Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):28–33. doi: 10.1107/S2056989017017534

Assembly of ZnII and CdII coordination polymers with different dimensionalities based on the semi-flexible 3-(1H-benzimidazol-2-yl)propanoic acid ligand

Xiao-Yan Li a, Yong-Qiong Peng a, Juan Li a, Wei-Wei Fu a,*, Yang Liu a, Yu-Ming Li a
PMCID: PMC5778479  PMID: 29416885

Two unprecedented two-dimensional and one-dimensional ZnII and CdII complexes based on a semi-flexible ligand have been structurally identified.

Keywords: crystal structure, two-dimensional coordination polymers, ZnII, one-dimensional coordination polymers, CdII, MOFs

Abstract

Two new coordination polymers, namely, poly[[μ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)], [Zn(C10H8N2O2)]n, (1), and poly[bis­[μ2-3-(1H-benzimid­azol-2-yl)propionato]cadmium(II)], [Cd(C10H8N2O2)2]n, (2) have been synthesized from 3-(1H-benzoimidazol-2-yl)propanoic acid ligands through a mixed-ligand synthetic strategy under a solvothermal environment, and studied by single-crystal X-ray diffraction. Complex 1 crystallizes in the ortho­rhom­bic space group Pbca and features a two-dimensional structure formed by a binuclear Zn2O4 core. Complex 2, however, crystallizes in the monoclinic space group P21/c and forms a one-dimensional chain structure. The ZnII and CdII ions have different coordination numbers and the 3-(1H-benzoimidazol-2-yl)propano­ate ligands display different coordination modes. The structures reported here show the importance of the selection of metal ions and suitable ligands.

Chemical context  

The structures of coordination polymers are strongly influenced by the organic ligands and metal ions and it is important to choose suitable ligands and metal ions under appropriate synthetic conditions to synthesize coordination complexes with inter­esting structures. The exploration of metal–organic frameworks (MOFs) have received much attention because of their intriguing architectures and wide range of potential applications in different fields (Castellanos et al., 2016; Zhang et al., 2016; Kumar et al., 2015; Liu et al., 2016; Müller-Buschbaum et al., 2015; Duerinck & Denayer, 2015; Mohan et al., 2015). The assembly of ZnII (Jurcic et al., 2015; Karmakar et al., 2016a ,b ; Liang et al., 2016; Wannapaiboon et al., 2015; Ying et al., 2015) and CdII (Xiao et al., 2015, Wu et al., 2011, Hu et al., 2015, Cao et al., 2014, Zhang et al., 2015) ions with multidentate nitro­gen-containing ligands has produced various MOFs with fascinating structures and luminescent properties. The selection of chelating or bridging organic linkers often favors a structure-specific assembly and the factors that govern the formation of such complexes are complicated and include not only the nature of the ZnII and CdII ions and ligand structure but also anion-directed inter­actions as well as reaction conditions. In order to explore the coordination chemistry of this type of ligand, 3-(1H-benz­imid­azol-2-yl) propanoic acid (H2BIP) was chosen in the present study to construct new coordination polymers. A two-dimensional ZnII polymer and a one-dimensional CdII coord­ination polymer have been obtained.graphic file with name e-74-00028-scheme1.jpg graphic file with name e-74-00028-scheme2.jpg

Structural commentary  

Complex 1 crystallizes in the ortho­rhom­bic crystal system in the centrosymmetric space group Pbca. The 3-(1H-benzoimdazol-2-yl)propano­nic acid ligand deprotonates completely when bonding to ZnII ions. The asymmetric unit of 1 consists of one ZnII ion and one 3-(1λ2-benzoimidazol-2-yl)propano­ate anion. Geometric parameters are given in Table 1. As shown in Fig. 1, the ZnII ion has a tetra­hedral ZnO2N2 environment completed by N2 from one 3-(1λ2-benzoimid­azol-2-yl)propano­ate anion, O2(−x + Inline graphic, y + Inline graphic, z) and N1(−x + Inline graphic, y + Inline graphic, z) from the second 3-(1λ2-benzoimidazol-2-yl)propano­ate anion and O1(x − Inline graphic, −y + Inline graphic, −z) from the third 3-(1λ2-benzoimidazol-2-yl)propano­ate anion. All the Zn—N/O bond distances [Zn—O: 1.9563 (16)–2.0208 (17) and Zn—N: 1.9624 (18)–1.9661 (16) Å] and the bond angles around Zn1 [99.22 (6)–120.28 (7)°] fall into the normal range. Each 3-(1λ2-benzoimidazol-2-yl)propano­ate anion shows a tridentate chelating mode bridging three ZnII ions with the Zn⋯Zn distances of 4.066 (1), 5.870 (2) and 6.965 (2) Å. Zn1 and the symmetry-related Zn1 forming the shortest distance are bridged by O1 and O2 to form a binuclear Zn2 cluster. Adjacent clusters are connected by a Zn—N bond of 1.9661 (16) Å to generate 2D square-grid (4,4) layers (Fig. 2). As there are no classical hydrogen bonds in 1, these layers are packed by normal van der Waals forces into an extended 3D framework (Fig. 3).

Table 1. Selected geometric parameters (Å, °) for 1 .

Zn1—O1i 1.9563 (16) Zn1—N2 1.9661 (16)
Zn1—N1ii 1.9624 (18) Zn1—O2ii 2.0208 (17)
       
O1i—Zn1—N1ii 118.50 (7) O1i—Zn1—O2ii 105.15 (6)
O1i—Zn1—N2 106.84 (7) N1ii—Zn1—O2ii 99.22 (6)
N1ii—Zn1—N2 120.28 (7) N2—Zn1—O2ii 104.42 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 1.

Figure 1

The asymmetric unit of 1, with additional symmetry-related atoms. The displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (A) −x + Inline graphic, y + Inline graphic, z; (B) x − Inline graphic, −y + Inline graphic, −z)].

Figure 2.

Figure 2

A perspective view of the 4-connected nodes in 1.

Figure 3.

Figure 3

View of the three-dimensional framework of 1 formed by two-dimensional undulating sheets and van der Waals forces.

Complex 2 crystallizes in the monoclinic crystal system in the centrosymmetic space group P21/c. The 3-(1H-benzo­imid­azol-2-yl)propano­nic acid ligands do not deprotonate completely when bonding to CdII ions. Geometric parameters are given in Table 2. As shown in Fig. 4, the CdII ion is five-coordinated by N3 from one 3-(1H-benzoimidazol-2-yl)propano­ate anion, N1(x, y − 1, z) from the second 3-(1H-benzoimidazol-2-yl)propano­ate anion, O1 from the third and O3(−x, −y, −z + 1) and O4(−x, −y, −z + 1) from the fourth. All the Cd—N/O bond distances [Cd—O: 2.285 (2)–2.362 (2) and Cd—N: 2.262 (3)–2.271 (3) Å] and the bond angles around Cd1 [55.44 (9)–146.52 (9)°] fall into the normal range. A distance of 2.667 (2) Å between Cd1 and O2 indicates the existence of a weak inter­action between them. Two HBIP anions connects two CdII ions with one bidentate carboxyl­ate and one N atom forming end-to-end binuclear Cd2 cluster with a distance of 7.274 (1) Å. The other two HBIP anions act as bridges to join two neighboring binuclear Cd2 clusters with one monodentate carboxyl­ate and one N atom to generate 1D ladders along the b-axis direction (Fig. 5). In the crystal, N—H⋯O hydrogen bonds (Table 3) and π–π inter­actions involv­ing the imidazole rings and benzimidazole ring systems with centroid–centroid distances of 3.569 (2) and 3.838 (2) Å connect the 1D ladders along a- and c-axis directions into an extended 3D framework (Fig. 6). Although there are large potential voids within the 1D ladders (7.274 × 8. 025 Å based on the distances of the CdII ions), they are inter­blocked by adjacent ladders.

Table 2. Selected geometric parameters (Å, °) for 2 .

Cd1—N1i 2.262 (3) Cd1—O3ii 2.293 (2)
Cd1—N3 2.271 (3) Cd1—O4ii 2.362 (2)
Cd1—O1 2.285 (2)    
       
N1i—Cd1—N3 103.73 (10) O1—Cd1—O3ii 144.01 (9)
N1i—Cd1—O1 106.08 (9) N1i—Cd1—O4ii 146.52 (9)
N3—Cd1—O1 93.38 (9) N3—Cd1—O4ii 104.51 (10)
N1i—Cd1—O3ii 100.41 (9) O1—Cd1—O4ii 89.85 (8)
N3—Cd1—O3ii 103.63 (10) O3ii—Cd1—O4ii 55.44 (9)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

The asymmetric unit of 2, with additional symmetry-related atoms. The displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (A) −x, −y, −z + 1; (B) x, y − 1, z].

Figure 5.

Figure 5

A view of the one-dimensional ladders in 2.

Table 3. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2iii 0.86 2.10 2.823 (4) 141
N4—H4A⋯O1iv 0.86 2.03 2.862 (4) 161

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

Figure 6.

Figure 6

A perspective view of the three-dimensional frameworks in 2 formed by one-dimensional ladders and N—H⋯O hydrogen bonds (Table 3). The hydrogen bonds are shown as dashed lines.

Supra­molecular features  

The structures and the coordination modes of complexes 1 and 2 are quite different, which may be ascribed to a diverse metal coordination habit. The crystal structure of a ZnII complex based on H2BIP is reported for the first time. In a comparison with its counterparts based on similar benzo­imidazole carb­oxy­lic acids ligands, benzimidazole-2-butanoic acid (H2BIB) and 2-(1H-benzimidazol-2-yl­thio)­acetic acid (H2BITA), the same coord­ination modes are found for 13-κN,O: κO’: kN′ mode, μ3-BIP2−) and [Zn(BIB)]n3-κN,O: κO’: kN′ mode, μ3-BIB2−; Zhang et al., 2015) and different coordination modes are found for 1 and [Zn2(HBITA)4]·(DMF)2·(H2O)22-κN: κO mode, μ2-HBITA and μ1-κN,O mode, μ1-HBITA; Yu et al., 2010), [Zn2(HBITA)4]n2-κN: κO mode, μ2-HBITA; Yu et al., 2010). Different dimensionalities, like 2D for 1, 3D for [Zn(BIB)]n, 0D for [Zn2(HBITA)4]·(DMF)2·(H2O)2 and 2D for [Zn2(HBITA)4]n are also found. CdII complexes based on H2BIP have already been observed with the appropriate Et3N reagent in a EtOH/H2O mixed solvent. By selection of the EtOH/H2O mixed solvent without any basic reagent, complex 2 was obtained with a relatively simple coordination mode (μ2-κN: κO,O′ mode, μ2-HBIP) in comparison with diverse modes in {[Cd5Cl2(HBIP)4(BIP)2]·4DMF}n2-κN,O: κO,O′ mode, μ2-HBIP, μ3-κN,O: κO,O′: κN’ mode, μ3-BIP2−, μ3-κN,O: κO,O′: κO’ mode, μ3-HBIP; Zheng et al., 2012) and [Cd3(HBIP)2(BIP)2]n3-κN,O: κO,O′: κO’ mode, μ3-BIP2−, μ4-κN,O: κO: κO’: κO’ mode, μ4-HBIP; Zheng et al., 2012). In comparison with its counterpart based on similar benzo­imidazole carb­oxy­lic acids, H2BIB, the same coordination modes are found for 2 and [Cd(HBIB)2]n·(H2O)n2-κN: κO,O′ mode, μ2-HBIB; Zhang et al., 2015). Different dimensionalities, such as 1D for 2, 2D for {[Cd5Cl2(HBIP)4(BIP)2]·4DMF}n, 1D for [Cd3(HBIP)2 (BIP)2]n and 2D for [Cd(HBIB)2]n·(H2O)n were also found. The different coord­ination modes and dimensionalities show the important roles of spacer lengths and flexibilities of ligands. The crystal structures reported here and before show that ligands containing both flexible carb­oxy­lic and benzimidazole groups are suitable for the construction of coordination polymers with inter­esting structures, adopting diverse coordination modes. The significant effect of metal ions, spacer length and flexibility of ligands on the structural assemblies of such crystalline materials is critical to the assemblies of MOFs in some particular systems.

Database Survey  

Complexes with benzimidazole-based carb­oxy­lic acid, for example, 1H-benzimidazole-2-carb­oxy­lic acid (Xia et al., 2013; Qiao et al., 2013; Małecki & Maroń, 2012; Machura et al., 2014; Fernández et al., 2016) and 3-(1H-benzimidazole-2-yl) propanoic acid (Liu et al., 2015) have been reported. A limited number of coordination polymers constructed from 3-(1H-benzimidazol-2-yl) propanoic acid (H2BIP) have been reported including [Cd3(HBIP)2(BIP)2]n and [Cd5Cl2(BIP)4 (BIP)2]n (Zheng et al., 2012). [Cd3(HBIP)2(BIP)2]n presents a fascinating one-dimensional structure with helical character, made of four helical chains weaving together in two reverse orientations. [Cd5Cl2(BIP)4(BIP)2] exhibits a distinct (4,4) network and infinite penta­nuclear secondary building units.

Synthesis and crystallization  

3-(1H-Benzimidazol-2-yl)propanoic acid (H2BIP) was prepared by a literature method (Delval et al., 2008). Other reagents and solvents used in the reactions were purchased from Aladdin-Chemical and used without purification.

Preparation of 1  

H2BIP (0.02 mmol, 0.038 g) and Zn(NO3)2·6H2O (0.2 mmol, 0.060 g) were dissolved in EtOH/H2O (1:1 v/v, 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h−1. Many pale-yellow block-shaped crystals were collected.

Preparation of 2  

H2BIP (0.02 mmol, 0.038 g), Cd(CH3COO)2·2H2O (0.2mmol, 0.053 g) were dissolved in EtOH/H2O (1:1 v/v, 8 ml) mixed solvent. The mixture was sealed in a closed vessel and heated at 413 K for 72 h; the mixture was then cooled slowly to room temperature at a rate of 2 K h−1. Many brown prismatic crystals were collected.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms on N atoms were found in the difference-Fourier map and were refined isotrop­ic­ally while restraining the N—H distances to 0.86 Å. Other H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding-model approximation, with C—H = 0.93 Å, U iso(H) = 1.2U eq(C)(aromatic) and C—H = 0.97 Å, U iso(H) = 1.5U eq(C) for methyl hydrogen atoms.

Table 4. Experimental details.

  1 2
Crystal data
Chemical formula [Zn(C10H8N2O2)] [Cd(C10H8N2O2)2]
M r 253.55 490.79
Crystal system, space group Orthorhombic, P b c a Monoclinic, P21/c
Temperature (K) 296 293
a, b, c (Å) 8.956 (4), 10.697 (5), 20.331 (9) 13.6708 (6), 8.0253 (3), 17.3834 (7)
α, β, γ (°) 90, 90, 90 90, 100.972 (4), 90
V3) 1947.8 (15) 1872.31 (13)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.50 1.20
Crystal size (mm) 0.28 × 0.25 × 0.21 0.28 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker SMART CCD area-detector Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012) Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.541, 0.622 0.923, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9832, 1725, 1525 6654, 3289, 2685
R int 0.046 0.029
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.063, 1.03 0.031, 0.064, 1.06
No. of reflections 1725 3289
No. of parameters 136 262
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.56 0.33, −0.48

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989017017534/lh5857sup1.cif

e-74-00028-sup1.cif (627.4KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989017017534/lh58571sup2.hkl

e-74-00028-1sup2.hkl (139.3KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989017017534/lh58572sup3.hkl

e-74-00028-2sup3.hkl (262.7KB, hkl)

CCDC references: 1589668, 1589667

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) . Crystal data

[Zn(C10H8N2O2)] Dx = 1.729 Mg m3
Mr = 253.55 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 5004 reflections
a = 8.956 (4) Å θ = 3.0–27.6°
b = 10.697 (5) Å µ = 2.50 mm1
c = 20.331 (9) Å T = 296 K
V = 1947.8 (15) Å3 Block, yellow
Z = 8 0.28 × 0.25 × 0.21 mm
F(000) = 1024

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) . Data collection

Bruker SMART CCD area-detector diffractometer 1525 reflections with I > 2σ(I)
phi and ω scans Rint = 0.046
Absorption correction: multi-scan (SADABS; Bruker, 2012) θmax = 25.0°, θmin = 2.0°
Tmin = 0.541, Tmax = 0.622 h = −10→10
9832 measured reflections k = −12→11
1725 independent reflections l = −24→24

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.8648P] where P = (Fo2 + 2Fc2)/3
1725 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.56 e Å3

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.61499 (3) 0.44565 (2) 0.08133 (2) 0.02929 (11)
C1 0.8742 (2) 0.31428 (19) 0.14864 (9) 0.0272 (4)
C2 0.9402 (3) 0.4128 (2) 0.18261 (10) 0.0361 (5)
H2 0.8972 0.4919 0.1832 0.043*
C3 1.0712 (3) 0.3886 (2) 0.21531 (12) 0.0487 (6)
H3 1.1175 0.4528 0.2384 0.058*
C4 1.1366 (3) 0.2704 (3) 0.21484 (13) 0.0512 (6)
H4 1.2268 0.2584 0.2366 0.061*
C5 1.0711 (3) 0.1710 (2) 0.18305 (11) 0.0402 (5)
H5 1.1136 0.0917 0.1837 0.048*
C6 0.9381 (2) 0.19494 (18) 0.14985 (9) 0.0278 (4)
C7 0.7378 (2) 0.18898 (16) 0.08956 (9) 0.0273 (4)
C8 0.6243 (2) 0.1407 (2) 0.04189 (11) 0.0326 (5)
H8A 0.5329 0.1886 0.0464 0.039*
H8B 0.6018 0.0542 0.0523 0.039*
C9 0.6791 (2) 0.14918 (19) −0.02923 (10) 0.0347 (5)
H9A 0.6001 0.1208 −0.0582 0.042*
H9B 0.6992 0.2361 −0.0396 0.042*
C10 0.8184 (2) 0.07312 (18) −0.04282 (10) 0.0296 (4)
N1 0.84880 (17) 0.11670 (14) 0.11236 (9) 0.0289 (4)
N2 0.74575 (17) 0.30823 (13) 0.10974 (8) 0.0268 (4)
O1 0.91054 (16) 0.11866 (15) −0.08295 (7) 0.0373 (4)
O2 0.83644 (16) −0.03094 (12) −0.01494 (7) 0.0332 (3)

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.03268 (17) 0.01695 (16) 0.03822 (18) 0.00017 (8) 0.00399 (10) 0.00205 (9)
C1 0.0323 (10) 0.0252 (10) 0.0240 (10) −0.0034 (8) 0.0028 (8) 0.0001 (8)
C2 0.0459 (12) 0.0284 (11) 0.0341 (12) −0.0065 (9) 0.0030 (10) −0.0084 (9)
C3 0.0548 (14) 0.0475 (14) 0.0437 (13) −0.0116 (12) −0.0098 (12) −0.0148 (12)
C4 0.0507 (14) 0.0570 (16) 0.0460 (14) −0.0032 (12) −0.0209 (11) −0.0069 (13)
C5 0.0438 (12) 0.0384 (12) 0.0382 (12) 0.0045 (10) −0.0119 (10) −0.0008 (10)
C6 0.0329 (10) 0.0256 (10) 0.0250 (9) −0.0030 (8) −0.0006 (8) 0.0009 (8)
C7 0.0290 (10) 0.0207 (10) 0.0323 (10) −0.0013 (8) −0.0003 (8) 0.0000 (8)
C8 0.0283 (10) 0.0235 (10) 0.0459 (13) 0.0017 (8) −0.0070 (9) −0.0045 (9)
C9 0.0337 (11) 0.0287 (11) 0.0416 (12) 0.0044 (8) −0.0113 (9) −0.0002 (9)
C10 0.0326 (11) 0.0226 (10) 0.0336 (11) −0.0011 (8) −0.0119 (9) −0.0037 (8)
N1 0.0332 (9) 0.0177 (8) 0.0360 (9) 0.0000 (7) −0.0054 (7) −0.0009 (7)
N2 0.0294 (9) 0.0193 (8) 0.0317 (9) −0.0009 (7) 0.0013 (7) −0.0006 (7)
O1 0.0330 (8) 0.0327 (9) 0.0461 (9) 0.0019 (6) −0.0032 (6) 0.0111 (7)
O2 0.0423 (8) 0.0211 (7) 0.0360 (8) 0.0020 (6) −0.0053 (6) 0.0013 (6)

Poly[[µ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)] (1) . Geometric parameters (Å, º)

Zn1—O1i 1.9563 (16) C6—N1 1.386 (3)
Zn1—N1ii 1.9624 (18) C7—N2 1.342 (2)
Zn1—N2 1.9661 (16) C7—N1 1.342 (2)
Zn1—O2ii 2.0208 (17) C7—C8 1.496 (3)
C1—C2 1.392 (3) C8—C9 1.530 (3)
C1—N2 1.398 (2) C8—H8A 0.9700
C1—C6 1.399 (3) C8—H8B 0.9700
C2—C3 1.374 (3) C9—C10 1.515 (3)
C2—H2 0.9300 C9—H9A 0.9700
C3—C4 1.393 (4) C9—H9B 0.9700
C3—H3 0.9300 C10—O1 1.259 (3)
C4—C5 1.375 (3) C10—O2 1.260 (2)
C4—H4 0.9300 N1—Zn1iii 1.9624 (18)
C5—C6 1.393 (3) O1—Zn1iv 1.9563 (16)
C5—H5 0.9300 O2—Zn1iii 2.0207 (17)
O1i—Zn1—N1ii 118.50 (7) N2—C7—C8 124.22 (17)
O1i—Zn1—N2 106.84 (7) N1—C7—C8 121.86 (16)
N1ii—Zn1—N2 120.28 (7) C7—C8—C9 111.96 (17)
O1i—Zn1—O2ii 105.15 (6) C7—C8—H8A 109.2
N1ii—Zn1—O2ii 99.22 (6) C9—C8—H8A 109.2
N2—Zn1—O2ii 104.42 (6) C7—C8—H8B 109.2
C2—C1—N2 131.70 (19) C9—C8—H8B 109.2
C2—C1—C6 120.56 (19) H8A—C8—H8B 107.9
N2—C1—C6 107.74 (16) C10—C9—C8 113.88 (16)
C3—C2—C1 117.4 (2) C10—C9—H9A 108.8
C3—C2—H2 121.3 C8—C9—H9A 108.8
C1—C2—H2 121.3 C10—C9—H9B 108.8
C2—C3—C4 121.8 (2) C8—C9—H9B 108.8
C2—C3—H3 119.1 H9A—C9—H9B 107.7
C4—C3—H3 119.1 O1—C10—O2 123.33 (19)
C5—C4—C3 121.7 (2) O1—C10—C9 116.77 (18)
C5—C4—H4 119.1 O2—C10—C9 119.89 (19)
C3—C4—H4 119.1 C7—N1—C6 105.65 (16)
C4—C5—C6 116.7 (2) C7—N1—Zn1iii 123.27 (13)
C4—C5—H5 121.6 C6—N1—Zn1iii 130.11 (13)
C6—C5—H5 121.6 C7—N2—C1 105.11 (15)
N1—C6—C5 130.48 (19) C7—N2—Zn1 126.10 (13)
N1—C6—C1 107.75 (17) C1—N2—Zn1 128.46 (13)
C5—C6—C1 121.75 (18) C10—O1—Zn1iv 117.83 (13)
N2—C7—N1 113.75 (17) C10—O2—Zn1iii 124.96 (13)
N2—C1—C2—C3 −178.1 (2) N2—C7—N1—Zn1iii −170.56 (13)
C6—C1—C2—C3 1.8 (3) C8—C7—N1—Zn1iii 4.9 (3)
C1—C2—C3—C4 0.0 (4) C5—C6—N1—C7 −177.4 (2)
C2—C3—C4—C5 −1.8 (4) C1—C6—N1—C7 0.7 (2)
C3—C4—C5—C6 1.6 (4) C5—C6—N1—Zn1iii −8.6 (3)
C4—C5—C6—N1 178.1 (2) C1—C6—N1—Zn1iii 169.47 (14)
C4—C5—C6—C1 0.2 (3) N1—C7—N2—C1 0.6 (2)
C2—C1—C6—N1 179.73 (18) C8—C7—N2—C1 −174.75 (18)
N2—C1—C6—N1 −0.4 (2) N1—C7—N2—Zn1 174.49 (13)
C2—C1—C6—C5 −2.0 (3) C8—C7—N2—Zn1 −0.8 (3)
N2—C1—C6—C5 177.93 (18) C2—C1—N2—C7 179.8 (2)
N2—C7—C8—C9 90.4 (2) C6—C1—N2—C7 −0.1 (2)
N1—C7—C8—C9 −84.6 (2) C2—C1—N2—Zn1 6.1 (3)
C7—C8—C9—C10 61.3 (2) C6—C1—N2—Zn1 −173.81 (13)
C8—C9—C10—O1 −144.39 (18) O2—C10—O1—Zn1iv −19.8 (3)
C8—C9—C10—O2 36.4 (3) C9—C10—O1—Zn1iv 160.95 (13)
N2—C7—N1—C6 −0.8 (2) O1—C10—O2—Zn1iii 108.7 (2)
C8—C7—N1—C6 174.63 (18) C9—C10—O2—Zn1iii −72.1 (2)

Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) −x+3/2, y+1/2, z; (iii) −x+3/2, y−1/2, z; (iv) x+1/2, −y+1/2, −z.

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Crystal data

[Cd(C10H8N2O2)2] F(000) = 984
Mr = 490.79 Dx = 1.741 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.6708 (6) Å Cell parameters from 2660 reflections
b = 8.0253 (3) Å θ = 3.0–27.4°
c = 17.3834 (7) Å µ = 1.20 mm1
β = 100.972 (4)° T = 293 K
V = 1872.31 (13) Å3 Prism, brown
Z = 4 0.28 × 0.25 × 0.19 mm

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Data collection

Bruker SMART CCD area-detector diffractometer 2685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
phi and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −16→15
Tmin = 0.923, Tmax = 1.000 k = −9→6
6654 measured reflections l = −20→14
3289 independent reflections

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0234P)2] where P = (Fo2 + 2Fc2)/3
3289 reflections (Δ/σ)max < 0.001
262 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.48 e Å3

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.22103 (2) 0.06562 (3) 0.41588 (2) 0.02433 (9)
C1 0.4463 (3) 1.0429 (4) 0.37316 (19) 0.0254 (8)
C2 0.4459 (3) 1.1926 (4) 0.33279 (19) 0.0343 (9)
H2 0.3890 1.2587 0.3224 0.041*
C3 0.5321 (3) 1.2403 (5) 0.3087 (2) 0.0442 (11)
H3 0.5337 1.3410 0.2825 0.053*
C4 0.6164 (3) 1.1402 (5) 0.3229 (2) 0.0503 (11)
H4 0.6734 1.1750 0.3056 0.060*
C5 0.6179 (3) 0.9902 (5) 0.3622 (2) 0.0444 (10)
H5 0.6740 0.9224 0.3710 0.053*
C6 0.5323 (3) 0.9465 (4) 0.3874 (2) 0.0298 (8)
C7 0.4118 (3) 0.8209 (4) 0.43435 (18) 0.0263 (8)
C8 0.3603 (3) 0.6815 (4) 0.46664 (19) 0.0305 (8)
H8A 0.3197 0.7255 0.5020 0.037*
H8B 0.4094 0.6069 0.4962 0.037*
C9 0.2949 (3) 0.5857 (4) 0.4010 (2) 0.0404 (10)
H9A 0.3250 0.5925 0.3548 0.048*
H9B 0.2308 0.6413 0.3886 0.048*
C10 0.2768 (3) 0.4031 (4) 0.4167 (2) 0.0261 (8)
C11 0.0502 (3) −0.0701 (4) 0.18100 (19) 0.0274 (8)
C12 0.0484 (3) −0.0730 (4) 0.1006 (2) 0.0373 (9)
H12 −0.0082 −0.1041 0.0648 0.045*
C13 0.1354 (3) −0.0273 (4) 0.0773 (2) 0.0390 (10)
H13 0.1371 −0.0271 0.0241 0.047*
C14 0.2200 (3) 0.0185 (5) 0.1299 (2) 0.0397 (10)
H14 0.2769 0.0493 0.1113 0.048*
C15 0.2218 (3) 0.0193 (4) 0.2096 (2) 0.0336 (9)
H15 0.2790 0.0490 0.2452 0.040*
C16 0.1354 (3) −0.0256 (4) 0.23458 (19) 0.0237 (8)
C17 0.0228 (3) −0.0925 (4) 0.30217 (19) 0.0272 (8)
C18 −0.0301 (3) −0.1297 (4) 0.3673 (2) 0.0333 (9)
H18A 0.0190 −0.1575 0.4136 0.040*
H18B −0.0717 −0.2271 0.3534 0.040*
C19 −0.0936 (3) 0.0092 (5) 0.3873 (2) 0.0433 (10)
H19A −0.1486 0.0260 0.3436 0.052*
H19B −0.0544 0.1107 0.3937 0.052*
C20 −0.1353 (3) −0.0190 (5) 0.4602 (2) 0.0317 (9)
O1 0.21406 (17) 0.3287 (3) 0.36487 (13) 0.0316 (6)
O2 0.32390 (18) 0.3331 (3) 0.47586 (13) 0.0309 (6)
O3 −0.1888 (2) 0.0912 (3) 0.48158 (15) 0.0504 (8)
O4 −0.1163 (2) −0.1496 (3) 0.49775 (14) 0.0448 (7)
N1 0.3712 (2) 0.9617 (3) 0.40401 (15) 0.0242 (7)
N2 0.5075 (2) 0.8066 (3) 0.42631 (16) 0.0313 (7)
H2A 0.5466 0.7247 0.4426 0.038*
N3 0.1154 (2) −0.0401 (3) 0.31043 (16) 0.0277 (7)
N4 −0.0197 (2) −0.1100 (3) 0.22566 (16) 0.0323 (7)
H4A −0.0800 −0.1408 0.2079 0.039*

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02465 (15) 0.02141 (14) 0.02708 (15) 0.00049 (12) 0.00527 (10) 0.00198 (12)
C1 0.026 (2) 0.0254 (19) 0.0239 (17) −0.0039 (16) 0.0022 (15) −0.0025 (17)
C2 0.037 (2) 0.029 (2) 0.037 (2) −0.0006 (18) 0.0046 (17) 0.0021 (19)
C3 0.051 (3) 0.040 (2) 0.042 (2) −0.015 (2) 0.010 (2) 0.009 (2)
C4 0.039 (3) 0.061 (3) 0.054 (3) −0.016 (2) 0.015 (2) 0.002 (3)
C5 0.026 (2) 0.048 (2) 0.059 (3) −0.005 (2) 0.005 (2) −0.005 (2)
C6 0.027 (2) 0.032 (2) 0.0278 (19) −0.0043 (17) −0.0002 (16) −0.0042 (18)
C7 0.029 (2) 0.0229 (18) 0.0250 (18) 0.0007 (16) 0.0010 (15) −0.0038 (16)
C8 0.035 (2) 0.0219 (18) 0.034 (2) 0.0000 (17) 0.0061 (17) 0.0028 (17)
C9 0.044 (3) 0.0257 (19) 0.045 (2) −0.0080 (18) −0.0073 (19) 0.009 (2)
C10 0.022 (2) 0.0234 (18) 0.035 (2) 0.0023 (16) 0.0105 (16) 0.0010 (18)
C11 0.031 (2) 0.0212 (18) 0.0298 (19) −0.0004 (17) 0.0061 (16) −0.0025 (17)
C12 0.051 (3) 0.030 (2) 0.027 (2) 0.0007 (19) −0.0016 (18) −0.0008 (18)
C13 0.052 (3) 0.040 (2) 0.027 (2) 0.010 (2) 0.0142 (19) 0.0035 (19)
C14 0.037 (2) 0.045 (2) 0.042 (2) 0.005 (2) 0.0196 (19) 0.002 (2)
C15 0.027 (2) 0.040 (2) 0.034 (2) 0.0014 (18) 0.0064 (17) 0.0027 (19)
C16 0.025 (2) 0.0212 (18) 0.0250 (18) 0.0012 (15) 0.0043 (15) −0.0018 (16)
C17 0.033 (2) 0.0193 (18) 0.0300 (19) −0.0023 (16) 0.0080 (16) −0.0010 (16)
C18 0.032 (2) 0.0331 (19) 0.038 (2) −0.0099 (18) 0.0142 (17) −0.0029 (19)
C19 0.047 (3) 0.047 (2) 0.039 (2) 0.013 (2) 0.016 (2) 0.015 (2)
C20 0.024 (2) 0.038 (2) 0.033 (2) −0.0041 (18) 0.0044 (17) −0.003 (2)
O1 0.0296 (15) 0.0226 (12) 0.0384 (14) −0.0051 (11) −0.0042 (11) 0.0023 (12)
O2 0.0314 (15) 0.0244 (13) 0.0347 (13) 0.0038 (11) 0.0008 (11) 0.0087 (12)
O3 0.055 (2) 0.0548 (17) 0.0489 (16) 0.0248 (15) 0.0285 (15) 0.0199 (15)
O4 0.063 (2) 0.0349 (15) 0.0430 (16) 0.0055 (14) 0.0273 (14) 0.0078 (14)
N1 0.0207 (16) 0.0187 (14) 0.0324 (16) −0.0001 (12) 0.0034 (12) 0.0043 (13)
N2 0.0227 (17) 0.0265 (15) 0.0426 (17) 0.0053 (14) 0.0004 (14) 0.0050 (15)
N3 0.0290 (18) 0.0281 (16) 0.0269 (16) −0.0065 (14) 0.0073 (13) −0.0028 (14)
N4 0.0273 (18) 0.0346 (17) 0.0331 (17) −0.0078 (14) 0.0012 (14) −0.0014 (16)

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Geometric parameters (Å, º)

Cd1—N1i 2.262 (3) C10—O1 1.269 (4)
Cd1—N3 2.271 (3) C11—N4 1.378 (4)
Cd1—O1 2.285 (2) C11—C12 1.393 (5)
Cd1—O3ii 2.293 (2) C11—C16 1.393 (4)
Cd1—O4ii 2.362 (2) C12—C13 1.377 (5)
Cd1—O2 2.667 (2) C12—H12 0.9300
Cd1—C20ii 2.667 (4) C13—C14 1.382 (5)
Cd1—C10 2.813 (3) C13—H13 0.9300
C1—C6 1.389 (5) C14—C15 1.382 (5)
C1—C2 1.391 (4) C14—H14 0.9300
C1—N1 1.406 (4) C15—C16 1.382 (5)
C2—C3 1.377 (5) C15—H15 0.9300
C2—H2 0.9300 C16—N3 1.401 (4)
C3—C4 1.389 (5) C17—N3 1.316 (4)
C3—H3 0.9300 C17—N4 1.354 (4)
C4—C5 1.382 (5) C17—C18 1.485 (4)
C4—H4 0.9300 C18—C19 1.495 (5)
C5—C6 1.371 (5) C18—H18A 0.9700
C5—H5 0.9300 C18—H18B 0.9700
C6—N2 1.386 (4) C19—C20 1.503 (5)
C7—N1 1.323 (4) C19—H19A 0.9700
C7—N2 1.346 (4) C19—H19B 0.9700
C7—C8 1.487 (4) C20—O4 1.236 (4)
C8—C9 1.518 (4) C20—O3 1.249 (4)
C8—H8A 0.9700 C20—Cd1ii 2.667 (4)
C8—H8B 0.9700 O3—Cd1ii 2.293 (2)
C9—C10 1.520 (4) O4—Cd1ii 2.362 (2)
C9—H9A 0.9700 N1—Cd1iii 2.262 (3)
C9—H9B 0.9700 N2—H2A 0.8600
C10—O2 1.239 (4) N4—H4A 0.8600
N1i—Cd1—N3 103.73 (10) O2—C10—O1 123.4 (3)
N1i—Cd1—O1 106.08 (9) O2—C10—C9 120.6 (3)
N3—Cd1—O1 93.38 (9) O1—C10—C9 115.9 (3)
N1i—Cd1—O3ii 100.41 (9) O2—C10—Cd1 70.45 (18)
N3—Cd1—O3ii 103.63 (10) O1—C10—Cd1 52.94 (15)
O1—Cd1—O3ii 144.01 (9) C9—C10—Cd1 168.8 (2)
N1i—Cd1—O4ii 146.52 (9) N4—C11—C12 132.8 (3)
N3—Cd1—O4ii 104.51 (10) N4—C11—C16 105.3 (3)
O1—Cd1—O4ii 89.85 (8) C12—C11—C16 121.8 (3)
O3ii—Cd1—O4ii 55.44 (9) C13—C12—C11 116.2 (4)
N1i—Cd1—O2 84.96 (8) C13—C12—H12 121.9
N3—Cd1—O2 145.40 (8) C11—C12—H12 121.9
O1—Cd1—O2 52.26 (7) C12—C13—C14 122.5 (4)
O3ii—Cd1—O2 107.64 (9) C12—C13—H13 118.8
O4ii—Cd1—O2 81.96 (8) C14—C13—H13 118.8
N1i—Cd1—C20ii 124.62 (11) C15—C14—C13 121.2 (4)
N3—Cd1—C20ii 106.84 (10) C15—C14—H14 119.4
O1—Cd1—C20ii 116.79 (10) C13—C14—H14 119.4
O3ii—Cd1—C20ii 27.87 (10) C16—C15—C14 117.4 (4)
O4ii—Cd1—C20ii 27.60 (9) C16—C15—H15 121.3
O2—Cd1—C20ii 94.44 (9) C14—C15—H15 121.3
N1i—Cd1—C10 96.06 (9) C15—C16—C11 120.9 (3)
N3—Cd1—C10 119.59 (10) C15—C16—N3 130.4 (3)
O1—Cd1—C10 26.30 (8) C11—C16—N3 108.6 (3)
O3ii—Cd1—C10 128.08 (10) N3—C17—N4 111.4 (3)
O4ii—Cd1—C10 85.33 (9) N3—C17—C18 125.4 (3)
O2—Cd1—C10 25.96 (8) N4—C17—C18 123.3 (3)
C20ii—Cd1—C10 106.94 (11) C17—C18—C19 114.6 (3)
C6—C1—C2 119.6 (3) C17—C18—H18A 108.6
C6—C1—N1 109.1 (3) C19—C18—H18A 108.6
C2—C1—N1 131.3 (3) C17—C18—H18B 108.6
C3—C2—C1 118.2 (4) C19—C18—H18B 108.6
C3—C2—H2 120.9 H18A—C18—H18B 107.6
C1—C2—H2 120.9 C18—C19—C20 114.4 (3)
C2—C3—C4 120.9 (4) C18—C19—H19A 108.7
C2—C3—H3 119.5 C20—C19—H19A 108.7
C4—C3—H3 119.5 C18—C19—H19B 108.7
C5—C4—C3 121.7 (4) C20—C19—H19B 108.7
C5—C4—H4 119.2 H19A—C19—H19B 107.6
C3—C4—H4 119.2 O4—C20—O3 121.3 (3)
C6—C5—C4 116.6 (4) O4—C20—C19 119.9 (3)
C6—C5—H5 121.7 O3—C20—C19 118.8 (3)
C4—C5—H5 121.7 O4—C20—Cd1ii 62.30 (19)
C5—C6—N2 131.8 (4) O3—C20—Cd1ii 59.13 (18)
C5—C6—C1 123.0 (4) C19—C20—Cd1ii 176.2 (3)
N2—C6—C1 105.2 (3) C10—O1—Cd1 100.76 (19)
N1—C7—N2 111.9 (3) C10—O2—Cd1 83.59 (19)
N1—C7—C8 126.8 (3) C20—O3—Cd1ii 93.0 (2)
N2—C7—C8 120.9 (3) C20—O4—Cd1ii 90.1 (2)
C7—C8—C9 110.5 (3) C7—N1—C1 105.5 (3)
C7—C8—H8A 109.5 C7—N1—Cd1iii 126.7 (2)
C9—C8—H8A 109.5 C1—N1—Cd1iii 127.2 (2)
C7—C8—H8B 109.5 C7—N2—C6 108.3 (3)
C9—C8—H8B 109.5 C7—N2—H2A 125.9
H8A—C8—H8B 108.1 C6—N2—H2A 125.9
C8—C9—C10 116.5 (3) C17—N3—C16 106.3 (3)
C8—C9—H9A 108.2 C17—N3—Cd1 131.2 (2)
C10—C9—H9A 108.2 C16—N3—Cd1 121.4 (2)
C8—C9—H9B 108.2 C17—N4—C11 108.4 (3)
C10—C9—H9B 108.2 C17—N4—H4A 125.8
H9A—C9—H9B 107.3 C11—N4—H4A 125.8

Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z+1; (iii) x, y+1, z.

Poly[bis[µ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)] (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2iv 0.86 2.10 2.823 (4) 141
N4—H4A···O1v 0.86 2.03 2.862 (4) 161

Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) −x, y−1/2, −z+1/2.

Funding Statement

This work was funded by Scientific Research Fund of Hunan Provincial Education Department grant 16B037. Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education grant CHCL16002.

References

  1. Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2012). APEX2, SADABS, SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.
  3. Cao, T. T., Peng, Y. Q., Liu, T., Wang, S. N., Dou, J. M., Li, Y. W., Zhou, C. H., Li, D. C. & Bai, J. F. (2014). CrystEngComm, 16, 10658–10673.
  4. Castellanos, S., Goulet-Hanssens, A., Zhao, F. L., Dikhtiarenko, A., Pustovarenko, A., Hecht, S., Gascon, J., Kapteijn, F. & Bléger, D. (2016). Chem. Eur. J. 22, 746–752. [DOI] [PubMed]
  5. Delval, F., Spyratou, A., Verdan, S., Bernardinelli, G. & Williams, A. F. (2008). New J. Chem. 32, 1394–1402.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Duerinck, T. & Denayer, J. F. M. (2015). Chem. Eng. Sci. 124, 179–187.
  8. Fernández, B., Gómez-Vílchez, A., Sánchez-González, C., Bayón, J., San Sebastián, E., Gómez-Ruiz, S., López-Chaves, C., Aranda, P., Llopis, J. & Rodríguez-Diéguez, A. (2016). New J. Chem. 40, 5387–5393.
  9. Hu, Y. J., Yang, J., Liu, Y. Y., Song, S. Y. & Ma, J. F. (2015). Cryst. Growth Des. 15, 3822–3831.
  10. Jurcic, M., Peveler, W. J., Savory, C. N., Scanlon, D. O., Kenyon, A. J. & Parkin, I. P. (2015). J. Mater. Chem. A, 3, 6351–6359.
  11. Karmakar, A., Martins, L., Hazra, S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016a). Cryst. Growth Des. 16, 1837–1849.
  12. Karmakar, A., Rúbio, G., Guedes da Silva, M. F. C., Ribeiro, A. P. C. & Pombeiro, A. J. L. (2016b). RSC Adv. 6, 89007–89018.
  13. Kumar, P., Deep, A. & Kim, K. H. (2015). TrAC Trends Anal. Chem. 73, 39–53.
  14. Liang, F.-L., Ma, D.-Y. & Qin, L. (2016). Acta Cryst. C72, 373–378. [DOI] [PubMed]
  15. Liu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). Dalton Trans. 45, 3743–3749. [DOI] [PubMed]
  16. Liu, Z., Zheng, S. & Feng, S. (2015). Acta Cryst. E71, m5–m6. [DOI] [PMC free article] [PubMed]
  17. Machura, B., Wolff, M., Benoist, E., Schachner, J. A., Mösch-Zanetti, N. C., Takao, K. & Ikeda, Y. (2014). Polyhedron, 69, 205–218.
  18. Małecki, J. G. & Maroń, A. (2012). Polyhedron, 40, 125–133.
  19. Mohan, B., Yoon, C., Jang, S. & Park, K. H. (2015). ChemCatChem, 7, 405–412.
  20. Müller-Buschbaum, K., Beuerle, F. & Feldmann, C. (2015). Microporous Mesoporous Mater. 216, 171–199.
  21. Qiao, C. F., Xia, Z. Q., Wei, Q., Zhou, C. S., Zhang, G. C., Chen, S. P. & Gao, S. L. (2013). J. Coord. Chem. 66, 1202–1210.
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Wannapaiboon, S., Tu, M., Sumida, K., Khaletskaya, K., Furukawa, S., Kitagawa, S. & Fischer, R. A. (2015). J. Mater. Chem. A, 3, 23385–23394.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Wu, H., Liu, H. Y., Yang, J., Liu, B., Ma, J. F., Liu, Y. Y. & Liu, Y. Y. (2011). Cryst. Growth Des. 11, 2317–2324.
  27. Xia, Z. Q., Wei, Q., Yang, Q., Qiao, C. F., Chen, S. P., Xie, G., Zhang, G. C., Zhou, C. S. & Gao, S. L. (2013). CrystEngComm, 15, 86–99.
  28. Xiao, Y. J., Liu, F. H., Zhao, L. & Su, Z. M. (2015). Inorg. Chem. Commun. 59, 32–35.
  29. Ying, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618–622. [DOI] [PubMed]
  30. Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q. & Bu, X.-H. (2010). Cryst. Growth Des. 10, 1878–1884.
  31. Zhang, Y., Du, Z. & Luo, X. (2015). Z. Anorg. Allg. Chem. 641, 2637–2640.
  32. Zhang, Z. Y., Yoshikawa, H. & Awaga, K. (2016). Chem. Mater. 28, 1298–1303.
  33. Zheng, S. R., Cai, S. L., Tan, J. B., Fan, J. & Zhang, W.-G. (2012). Inorg. Chem. Commun. 21, 100–103.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989017017534/lh5857sup1.cif

e-74-00028-sup1.cif (627.4KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989017017534/lh58571sup2.hkl

e-74-00028-1sup2.hkl (139.3KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989017017534/lh58572sup3.hkl

e-74-00028-2sup3.hkl (262.7KB, hkl)

CCDC references: 1589668, 1589667

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES