.5 (5) N52—C57—H57C 109.5
C24—C23—C22 116.9 (4) H57A—C57—H57C 109.5
C25—C24—C23 120.1 (5) H57B—C57—H57C 109.5
C25—C24—H24 120.0 C65—N61—C61 121.5 (5)
C23—C24—H24 120.0 C65—N61—H61A 119.3
N21—C25—C24 121.5 (5) C61—N61—H61A 119.3
N21—C25—H25 119.3 N61—C61—C62 120.3 (6)
C24—C25—H25 119.3 N61—C61—H61 119.9
C23—N22—C27 122.0 (5) C62—C61—H61 119.9
C23—N22—C26 121.0 (5) C61—C62—C63 120.2 (5)
C27—N22—C26 117.0 (5) C61—C62—H62 119.9
N22—C26—H26A 109.5 C63—C62—H62 119.9
N22—C26—H26B 109.5 N62—C63—C62 121.1 (4)
H26A—C26—H26B 109.5 N62—C63—C64 122.3 (5)
N22—C26—H26C 109.5 C62—C63—C64 116.6 (5)
H26A—C26—H26C 109.5 C65—C64—C63 120.4 (5)
H26B—C26—H26C 109.5 C65—C64—H64 119.8
N22—C27—H27A 109.5 C63—C64—H64 119.8
N22—C27—H27B 109.5 N61—C65—C64 121.1 (5)
H27A—C27—H27B 109.5 N61—C65—H65 119.5
N22—C27—H27C 109.5 C64—C65—H65 119.5
H27A—C27—H27C 109.5 C63—N62—C66 121.8 (4)
H27B—C27—H27C 109.5 C63—N62—C67 121.8 (4)
C35—N31—C31 121.2 (5) C66—N62—C67 116.4 (4)
C35—N31—H31A 119.4 N62—C66—H66A 109.5
C31—N31—H31A 119.4 N62—C66—H66B 109.5
N31—C31—C32 120.9 (5) H66A—C66—H66B 109.5
N31—C31—H31 119.5 N62—C66—H66C 109.5
C32—C31—H31 119.5 H66A—C66—H66C 109.5
C31—C32—C33 119.4 (5) H66B—C66—H66C 109.5
C31—C32—H32 120.3 N62—C67—H67A 109.5
C33—C32—H32 120.3 N62—C67—H67B 109.5
N32—C33—C34 122.7 (4) H67A—C67—H67B 109.5
N32—C33—C32 121.0 (4) N62—C67—H67C 109.5
C34—C33—C32 116.3 (4) H67A—C67—H67C 109.5
C35—C34—C33 120.3 (5) H67B—C67—H67C 109.5

Tris[4-(dimethylamino)pyridinium] pentakis(thiocyanato-κN)manganate(II) (Compound2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11A···S2 0.88 2.37 3.224 (4) 163
C11—H11···S9i 0.95 3.02 3.945 (5) 166
C15—H15···S8ii 0.95 2.86 3.728 (5) 153
C16—H16B···S9iii 0.98 3.02 3.954 (6) 160
C17—H17B···S9iii 0.98 2.96 3.930 (6) 170
N21—H21A···S1iv 0.88 2.82 3.520 (5) 138
N21—H21A···S7 0.88 2.81 3.485 (6) 134
C25—H25···N1iv 0.95 2.62 3.567 (7) 175
C26—H26B···N5 0.98 2.58 3.500 (7) 157
N31—H31A···S10 0.88 2.41 3.266 (5) 164
C31—H31···S3v 0.95 2.99 3.838 (6) 150
C35—H35···S1vi 0.95 2.96 3.512 (6) 118
C36—H36B···S3vii 0.98 2.99 3.868 (6) 149
N41—H41A···S5 0.88 2.45 3.302 (4) 163
C41—H41···S6 0.95 2.94 3.804 (5) 152
C45—H45···S8viii 0.95 2.88 3.445 (5) 119
C47—H47C···S2ix 0.98 2.98 3.717 (5) 133
N51—H51A···S7 0.88 2.43 3.288 (5) 163
C51—H51···S4x 0.95 2.99 3.931 (5) 169
C55—H55···S1iv 0.95 2.93 3.746 (5) 145
C57—H57C···N7iv 0.98 2.69 3.539 (7) 146
N61—H61A···S8iv 0.88 2.78 3.507 (5) 141
C65—H65···N8iv 0.95 2.66 3.513 (7) 150
C66—H66A···S4x 0.98 2.92 3.767 (6) 145

Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, y−1/2, −z; (iii) x−1, y, z−2; (iv) x, y, z+1; (v) −x+2, y+1/2, −z; (vi) x+1, y, z; (vii) −x+2, y+1/2, −z−1; (viii) −x+2, y−1/2, −z+1; (ix) x+1, y, z+1; (x) −x+1, y+1/2, −z+1.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant NA 720/6-1).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bose, D., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2006). Polyhedron, 25, 663–670.
  3. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hill, J. P., Palza, H., Alam, S., Ariga, K., Schumacher, A. L., D’Souza, F. D., Anson, C. E. & Powell, A. K. (2008). Inorg. Chem. 47, 8306–8314. [DOI] [PubMed]
  7. Kushch, N. D., Bardin, A. A., Buravov, L. I., Glushakova, N. M., Shilov, G. V., Dmitriev, A. I., Morgunov, R. B. & Kulikov, A. V. (2014). Synth. Met. 195, 75–82.
  8. Li, Q., Shi, P. P., Ye, Q., Wang, H. T., Wu, D. H., Ye, H. Y., Fu, D. W. & Zhang, Y. (2015). Inorg. Chem. 54, 10642–10647. [DOI] [PubMed]
  9. Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.
  10. Matoga, M., Oszajca, M. & Molenda, M. (2015). Chem. Commun. 51, 7637–7640. [DOI] [PubMed]
  11. Mousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Commun. 48, 10028–10030. [DOI] [PubMed]
  12. Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.
  13. Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 24534–24544. [DOI] [PubMed]
  14. Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 3232–3243. [DOI] [PubMed]
  15. Savard, D. & Leznoff, D. B. (2013). Dalton Trans. 42, 14982–14991. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
  19. Suckert, S., Jess, I. & Näther, C. (2015). Acta Cryst. E71, m126. [DOI] [PMC free article] [PubMed]
  20. Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201. [DOI] [PubMed]
  21. Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901. [DOI] [PubMed]
  22. Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3236–3245.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Wöhlert, S., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1528. [DOI] [PMC free article] [PubMed]
  25. Wöhlert, S., Ruschewitz, U. & Näther, C. (2012a). Cryst. Growth Des. 12, 2715–2718.
  26. Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Compound1, Compound2. DOI: 10.1107/S2056989017017510/wm5426sup1.cif

e-74-00015-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) Compound1. DOI: 10.1107/S2056989017017510/wm5426Compound1sup2.hkl

Structure factors: contains datablock(s) Compound2. DOI: 10.1107/S2056989017017510/wm5426Compound2sup3.hkl

CCDC references: 1589470, 1589469

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES