Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):21–27. doi: 10.1107/S2056989017017273

3-{(E)-[4-(4-Hy­droxy-3-meth­oxy­phen­yl)butan-2-yl­idene]amino}-1-phenyl­urea: crystal structure and Hirshfeld surface analysis

Ming Yueh Tan a, Karen A Crouse b,c, Thahira B S A Ravoof b,, Mukesh M Jotani d, Edward R T Tiekink e,*
PMCID: PMC5778478  PMID: 29416884

The disubstituted urea mol­ecule has a twisted conformation for each of the two mol­ecules comprising the asymmetric unit. Intra­molecular amine-N—H⋯N(imine) and hy­droxy-O—H⋯O(meth­oxy) hydrogen bonds are noted. In the mol­ecular packing, amide-N—H⋯O(amide), hydroxyl-O—H⋯N(imine) and phenyl­amine-N—H⋯O(meth­oxy) hydrogen bonding leads to layers in the ac plane.

Keywords: crystal structure, urea derivative, hydrogen bonding, Hirshfeld surface analysis

Abstract

Two independent mol­ecules (A and B) comprise the asymmetric unit of the title compound, C18H21N3O3. The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN2O urea core [dihedral angles = 25.57 (11) (A) and 29.13 (10)° (B)]. The second amine is connected to an imine (E conformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intra­molecular amine-N—H⋯N(imine) and hydroxyl-O—H⋯O(meth­oxy) hydrogen bonds close S(5) loops in each case. The mol­ecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) (A) and 48.55 (7)° (B). In the crystal, amide-N—H⋯O(amide) hydrogen bonds link the mol­ecules A and B via an eight-membered {⋯HNCO}2 synthon. Further associations between mol­ecules, leading to supra­molecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O—H⋯N(imine) and phenyl­amine-N—H⋯O(meth­oxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C—H⋯O(hy­droxy) inter­actions. A detailed analysis of the calculated Hirshfeld surfaces shows mol­ecules A and B participate in very similar inter­molecular inter­actions and that any variations relate to conformational differences between the mol­ecules.

Chemical context  

Semicarbazones belong to the general class of mol­ecules termed Schiff bases and are prepared from condensation of semicarbazides with aldehydes/ketones. They have attracted considerable attention due to their wide spectrum of bio­logical activities, including anti-convulsant (Pandey & Srivastava, 2010), anti-tubercular (Sriram et al., 2004), anti-cancer (Ali et al., 2012) and anti-microbial (Beraldo & Gambino, 2004). Actually, they have been investigated extensively for their anti-convulsant properties with 4-(4-fluoro­phen­oxy)benz­aldehyde semicarbazone, in particular, attracting attention as a potent anti-epileptic drug over the past 15 years (Pandeya, 2012). Recently, the crystal structures of related chalcone-derived thio­semicarbazones and their transition metal complexes have been reported (Tan et al., 2015, 2017). In this contribution, aryl semicarbazide is introduced with vanillyl­acetone, which led to the formation of the title compound. Vanillylacetone is one of the active components of ginger and possesses strong anti-oxidant and chemopreventive properties (Kıyak et al., 2015). The structural elucidation of such compounds has not been extensively investigated. In order to redress this, herein the crystal and mol­ecular structures of the title compound, (I), are described along with an analysis of the calculated Hirshfeld surface in order to ascertain more details of the supra­molecular association operating in the crystal.graphic file with name e-74-00021-scheme1.jpg

Structural commentary  

Two independent mol­ecules, A and B, comprise the asymmetric unit of (I) and these are shown in Fig. 1. Each mol­ecule features a disubstituted urea mol­ecule with one amine group connected to a phenyl ring and the other linked to a disubstituted imine group, with the longer side-chain carrying an ethane chain terminating with a disubstituted benzene ring. The four atoms comprising the urea core are strictly planar with an r.m.s. deviation of 0.0041 Å [0.0043 for the O4-mol­ecule, mol­ecule B]. The phenyl ring is inclined to this plane, forming a dihedral angle of 25.57 (11)° [29.13 (10)° for mol­ecule B]. Intra­molecular N—H⋯N hydrogen bonds are found within the urea residues, Table 1. A significant kink in the mol­ecule occurs in the ethane bridge, as seen in the value of −157.88 (16)° for the C8—C9—C10—C11 torsion angle [C26—C27—C28—C29 = 162.93 (17)° for B]. As a result, the mol­ecule is twisted with the terminal rings inclined to each other, forming a (C2–C7)/(C11–C16) dihedral angle of 38.64 (8)° [(C20–C25)/(C29–C34) = 48.55 (7)° for B]. The latter represents the major difference between mol­ecules A and B, as illustrated in the overlay diagram shown in Fig. 2. In each of the disubstituted benzene rings, the hydroxyl-H atom is orientated to allow the formation of intra­molecular O—H⋯O hydrogen bonds with the meth­oxy-O atom, Table 1. The conformation about the imine bond [N3=C8 = 1.281 (2) and N6=C26 = 1.276 (2) Å] is E in each mol­ecule. Finally, each of the meth­oxy substituents is twisted out of the plane of the ring to which it is bonded [C18—O2—C13—C12 = 11.7 (3) and C36—O5—C31—C30 = −16.5 (3)°].

Figure 1.

Figure 1

The mol­ecular structures of the two independent mol­ecules comprising the asymmetric unit of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C29–C34 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.86 (2) 2.18 (2) 2.635 (2) 113 (2)
N4—H4N⋯N6 0.86 (2) 2.23 (2) 2.637 (2) 109 (1)
O3—H3O⋯O2 0.84 (2) 2.29 (3) 2.660 (2) 107 (2)
O6—H6O⋯O5 0.84 (2) 2.28 (2) 2.663 (2) 108 (2)
O3—H3O⋯N6i 0.84 (2) 2.19 (2) 2.994 (2) 161 (2)
O6—H6O⋯N3ii 0.84 (2) 2.22 (2) 3.013 (2) 157 (2)
N2—H2N⋯O4iii 0.88 (2) 2.01 (2) 2.873 (2) 170 (2)
N4—H4N⋯O2i 0.86 (2) 2.54 (2) 3.390 (2) 167 (2)
N5—H5N⋯O1iv 0.88 (2) 2.04 (2) 2.900 (2) 169 (2)
C33—H33⋯O6v 0.95 2.54 3.212 (2) 128
C15—H15⋯O3vi 0.95 2.63 3.166 (2) 113
C33—H33⋯O6i 0.95 2.54 3.212 (2) 128
C10—H10ACg1vii 0.99 2.80 3.774 (2) 168
C18—H18ACg2ii 0.98 2.66 3.603 (4) 161
C28—H28BCg3viii 0.99 2.75 3.720 (2) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 2.

Figure 2

Overlay diagram for (I), with the O1-mol­ecule (red image) and O4-mol­ecule (blue image) superimposed so that the urea residues are coincident.

Supra­molecular features  

Conventional O—H⋯N and N—H⋯O hydrogen bonding features significantly in the mol­ecular packing of (I), Table 1, and this is highlighted in Fig. 3 a. The two mol­ecules comprising the asymmetric unit associate via an eight-membered amide synthon, {⋯OCNH}2. The hy­droxy-O—H groups at each end of the dimeric aggregate hydrogen bond to an imine-N atom of the other independent mol­ecule. The hydroxyl-O3—H⋯N6(imine) inter­action is incorporated within a 10-membered {⋯HOC2O⋯HNCNN} heterosynthon owing to the formation of a relatively weak phenyl­amine-N4—H⋯O2(meth­oxy) hydrogen bond. The putative phenyl­amine-N1—H⋯O5(meth­oxy) hydrogen bond is beyond the standard limits (Spek, 2009) as the H⋯O separation is 2.73 Å. As seen in Fig. 3 b, these hydrogen bonds extend laterally to from an array in (101). The most obvious connections between the supra­molecular layers are of the type benzene-C—H⋯O(hydrox­yl), which occur between centrosymmetrically related O6-benzene rings. A view of the unit-cell contents highlighting the stacking of layers is shown in Fig. 3 c. Other C—H⋯O and several C—H⋯π inter­actions occur in the crystal but within the layers stabilized by hydrogen bonding. These and other weak inter­actions are discussed in more detail in Analysis of the Hirshfeld surface (§4).

Figure 3.

Figure 3

The mol­ecular packing in (I): (a) a detail of the supra­molecular association sustained by O—H⋯N and N—H⋯O hydrogen bonding, shown as orange and blue dashed lines, respectively, (b) a view of the supra­molecular layer in the ac plane, and (c) a view of the unit-cell contents shown in projection down the b axis. The C—H⋯O inter­actions are shown as green dashed lines, and one layer is highlighted in space-filling mode.

Analysis of the Hirshfeld surface  

The Hirshfeld surface was calculated for the individual O1- and O4-mol­ecules in (I), i.e. mol­ecules A and B, and for overall (I) in accord with a recent report on a related mol­ecule (Tan et al., 2017). These calculations provide additional information about the influence of weak inter­molecular C—H⋯O and C—H⋯π inter­actions, Table 1, along with short inter­atomic H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts, Table 2, on the mol­ecular packing in the crystal.

Table 2. Summary of short inter­atomic contacts (Å) in (I).

Contact Distance Symmetry operation
H3⋯H21 2.16 Inline graphic − x, −Inline graphic + y, Inline graphic − z
H28A⋯H35A 2.24 Inline graphic − x, −Inline graphic + y, Inline graphic − z
O1⋯H22 2.50 Inline graphic − x, −Inline graphic + y, Inline graphic − z
O2⋯H27B 2.56 1 − x, 1 − y, 1 − z
O3⋯H15 2.63 x, 2 − y, 1 − z
O3⋯C15 3.166 (2) x, 2 − y, 1 − z
O3⋯H23 2.58 1 − x, 2 − y, 1 − z
O4⋯H16 2.58 1 + x, −1 + y, z
O5⋯H9A 2.46 1 − x, −y, 1 − z
C6⋯H10A 2.63 x, −1 + y, z
C15⋯H36C 2.55 1 − x, 1 − y, 1 − z
C16⋯H36C 2.80 1 − x, 1 − y, 1 − z
C24⋯H28B 2.63 x, 1 + y, z
C32⋯H18A 2.76 1 − x, − y, 1 − z
C33⋯H18A 2.62 1 − x, − y, 1 − z
C34⋯H18A 2.78 1 − x, − y, 1 − z
C35⋯H18B 2.71 Inline graphic + x, Inline graphic − y, −Inline graphic + z
C36⋯H9A 2.80 1 − x, − y, 1 − z
C6⋯C6 3.210 (3) 1 − x, − y, 1 − z
C24⋯C24 3.300 (3) 2 − x, 1 − y, 1 − z

The bright-red spots appearing near the hydroxyl-H3O and H6O, and imine-N3 and N6 atoms on the Hirshfeld surfaces mapped over d norm shown with labels ‘1’ and ‘2’ in Fig. 4 represent the donors and acceptors of inter­molecular hydroxyl-O—H⋯N(imine) hydrogen bonds, respectively, Table 1. In the same way, the prominent red regions near the amide-H2N and H5N, and amide-O1 and O4 atoms, i.e. ‘3’ and ‘4’ in Fig. 4, indicate their participation in the inter­molecular N—H⋯O hydrogen bonds between the symmetry-related independent mol­ecules, Table 1. The donors and acceptors of comparatively weak inter­molecular N—H⋯O and C—H⋯O inter­actions summarized in Table 1 are viewed as faint-red spots near the respective atoms on d norm-mapped Hirshfeld surfaces with labels ‘57’ in Fig. 4.

Figure 4.

Figure 4

Views of the Hirshfeld surface for (I) mapped over d norm in the ranges (a) −0.150 to +1.462 au for the O1-containing mol­ecule and (b) −0.215 to + 1.462 au for the O4-mol­ecule.

The presence of diminutive red spots viewed near phenyl atoms C6 in Fig. 4 a and C24 in Fig. 4 b, of the independent mol­ecules, respectively, reflect short inter­atomic edge-to-edge C⋯C contacts, Table 2, although they contribute a very low contribution, i.e. 0.1%, to the Hirshfeld surface owing to the absence of π–π stacking between aromatic rings in the crystal, Table 3. The faint-red spots appearing near the labelled H10A, H18A, C28, C6, C33 and C24 atoms in the images of Fig. 4 represent their participation in short inter­atomic C⋯H/H⋯C contacts, Table 2, and confirm the influence of the inter­molecular C—H⋯π inter­actions, Table 1, in the crystal. In addition to these short inter­atomic C⋯H/H⋯C contacts, the faint-red spots near the C15 O1, H9A and H18B atoms, Fig. 4 a, and O5, C35, H22 and H36C atoms, Fig. 4 b, indicate the contributions from the additional short inter­atomic C⋯H/H⋯C and O⋯H/H⋯O contacts, Table 2, to the mol­ecular packing.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the O1-mol­ecule, the O4-mol­ecule and for overall (I).

Contact Percentage contribution
  O1-mol­ecule O4-mol­ecule (I)
H⋯H 49.5 49.4 48.7
O⋯H/H⋯O 16.4 17.5 17.8
N⋯H/H⋯N 7.4 7.3 7.7
C⋯H/H⋯C 26.3 25.7 25.5
C⋯C 0.1 0.1 0.1
O⋯O 0.2 0.0 0.1
C⋯O/O⋯C 0.1 0.0 0.1

On the Hirshfeld surfaces mapped over the electrostatic potential for the independent mol­ecules of (I), Fig. 5, the donors and acceptors of inter­molecular inter­actions are represented with blue and red regions corresponding to positive and negative electrostatic potentials, respectively. The views of Hirshfeld surfaces about reference independent mol­ecules of (I) mapped within the shape-index property, Fig. 6, highlight the short inter­atomic C⋯H/H⋯C and C—H⋯π/π⋯H—C contacts operating in the crystal.

Figure 5.

Figure 5

Views of the Hirshfeld surface for (I) mapped over the electrostatic potential in the range −0.103 to + 0.141 au for the (a) O1-containing mol­ecule and (b) the O4-mol­ecule. The red and blue regions represent negative and positive electrostatic potentials, respectively.

Figure 6.

Figure 6

Views of the shape-indexed Hirshfeld surfaces about reference mol­ecules highlighting dominant short inter­atomic C—H/H—C and C—H⋯π/π⋯H—C inter­actions for the (a) O1-containing mol­ecule and (b) the O4-mol­ecule.

It is clear from the overall two-dimensional fingerprint plots for each independent mol­ecule and for the entire asymmetric unit of (I) shown in Fig. 7 that the individual mol­ecules have common features in their inter­molecular O—H⋯N, N—H⋯O and C—H⋯π inter­actions. The small differences in the distribution of points in the fingerprint plots delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C contacts (McKinnon et al., 2007) in Fig. 7, are ascribed to the commented upon (§3) conformational differences, i.e. the twisting of the meth­oxy substituents on the respective benzene rings and the inclination of these benzene rings with respect to the ethane bridges.

Figure 7.

Figure 7

The full two-dimensional fingerprint plot and those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C contacts for the (a) O1-containing mol­ecule, (b) the O4-mol­ecule and (c) (I).

The fingerprint plot delineated into H⋯H contacts for mol­ecules A and B have almost the same percentage contribution to their respective Hirshfeld surfaces, Table 3, and the distinct distributions in the upper regions of the plots are due to the contributions from hydrogen atoms of their respective disubstituted benzene rings to the surfaces of mol­ecules A and B. The single short peaks at d e + d i ∼ 2.1 Å in the delineated plots for both the mol­ecules indicate the involvement of hydrogen atoms of both in short inter­atomic H⋯H contacts, Table 2. The inter­molecular N—H⋯O and O—H⋯N hydrogen bonds in the crystal are characterized as the pairs of spikes with their tips at d e + d i ∼ 2.0 Å (inner region) and at ∼ 2.2 Å (outer region) in the fingerprint plots delineated into O⋯H/H⋯O and N⋯H/H⋯N contacts, respectively. The forceps-like distribution of points linked with the donor spike for mol­ecule A and the acceptor spike for mol­ecule B at d e + d i ∼ 2.5 Å in the fingerprint plots delineated into O⋯H/H⋯O contacts are due to weak inter­molecular C—H⋯O inter­actions and the short inter­atomic contacts summarized in Table 2. The asymmetric forceps-like distribution of points with the tips at d e + d i ∼ 2.6 Å in the acceptor and donor regions of fingerprint plots delineated into C⋯H/H⋯C contacts for mol­ecules A and B, respectively, represent the involvement of these atoms in the short inter­atomic C⋯H/H⋯C contacts, Table 2, whereas the inter­molecular C—H⋯π inter­actions are viewed as the forceps-like tips at d e + d i ∼ 2.7 Å in the donor and acceptor regions of mol­ecules A and B, respectively. The other C⋯O/O⋯C, O⋯O and C⋯C inter­atomic contacts summarized in Table 3, having only small contributions to the Hirshfeld surface, have negligible directional impact on the mol­ecular packing.

Database survey  

There are no direct precedents for the structure of (I) in the crystallographic literature (Groom et al., 2016). However, there are several precedents for the phenyl­semicarbazone residue with the imine-carbon atom incorporated within an all-carbon ring (Groth, 1980; Hoek van den et al., 1980), as exemplified in the cyclo­decane derivative (II) (Groth, 1980; Hoek van den et al., 1980), see Scheme 2 for the chemical diagram of (II). More exotic derivatives with cyclic residues at both ends of the semicarbazone core are also known (Behenna et al., 2011; Ma et al., 2014), as exemplified by (III) (Ma et al., 2014), Scheme 2.graphic file with name e-74-00021-scheme2.jpg

Synthesis and crystallization  

Analytical grade reagents were used as procured without further purification. 4-Phenyl­semicarbazide (1.51 g, 0.01 mol) and vanillylacetone (1.94 g, 0.01 mol) were dissolved sep­arately in hot absolute ethanol (30 ml) and mixed with stirring. The reaction mixture was heated and stirred for 20 min., then stirred for another 30 min. at room temperature. The resulting white precipitate was filtered off, washed with cold absolute ethanol and dried in vacuo; yield: 75%. Light-yellow prisms of (I) were grown at room temperature from slow evaporation of mixed solvents of ethanol and aceto­nitrile (1:1; v/v 20 ml). IR (cm−1): 3201 ν(N—H), 1670 ν(C=N), 1213 ν(C—N), 1026 ν(C=O). MS m/z: 327.25 [M+1]+

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2–1.5U eq(C). The oxygen- and nitro­gen-bound H atoms were located in a difference-Fourier map but were refined with distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with U iso(H) set to 1.5U eq(O) and 1.2U eq(N), respectively. The maximum and minimum residual electron density peaks of 0.60 and 0.26 e Å−3, respectively, were located 0.95 and 0.75 Å from atoms H10A and H36A, respectively.

Table 4. Experimental details.

Crystal data
Chemical formula C18H21N3O3
M r 327.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 16.5464 (4), 9.2184 (2), 22.3975 (4)
β (°) 100.494 (2)
V3) 3359.18 (13)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.25 × 0.16 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcaliber Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011)
T min, T max 0.917, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23815, 6481, 5581
R int 0.019
(sin θ/λ)max−1) 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.180, 1.05
No. of reflections 6481
No. of parameters 455
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017017273/hb7720sup1.cif

e-74-00021-sup1.cif (835KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017273/hb7720Isup2.hkl

e-74-00021-Isup2.hkl (515.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017273/hb7720Isup3.cml

CCDC reference: 926756

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the staff of the University of Malaya’s X-ray diffraction laboratory for the data collection.

supplementary crystallographic information

Crystal data

C18H21N3O3 F(000) = 1392
Mr = 327.37 Dx = 1.295 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
a = 16.5464 (4) Å Cell parameters from 9245 reflections
b = 9.2184 (2) Å θ = 3.7–71.3°
c = 22.3975 (4) Å µ = 0.73 mm1
β = 100.494 (2)° T = 100 K
V = 3359.18 (13) Å3 Prism (cut), light-yellow
Z = 8 0.25 × 0.16 × 0.06 mm

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer 6481 independent reflections
Radiation source: fine-focus sealed tube 5581 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
Detector resolution: 16.1952 pixels mm-1 θmax = 71.4°, θmin = 3.7°
ω scans h = −20→20
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −11→11
Tmin = 0.917, Tmax = 1.000 l = −26→27
23815 measured reflections

Refinement

Refinement on F2 6 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1131P)2 + 1.5134P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
6481 reflections Δρmax = 0.60 e Å3
455 parameters Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.50355 (7) 0.34300 (14) 0.28183 (6) 0.0292 (3)
O2 0.22012 (9) 0.87251 (16) 0.56672 (6) 0.0386 (4)
O3 0.09139 (8) 1.04987 (16) 0.54412 (6) 0.0350 (3)
H3O 0.1190 (15) 1.034 (3) 0.5787 (7) 0.053*
N1 0.40785 (9) 0.29389 (16) 0.34177 (6) 0.0253 (3)
H1N 0.3694 (10) 0.337 (2) 0.3564 (9) 0.030*
N2 0.40724 (9) 0.51144 (16) 0.29066 (7) 0.0256 (3)
H2N 0.4313 (12) 0.5727 (19) 0.2696 (8) 0.031*
N3 0.34334 (9) 0.55389 (17) 0.31934 (7) 0.0284 (3)
C1 0.44364 (10) 0.37902 (19) 0.30419 (7) 0.0238 (3)
C2 0.43316 (10) 0.15426 (19) 0.36316 (8) 0.0259 (4)
C3 0.47454 (13) 0.0593 (2) 0.33074 (9) 0.0360 (4)
H3 0.4884 0.0887 0.2932 0.043*
C4 0.49550 (13) −0.0785 (2) 0.35355 (10) 0.0407 (5)
H4 0.5243 −0.1425 0.3316 0.049*
C5 0.47517 (13) −0.1240 (2) 0.40757 (10) 0.0419 (5)
H5 0.4894 −0.2186 0.4227 0.050*
C6 0.43353 (14) −0.0291 (2) 0.43949 (10) 0.0442 (5)
H6 0.4192 −0.0594 0.4768 0.053*
C7 0.41258 (13) 0.1094 (2) 0.41765 (9) 0.0368 (4)
H7 0.3842 0.1734 0.4400 0.044*
C8 0.29887 (11) 0.6607 (2) 0.29621 (8) 0.0297 (4)
C9 0.23057 (11) 0.7061 (2) 0.32858 (9) 0.0326 (4)
H9A 0.2323 0.6455 0.3653 0.039*
H9B 0.1769 0.6900 0.3016 0.039*
C10 0.23837 (13) 0.8663 (2) 0.34707 (9) 0.0355 (4)
H10A 0.2974 0.8905 0.3592 0.043*
H10B 0.2158 0.9266 0.3113 0.043*
C11 0.19461 (12) 0.9052 (2) 0.39874 (8) 0.0329 (4)
C12 0.22808 (13) 0.8620 (2) 0.45796 (9) 0.0367 (4)
H12 0.2757 0.8024 0.4650 0.044*
C13 0.19215 (12) 0.9056 (2) 0.50660 (8) 0.0307 (4)
C14 0.12349 (11) 0.99627 (19) 0.49664 (8) 0.0261 (4)
C15 0.08828 (11) 1.0335 (2) 0.43795 (9) 0.0302 (4)
H15 0.0400 1.0915 0.4307 0.036*
C16 0.12319 (11) 0.9866 (2) 0.38942 (8) 0.0322 (4)
H16 0.0976 1.0108 0.3492 0.039*
C17 0.31178 (11) 0.7458 (2) 0.24149 (8) 0.0329 (4)
H17A 0.3595 0.8096 0.2526 0.049*
H17B 0.2628 0.8043 0.2266 0.049*
H17C 0.3214 0.6788 0.2095 0.049*
C18 0.30011 (18) 0.8105 (4) 0.58127 (11) 0.0742 (10)
H18A 0.2995 0.7133 0.5635 0.111*
H18B 0.3167 0.8039 0.6255 0.111*
H18C 0.3393 0.8718 0.5648 0.111*
O4 0.99721 (7) 0.19097 (14) 0.27509 (6) 0.0296 (3)
O5 0.74121 (9) −0.41262 (16) 0.57259 (6) 0.0389 (3)
O6 0.59792 (8) −0.55085 (16) 0.54521 (6) 0.0355 (3)
H6O 0.6277 (14) −0.547 (3) 0.5798 (7) 0.053*
N4 0.90978 (8) 0.23778 (16) 0.34148 (6) 0.0245 (3)
H4N 0.8743 (10) 0.198 (2) 0.3602 (8) 0.029*
N5 0.90487 (9) 0.02044 (16) 0.28954 (7) 0.0263 (3)
H5N 0.9267 (12) −0.040 (2) 0.2668 (8) 0.032*
N6 0.84546 (9) −0.02354 (17) 0.32229 (7) 0.0288 (3)
C19 0.94100 (10) 0.15314 (18) 0.30127 (7) 0.0230 (3)
C20 0.93614 (10) 0.37987 (19) 0.35945 (8) 0.0251 (4)
C21 0.96816 (12) 0.4747 (2) 0.32082 (8) 0.0309 (4)
H21 0.9735 0.4440 0.2812 0.037*
C22 0.99218 (12) 0.6136 (2) 0.34046 (9) 0.0350 (4)
H22 1.0146 0.6768 0.3142 0.042*
C23 0.98404 (12) 0.6617 (2) 0.39743 (9) 0.0367 (4)
H23 1.0006 0.7571 0.4104 0.044*
C24 0.95139 (13) 0.5686 (2) 0.43530 (9) 0.0384 (5)
H24 0.9451 0.6008 0.4745 0.046*
C25 0.92765 (12) 0.4282 (2) 0.41667 (8) 0.0331 (4)
H25 0.9056 0.3653 0.4432 0.040*
C26 0.79860 (11) −0.1278 (2) 0.30028 (8) 0.0292 (4)
C27 0.73558 (11) −0.1766 (2) 0.33697 (9) 0.0330 (4)
H27A 0.6797 −0.1593 0.3134 0.040*
H27B 0.7417 −0.1189 0.3748 0.040*
C28 0.74571 (13) −0.3380 (2) 0.35290 (9) 0.0364 (4)
H28A 0.7238 −0.3958 0.3163 0.044*
H28B 0.8051 −0.3600 0.3645 0.044*
C29 0.70304 (12) −0.3848 (2) 0.40393 (9) 0.0327 (4)
C30 0.74324 (12) −0.3697 (2) 0.46427 (9) 0.0342 (4)
H30 0.7957 −0.3245 0.4729 0.041*
C31 0.70709 (12) −0.4203 (2) 0.51172 (8) 0.0307 (4)
C32 0.63080 (11) −0.49006 (19) 0.49940 (8) 0.0265 (4)
C33 0.58946 (11) −0.5002 (2) 0.44001 (9) 0.0320 (4)
H33 0.5367 −0.5443 0.4314 0.038*
C34 0.62477 (12) −0.4461 (2) 0.39286 (8) 0.0326 (4)
H34 0.5951 −0.4510 0.3524 0.039*
C35 0.80405 (11) −0.2075 (2) 0.24253 (8) 0.0329 (4)
H35A 0.8160 −0.1383 0.2120 0.049*
H35B 0.7516 −0.2560 0.2274 0.049*
H35C 0.8481 −0.2799 0.2506 0.049*
C36 0.82787 (14) −0.3844 (3) 0.58750 (10) 0.0481 (6)
H36A 0.8572 −0.4519 0.5652 0.072*
H36B 0.8468 −0.3976 0.6312 0.072*
H36C 0.8388 −0.2845 0.5762 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0302 (6) 0.0278 (6) 0.0345 (7) 0.0047 (5) 0.0187 (5) 0.0035 (5)
O2 0.0518 (8) 0.0411 (8) 0.0266 (7) 0.0180 (6) 0.0167 (6) 0.0056 (5)
O3 0.0351 (7) 0.0431 (8) 0.0304 (7) 0.0075 (6) 0.0154 (5) −0.0057 (6)
N1 0.0276 (7) 0.0269 (7) 0.0248 (7) 0.0014 (6) 0.0136 (6) −0.0006 (6)
N2 0.0257 (7) 0.0268 (7) 0.0281 (7) 0.0019 (6) 0.0153 (6) 0.0016 (6)
N3 0.0294 (7) 0.0313 (8) 0.0282 (8) 0.0033 (6) 0.0152 (6) −0.0005 (6)
C1 0.0241 (8) 0.0256 (8) 0.0227 (8) −0.0003 (6) 0.0073 (6) −0.0015 (6)
C2 0.0271 (8) 0.0268 (9) 0.0245 (8) −0.0036 (7) 0.0064 (6) 0.0007 (7)
C3 0.0475 (11) 0.0307 (10) 0.0352 (10) 0.0047 (8) 0.0222 (9) 0.0055 (8)
C4 0.0455 (11) 0.0308 (10) 0.0500 (12) 0.0066 (8) 0.0196 (9) 0.0071 (9)
C5 0.0435 (11) 0.0326 (10) 0.0498 (12) −0.0010 (8) 0.0088 (9) 0.0140 (9)
C6 0.0571 (13) 0.0425 (12) 0.0363 (11) −0.0079 (10) 0.0172 (9) 0.0121 (9)
C7 0.0463 (11) 0.0359 (10) 0.0320 (10) −0.0043 (8) 0.0176 (8) 0.0001 (8)
C8 0.0296 (9) 0.0336 (9) 0.0277 (9) 0.0013 (7) 0.0097 (7) −0.0028 (7)
C9 0.0283 (9) 0.0367 (10) 0.0353 (10) 0.0005 (7) 0.0123 (7) −0.0034 (8)
C10 0.0449 (11) 0.0343 (10) 0.0314 (10) 0.0030 (8) 0.0179 (8) 0.0023 (8)
C11 0.0419 (10) 0.0292 (9) 0.0307 (9) 0.0023 (8) 0.0149 (8) −0.0010 (7)
C12 0.0444 (11) 0.0351 (10) 0.0340 (10) 0.0142 (8) 0.0164 (8) 0.0035 (8)
C13 0.0395 (10) 0.0289 (9) 0.0265 (9) 0.0058 (7) 0.0134 (7) 0.0019 (7)
C14 0.0292 (9) 0.0239 (8) 0.0291 (9) −0.0029 (6) 0.0163 (7) −0.0021 (6)
C15 0.0246 (8) 0.0327 (9) 0.0354 (10) 0.0004 (7) 0.0110 (7) 0.0012 (7)
C16 0.0333 (9) 0.0384 (10) 0.0262 (9) 0.0011 (8) 0.0087 (7) 0.0005 (7)
C17 0.0342 (9) 0.0383 (10) 0.0289 (9) 0.0117 (8) 0.0133 (7) 0.0041 (7)
C18 0.0821 (19) 0.111 (3) 0.0325 (11) 0.0655 (19) 0.0182 (12) 0.0211 (13)
O4 0.0312 (6) 0.0265 (6) 0.0362 (7) −0.0032 (5) 0.0200 (5) −0.0031 (5)
O5 0.0459 (8) 0.0460 (8) 0.0266 (7) −0.0145 (6) 0.0118 (6) −0.0018 (6)
O6 0.0317 (7) 0.0471 (8) 0.0312 (7) −0.0050 (6) 0.0152 (5) 0.0059 (6)
N4 0.0245 (7) 0.0272 (7) 0.0244 (7) −0.0009 (5) 0.0116 (5) 0.0008 (5)
N5 0.0271 (7) 0.0279 (8) 0.0279 (7) −0.0029 (6) 0.0159 (6) −0.0030 (6)
N6 0.0296 (8) 0.0313 (8) 0.0296 (8) −0.0042 (6) 0.0166 (6) −0.0001 (6)
C19 0.0223 (8) 0.0250 (8) 0.0230 (8) 0.0008 (6) 0.0075 (6) 0.0015 (6)
C20 0.0223 (8) 0.0286 (9) 0.0249 (8) 0.0030 (6) 0.0057 (6) −0.0027 (7)
C21 0.0371 (10) 0.0287 (9) 0.0297 (9) −0.0013 (7) 0.0140 (7) −0.0046 (7)
C22 0.0376 (10) 0.0287 (10) 0.0421 (11) −0.0032 (8) 0.0162 (8) −0.0037 (8)
C23 0.0379 (10) 0.0301 (10) 0.0431 (11) 0.0004 (8) 0.0104 (8) −0.0121 (8)
C24 0.0458 (11) 0.0394 (11) 0.0313 (10) 0.0059 (9) 0.0103 (8) −0.0108 (8)
C25 0.0384 (10) 0.0346 (10) 0.0286 (9) 0.0039 (8) 0.0125 (8) −0.0005 (7)
C26 0.0275 (9) 0.0306 (9) 0.0311 (9) −0.0004 (7) 0.0098 (7) 0.0036 (7)
C27 0.0293 (9) 0.0332 (10) 0.0395 (10) −0.0004 (7) 0.0144 (8) 0.0038 (8)
C28 0.0450 (11) 0.0340 (10) 0.0345 (10) 0.0026 (8) 0.0186 (8) 0.0026 (8)
C29 0.0403 (10) 0.0281 (9) 0.0326 (10) 0.0010 (7) 0.0143 (8) 0.0029 (7)
C30 0.0373 (10) 0.0318 (10) 0.0361 (10) −0.0073 (8) 0.0131 (8) −0.0007 (8)
C31 0.0375 (10) 0.0296 (9) 0.0270 (9) −0.0041 (7) 0.0111 (7) −0.0026 (7)
C32 0.0288 (9) 0.0249 (8) 0.0299 (9) 0.0034 (7) 0.0165 (7) 0.0012 (7)
C33 0.0241 (8) 0.0377 (10) 0.0357 (10) 0.0035 (7) 0.0095 (7) 0.0007 (8)
C34 0.0341 (9) 0.0365 (10) 0.0280 (9) 0.0043 (8) 0.0077 (7) 0.0021 (7)
C35 0.0330 (9) 0.0400 (11) 0.0267 (9) −0.0114 (8) 0.0076 (7) −0.0018 (7)
C36 0.0474 (12) 0.0608 (15) 0.0358 (11) −0.0236 (11) 0.0064 (9) −0.0054 (10)

Geometric parameters (Å, º)

O1—C1 1.235 (2) O4—C19 1.237 (2)
O2—C13 1.376 (2) O5—C31 1.379 (2)
O2—C18 1.424 (3) O5—C36 1.436 (2)
O3—C14 1.365 (2) O6—C32 1.366 (2)
O3—H3O 0.838 (10) O6—H6O 0.840 (10)
N1—C1 1.363 (2) N4—C19 1.362 (2)
N1—C2 1.410 (2) N4—C20 1.416 (2)
N1—H1N 0.862 (9) N4—H4N 0.865 (9)
N2—C1 1.371 (2) N5—C19 1.366 (2)
N2—N3 1.3895 (19) N5—N6 1.3899 (19)
N2—H2N 0.876 (9) N5—H5N 0.878 (9)
N3—C8 1.281 (2) N6—C26 1.276 (2)
C2—C7 1.388 (2) C20—C25 1.388 (2)
C2—C3 1.394 (3) C20—C21 1.400 (3)
C3—C4 1.390 (3) C21—C22 1.389 (3)
C3—H3 0.9500 C21—H21 0.9500
C4—C5 1.379 (3) C22—C23 1.380 (3)
C4—H4 0.9500 C22—H22 0.9500
C5—C6 1.389 (3) C23—C24 1.384 (3)
C5—H5 0.9500 C23—H23 0.9500
C6—C7 1.388 (3) C24—C25 1.394 (3)
C6—H6 0.9500 C24—H24 0.9500
C7—H7 0.9500 C25—H25 0.9500
C8—C17 1.503 (2) C26—C35 1.504 (3)
C8—C9 1.509 (2) C26—C27 1.509 (2)
C9—C10 1.533 (3) C27—C28 1.532 (3)
C9—H9A 0.9900 C27—H27A 0.9900
C9—H9B 0.9900 C27—H27B 0.9900
C10—C11 1.516 (2) C28—C29 1.512 (2)
C10—H10A 0.9900 C28—H28A 0.9900
C10—H10B 0.9900 C28—H28B 0.9900
C11—C16 1.383 (3) C29—C34 1.393 (3)
C11—C12 1.399 (3) C29—C30 1.400 (3)
C12—C13 1.392 (2) C30—C31 1.392 (3)
C12—H12 0.9500 C30—H30 0.9500
C13—C14 1.395 (3) C31—C32 1.399 (3)
C14—C15 1.381 (3) C32—C33 1.384 (3)
C15—C16 1.389 (3) C33—C34 1.389 (3)
C15—H15 0.9500 C33—H33 0.9500
C16—H16 0.9500 C34—H34 0.9500
C17—H17A 0.9800 C35—H35A 0.9800
C17—H17B 0.9800 C35—H35B 0.9800
C17—H17C 0.9800 C35—H35C 0.9800
C18—H18A 0.9800 C36—H36A 0.9800
C18—H18B 0.9800 C36—H36B 0.9800
C18—H18C 0.9800 C36—H36C 0.9800
C13—O2—C18 116.47 (15) C31—O5—C36 116.80 (15)
C14—O3—H3O 115 (2) C32—O6—H6O 115 (2)
C1—N1—C2 126.87 (14) C19—N4—C20 125.70 (14)
C1—N1—H1N 113.9 (15) C19—N4—H4N 116.7 (15)
C2—N1—H1N 118.8 (15) C20—N4—H4N 117.3 (14)
C1—N2—N3 119.30 (14) C19—N5—N6 119.11 (14)
C1—N2—H2N 117.9 (14) C19—N5—H5N 118.1 (14)
N3—N2—H2N 121.7 (14) N6—N5—H5N 121.7 (15)
C8—N3—N2 117.32 (15) C26—N6—N5 117.01 (15)
O1—C1—N1 124.55 (16) O4—C19—N4 124.09 (15)
O1—C1—N2 120.18 (15) O4—C19—N5 120.13 (15)
N1—C1—N2 115.26 (14) N4—C19—N5 115.77 (14)
C7—C2—C3 119.56 (17) C25—C20—C21 118.93 (17)
C7—C2—N1 117.72 (16) C25—C20—N4 118.80 (16)
C3—C2—N1 122.67 (15) C21—C20—N4 122.24 (15)
C4—C3—C2 119.74 (17) C22—C21—C20 119.91 (17)
C4—C3—H3 120.1 C22—C21—H21 120.0
C2—C3—H3 120.1 C20—C21—H21 120.0
C5—C4—C3 121.05 (19) C23—C22—C21 121.23 (18)
C5—C4—H4 119.5 C23—C22—H22 119.4
C3—C4—H4 119.5 C21—C22—H22 119.4
C4—C5—C6 118.92 (19) C22—C23—C24 118.82 (18)
C4—C5—H5 120.5 C22—C23—H23 120.6
C6—C5—H5 120.5 C24—C23—H23 120.6
C7—C6—C5 120.86 (19) C23—C24—C25 120.83 (18)
C7—C6—H6 119.6 C23—C24—H24 119.6
C5—C6—H6 119.6 C25—C24—H24 119.6
C6—C7—C2 119.87 (19) C20—C25—C24 120.26 (18)
C6—C7—H7 120.1 C20—C25—H25 119.9
C2—C7—H7 120.1 C24—C25—H25 119.9
N3—C8—C17 125.06 (16) N6—C26—C35 124.91 (16)
N3—C8—C9 116.39 (16) N6—C26—C27 116.46 (16)
C17—C8—C9 118.50 (16) C35—C26—C27 118.58 (16)
C8—C9—C10 111.32 (16) C26—C27—C28 111.04 (15)
C8—C9—H9A 109.4 C26—C27—H27A 109.4
C10—C9—H9A 109.4 C28—C27—H27A 109.4
C8—C9—H9B 109.4 C26—C27—H27B 109.4
C10—C9—H9B 109.4 C28—C27—H27B 109.4
H9A—C9—H9B 108.0 H27A—C27—H27B 108.0
C11—C10—C9 113.94 (16) C29—C28—C27 114.03 (16)
C11—C10—H10A 108.8 C29—C28—H28A 108.7
C9—C10—H10A 108.8 C27—C28—H28A 108.7
C11—C10—H10B 108.8 C29—C28—H28B 108.7
C9—C10—H10B 108.8 C27—C28—H28B 108.7
H10A—C10—H10B 107.7 H28A—C28—H28B 107.6
C16—C11—C12 118.52 (17) C34—C29—C30 118.35 (17)
C16—C11—C10 121.80 (17) C34—C29—C28 121.90 (18)
C12—C11—C10 119.66 (17) C30—C29—C28 119.74 (17)
C13—C12—C11 120.53 (18) C31—C30—C29 120.59 (17)
C13—C12—H12 119.7 C31—C30—H30 119.7
C11—C12—H12 119.7 C29—C30—H30 119.7
O2—C13—C12 125.91 (17) O5—C31—C30 125.60 (17)
O2—C13—C14 114.09 (15) O5—C31—C32 114.27 (16)
C12—C13—C14 119.94 (17) C30—C31—C32 120.10 (17)
O3—C14—C15 119.68 (16) O6—C32—C33 119.97 (16)
O3—C14—C13 120.88 (16) O6—C32—C31 120.60 (16)
C15—C14—C13 119.44 (16) C33—C32—C31 119.41 (16)
C14—C15—C16 120.25 (17) C32—C33—C34 120.25 (17)
C14—C15—H15 119.9 C32—C33—H33 119.9
C16—C15—H15 119.9 C34—C33—H33 119.9
C11—C16—C15 121.08 (17) C33—C34—C29 121.09 (17)
C11—C16—H16 119.5 C33—C34—H34 119.5
C15—C16—H16 119.5 C29—C34—H34 119.5
C8—C17—H17A 109.5 C26—C35—H35A 109.5
C8—C17—H17B 109.5 C26—C35—H35B 109.5
H17A—C17—H17B 109.5 H35A—C35—H35B 109.5
C8—C17—H17C 109.5 C26—C35—H35C 109.5
H17A—C17—H17C 109.5 H35A—C35—H35C 109.5
H17B—C17—H17C 109.5 H35B—C35—H35C 109.5
O2—C18—H18A 109.5 O5—C36—H36A 109.5
O2—C18—H18B 109.5 O5—C36—H36B 109.5
H18A—C18—H18B 109.5 H36A—C36—H36B 109.5
O2—C18—H18C 109.5 O5—C36—H36C 109.5
H18A—C18—H18C 109.5 H36A—C36—H36C 109.5
H18B—C18—H18C 109.5 H36B—C36—H36C 109.5
C1—N2—N3—C8 −164.49 (16) C19—N5—N6—C26 162.35 (16)
C2—N1—C1—O1 2.0 (3) C20—N4—C19—O4 0.0 (3)
C2—N1—C1—N2 −179.42 (15) C20—N4—C19—N5 −178.54 (15)
N3—N2—C1—O1 −175.81 (15) N6—N5—C19—O4 175.95 (15)
N3—N2—C1—N1 5.6 (2) N6—N5—C19—N4 −5.5 (2)
C1—N1—C2—C7 154.49 (18) C19—N4—C20—C25 −151.84 (17)
C1—N1—C2—C3 −28.1 (3) C19—N4—C20—C21 30.1 (3)
C7—C2—C3—C4 −0.7 (3) C25—C20—C21—C22 1.1 (3)
N1—C2—C3—C4 −178.00 (18) N4—C20—C21—C22 179.19 (17)
C2—C3—C4—C5 0.8 (3) C20—C21—C22—C23 −1.0 (3)
C3—C4—C5—C6 −0.4 (3) C21—C22—C23—C24 0.1 (3)
C4—C5—C6—C7 0.0 (3) C22—C23—C24—C25 0.5 (3)
C5—C6—C7—C2 0.2 (3) C21—C20—C25—C24 −0.5 (3)
C3—C2—C7—C6 0.2 (3) N4—C20—C25—C24 −178.64 (16)
N1—C2—C7—C6 177.68 (18) C23—C24—C25—C20 −0.3 (3)
N2—N3—C8—C17 −1.6 (3) N5—N6—C26—C35 1.1 (3)
N2—N3—C8—C9 −179.23 (15) N5—N6—C26—C27 178.73 (15)
N3—C8—C9—C10 123.12 (19) N6—C26—C27—C28 −122.47 (19)
C17—C8—C9—C10 −54.7 (2) C35—C26—C27—C28 55.3 (2)
C8—C9—C10—C11 −157.88 (16) C26—C27—C28—C29 162.93 (17)
C9—C10—C11—C16 −108.0 (2) C27—C28—C29—C34 95.8 (2)
C9—C10—C11—C12 73.9 (2) C27—C28—C29—C30 −85.6 (2)
C16—C11—C12—C13 −2.8 (3) C34—C29—C30—C31 2.6 (3)
C10—C11—C12—C13 175.28 (18) C28—C29—C30—C31 −176.05 (18)
C18—O2—C13—C12 11.7 (3) C36—O5—C31—C30 −16.5 (3)
C18—O2—C13—C14 −165.4 (2) C36—O5—C31—C32 161.41 (18)
C11—C12—C13—O2 −178.72 (19) C29—C30—C31—O5 179.33 (18)
C11—C12—C13—C14 −1.7 (3) C29—C30—C31—C32 1.5 (3)
O2—C13—C14—O3 2.7 (3) O5—C31—C32—O6 −3.6 (3)
C12—C13—C14—O3 −174.61 (17) C30—C31—C32—O6 174.50 (17)
O2—C13—C14—C15 −178.04 (16) O5—C31—C32—C33 177.97 (16)
C12—C13—C14—C15 4.6 (3) C30—C31—C32—C33 −4.0 (3)
O3—C14—C15—C16 176.25 (16) O6—C32—C33—C34 −176.20 (17)
C13—C14—C15—C16 −3.0 (3) C31—C32—C33—C34 2.3 (3)
C12—C11—C16—C15 4.5 (3) C32—C33—C34—C29 1.9 (3)
C10—C11—C16—C15 −173.55 (18) C30—C29—C34—C33 −4.4 (3)
C14—C15—C16—C11 −1.6 (3) C28—C29—C34—C33 174.28 (18)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C29–C34 and C20–C25 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N···N3 0.86 (2) 2.18 (2) 2.635 (2) 113 (2)
N4—H4N···N6 0.86 (2) 2.23 (2) 2.637 (2) 109 (1)
O3—H3O···O2 0.84 (2) 2.29 (3) 2.660 (2) 107 (2)
O6—H6O···O5 0.84 (2) 2.28 (2) 2.663 (2) 108 (2)
O3—H3O···N6i 0.84 (2) 2.19 (2) 2.994 (2) 161 (2)
O6—H6O···N3ii 0.84 (2) 2.22 (2) 3.013 (2) 157 (2)
N2—H2N···O4iii 0.88 (2) 2.01 (2) 2.873 (2) 170 (2)
N4—H4N···O2i 0.86 (2) 2.54 (2) 3.390 (2) 167 (2)
N5—H5N···O1iv 0.88 (2) 2.04 (2) 2.900 (2) 169 (2)
C33—H33···O6v 0.95 2.54 3.212 (2) 128
C15—H15···O3vi 0.95 2.63 3.166 (2) 113
C33—H33···O6i 0.95 2.54 3.212 (2) 128
C10—H10A···Cg1vii 0.99 2.80 3.774 (2) 168
C18—H18A···Cg2ii 0.98 2.66 3.603 (4) 161
C28—H28B···Cg3viii 0.99 2.75 3.720 (2) 166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) −x+1, −y−1, −z+1; (vi) −x, −y+2, −z; (vii) x, y+1, z; (viii) x, y−1, z.

Funding Statement

This work was funded by Sunway University grant INT-PRO-2017–096. Universiti Putra Malaysia grants RUGS 9199834 and RUGS 9174000. Kementerian Sains, Teknologi dan Inovasi grant 09–02–04–0752-EA001.

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Ali, S. M. M., Azad, M. A. K., Jesmin, M., Ahsan, S., Rahman, M. M., Khanam, J. A., Islam, M. N. & Shahriar, S. M. S. (2012). Asian Pac. J. Trop. Biomed. 2, 438–442. [DOI] [PMC free article] [PubMed]
  3. Behenna, D. C., Mohr, J. T., Sherden, N. H., Marinescu, S. C., Harned, A. M., Tani, K., Seto, M., Ma, S., Novák, Z., Krout, M. R., McFadden, R. M., Roizen, J. L., Enquist, J. A. Jr, White, D. E., Levine, S. R., Petrova, K. V., Iwashita, A., Virgil, S. C. & Stoltz, B. M. (2011). Chem. Eur. J. 17, 14199–14223. [DOI] [PMC free article] [PubMed]
  4. Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39. [DOI] [PubMed]
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Groth, P. (1980). Acta Chem. Scand. A34, 609–620.
  9. Hoek, W. G. M. van den, Bokkers, G., Krabbendam, H., Spek, A. L. & Kroon, J. (1980). Z. Kristallogr. 152, 215–225.
  10. Kıyak, B., Esenpınar, A. A. & Bulut, M. (2015). Polyhedron, 90, 183–196.
  11. Ma, S., Reeves, C. M., Craig, R. A. II & Stoltz, B. M. (2014). Tetrahedron, 70, 4208–4212. [DOI] [PMC free article] [PubMed]
  12. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  13. Pandeya, S. N. (2012). Acta Pharm. 62, 263–286. [DOI] [PubMed]
  14. Pandey, S. & Srivastava, R. S. (2010). Lett. Drug. Des. Discov. 7, 694–706.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Sriram, D., Yogeeswari, P. & Thirumurugan, R. (2004). Bioorg. Med. Chem. Lett. 14, 3923–3924. [DOI] [PubMed]
  19. Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008. [DOI] [PMC free article] [PubMed]
  20. Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047–o1048. [DOI] [PMC free article] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017017273/hb7720sup1.cif

e-74-00021-sup1.cif (835KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017273/hb7720Isup2.hkl

e-74-00021-Isup2.hkl (515.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017273/hb7720Isup3.cml

CCDC reference: 926756

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES