Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):38–40. doi: 10.1107/S2056989017017790

Bis{μ-2,2′-[(3,4-di­thia­hexane-1,6-di­yl)bis­(nitrilo­methanylyl­idene)]bis­(4-bromo­phenolato)-κ4 O,N,N′,O′}dicopper(II)

Julia A Rusanova a,*, Dmytro Bederak a, Vladimir N Kokozay a
PMCID: PMC5778481  PMID: 29416887

The crystal structure of a novel binuclear copper(II) complex with a dianionic Schiff base derived from 5-bromo­salicylic aldehyde and cyste­amine prepared by direct synthesis is reported.

Keywords: crystal structure, dinuclear copper(II) complex, Schiff base, 5-bromo­salicyl­aldehyde, cyste­amine (2-amino­ethanthiol)

Abstract

The crystal structure of the title compound, [Cu2(C18H12Br2N4O2S2)2], consists of binuclear complex units which lie across inversion centres and are connected by weak Cu—O coordination bonds forming chains along the b axis. The CuII ion is five-coordinated by two N atoms and two O atoms of the chelating ligand and one symmetry-related O atom forming a square-pyramidal coordination geometry. In the crystal, short S⋯Br contacts connect neighbouring chains into a two-dimensional network parallel to (101).

Chemical context  

Schiff bases and their metal complexes represent one of the most widely used classes of compound because of their synthetic flexibility and wide range of applications (Mitra et al., 1997; Bera et al., 1998; Prabhakaran et al., 2004). Such complexes having sulfur-containing ligands are of considerable inter­est because of their diverse coordination modes and bridging ability. The formation and cleavage of di­sulfide bonds are known to be important for the biological activity of several sulfur-containing peptides and proteins (Gilbert et al., 1999; Jacob et al., 2003).graphic file with name e-74-00038-scheme1.jpg

In this study we have continued our investigations in the field of direct synthesis, which is an efficient method to obtain novel polynuclear complexes (Babich & Kokozay, 1997; Vinogradova et al., 2001; Nesterova et al., 2008). The title compound was prepared by direct synthesis starting from zero-valent Cu with a Schiff-base ligand, the product of condensation between 5-bromsalicyl­aldehyde and cyste­amine, formed in situ in a methanol/di­methyl­formamide (DMF) mixture.

Structural commentary  

In the title compound, binuclear complex units lie across an inversion centre (Fig. 1). The coordination geometry around the CuII ion is comparable to that found in copper complexes reported earlier (CSD refcode FEDCIB; Dhar et al., 2005; Rusanova & Bederak, 2017). Despite the close structural similarity, neighboring centrosymmetric binuclear fragments are connected by additional weak Cu⋯O (2 − x, 1 − y, 2 − z) coordination bonds with the oxygen atoms of the ligand [2.520 (3) Å] and organized in chains along the b-axis direction (Fig. 2). Thus, each CuII ion is five-coordinated by two nitro­gen atoms (N1, N2), two oxygen atoms (O1, O2) and one symmetry-related O atom [O1 (2 − x, 1 − y, 2 − z)], forming a distorted square-pyramidal geometry.

Figure 1.

Figure 1

The mol­ecular structure of the binuclear complex unit of the title compound, showing 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled ones by the symmetry operation (2 − x, −y, 2 − z).

Figure 2.

Figure 2

The crystal packing of the title compound viewed along the a axis. Short S⋯Br contacts are shown as dashed lines. H atoms are not shown.

The chelating fragments coordinated to the CuII ions are twisted relative to each other, as defined by the dihedral angle of 28.9 (2)° formed between the mean planes of atoms O1/N1/C1/C6/C7 and O2/N2/C8/C13/C14. The thio­sulfonate moiety is not involved in any metal–ligand inter­actions.

The separation between the two symmetry-related CuII ions within the binuclear fragment is 5.2161 (11) Å and between neighboring fragments is 3.4458 (11) Å. In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related complexes (Dhar et al., 2005; Zhang et al., 2010).

Supra­molecular features  

In the crystal, short S⋯Br(−Inline graphic + x, Inline graphic − y, Inline graphic + z) contacts with a distance of 3.5108 (13) Å connect neighboring chains, forming a two-dimensional network parallel to (101) (Fig. 3).

Figure 3.

Figure 3

The crystal packing of the title compound viewed along the b axis. Short S⋯Br contacts are shown as dashed lines. H atoms are not shown.

In contrast to the previously reported complex (Rusanova & Bederak, 2017), there are no hydrogen-bond or π-π stacking inter­actions in the title complex. In terms of C—H⋯Br inter­actions, the inter­molecular C16—H16B⋯Br2(x + 1, y, z) distance of 3.03 Å and C17—H17B⋯S1(−Inline graphic + x, Inline graphic − y, −Inline graphic + z) distance of 2.95 Å are almost equal to the sum of the van der Waals radii for the atoms involved and may be worthy of note.

Database survey  

A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom et al., 2016) for related complexes with an amino­ethane­thiol group gave 165 hits, including two closely related structures with a di­sulfide moiety, viz. bis­[(μ2-sulfato)(6-salicyl­idene­amino-3,4-di­thia­hexyl­ammonium]­copper(II) and bis­(μ2-N,N′-(3,4-di­thia­hexane-1,6-di­yl)bis­(salicylideneiminato)-N,N′,O,O′)dicopper(II) (Dhar et al., 2004, 2005). The length of the S⋯Br contact in the title compound is in good agreement with those in related complexes (CSD refcodes WEMCAT and QELVIN; Salivon et al., 2006, 2007; CSD refcode PODDAO; Xia et al., 2008)

Synthesis and crystallization  

A solution of KOH (0.12 g, 2 mmol) in a minimum amount of methanol was added to a solution of amino­ethane­thiol hydro­chloride (0.23g, 2 mmol) in methanol (5 ml) and stirred on an ice bath for 10 min. The white precipitate of solid KCl was removed by filtration and 5-bromsalicyl­aldehyde (0.402 g, 2 mmol) in di­methyl­formamide (10 ml) were added to the filtrate and stirred magnetically for 50 min. Copper powder (0.064 g, 1 mmol) were added to the yellow solution of the Schiff base formed in situ, and the resulting deep green–brown solution was stirred magnetically and heated in air at 323–333 K for 2 h, resulting in a dark-green precipitate. Crystals suitable for crystallographic study were grown from a saturated solution in DMF after successive addition of CH2Cl2. The crystals were filtered off, washed with dry i-PrOH and finally dried at room temperature (yield: 20%).

The IR spectrum of the title compound (as KBr pellets) is consistent with the above structural data. In the range 4000–400 cm−1 it shows all characteristic functional groups peaks: ν(CH) due to aromatic =C—H stretching at 3000–3100cm−1, the aromatic ring vibrations in the 1600–1400 cm−1 region, weak S–S absorptions at 500–540 cm−1 as well absorbance at 1630 cm−1 assigned to the azomethine ν(C=N) group. Analysis calculated for C36H32Br4Cu2N4O4S4: C37.28, H 2.78, N 4.83, S 11.06%; found: C 37.32, H 3.01, N 4.70, S 11.10%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. All hydrogen atoms were placed at calculated positions (C–H = 0.93–0.97 Å) and refined as riding with U iso(H) = 1.2U eq(C).

Table 1. Experimental details.

Crystal data
Chemical formula [Cu2(C18H16Br2N2O2S2)2]
M r 1159.61
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.3596 (5), 8.3442 (3), 19.5002 (7)
β (°) 95.156 (2)
V3) 2002.94 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.31
Crystal size (mm) 0.45 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan SADABS
T min, T max 0.36, 0.74
No. of measured, independent and observed [I > 2σ(I)] reflections 18553, 3939, 2644
R int 0.075
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.098, 1.05
No. of reflections 3939
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.66

Computer programs: SMART and SAINT (Bruker, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017017790/lh5862sup1.cif

e-74-00038-sup1.cif (673.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017790/lh5862Isup2.hkl

e-74-00038-Isup2.hkl (314.1KB, hkl)

CCDC reference: 1810837

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Cu2(C18H16Br2N2O2S2)2] F(000) = 1140
Mr = 1159.61 Dx = 1.923 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.3596 (5) Å Cell parameters from 2534 reflections
b = 8.3442 (3) Å θ = 2.7–23.6°
c = 19.5002 (7) Å µ = 5.31 mm1
β = 95.156 (2)° T = 296 K
V = 2002.94 (13) Å3 Needle, green
Z = 2 0.45 × 0.10 × 0.06 mm

Data collection

Bruker SMART APEXII diffractometer 3939 independent reflections
Radiation source: sealed tube 2644 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.075
phi and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan sadabs h = −15→8
Tmin = 0.36, Tmax = 0.74 k = −10→10
18553 measured reflections l = −23→24

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0426P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.004
3939 reflections Δρmax = 0.82 e Å3
244 parameters Δρmin = −0.66 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
BR1 1.46222 (5) 0.24549 (7) 0.82836 (3) 0.04443 (19)
BR2 0.40450 (5) 0.21977 (8) 1.11957 (3) 0.0456 (2)
CU1 0.95419 (5) 0.30506 (7) 1.00084 (3) 0.01799 (16)
N1 1.0809 (3) 0.1638 (4) 1.03365 (18) 0.0184 (9)
N2 0.8169 (3) 0.3643 (4) 0.94366 (18) 0.0174 (9)
O1 1.0408 (2) 0.4239 (3) 0.94197 (15) 0.0184 (7)
O2 0.8768 (3) 0.2123 (4) 1.07014 (16) 0.0239 (8)
S1 1.10722 (11) −0.01078 (14) 1.23102 (6) 0.0231 (3)
S2 1.21861 (10) −0.17845 (15) 1.20755 (6) 0.0229 (3)
C1 1.1308 (4) 0.3764 (5) 0.9170 (2) 0.0187 (11)
C2 1.1648 (4) 0.4542 (5) 0.8585 (2) 0.0241 (12)
H2 1.120805 0.533137 0.836940 0.029*
C3 1.2610 (4) 0.4166 (6) 0.8324 (2) 0.0279 (13)
H3 1.282029 0.470919 0.794135 0.033*
C4 1.3278 (4) 0.2961 (6) 0.8634 (3) 0.0265 (12)
C5 1.2960 (4) 0.2146 (6) 0.9191 (3) 0.0261 (12)
H5 1.340017 0.133916 0.939219 0.031*
C6 1.1973 (4) 0.2517 (5) 0.9464 (2) 0.0205 (11)
C7 1.1680 (4) 0.1571 (5) 1.0031 (2) 0.0184 (11)
H7 1.218760 0.081147 1.019849 0.022*
C8 0.7732 (4) 0.2183 (5) 1.0778 (2) 0.0193 (11)
C9 0.7380 (4) 0.1630 (6) 1.1407 (2) 0.0260 (12)
H9 0.788849 0.123649 1.174609 0.031*
C10 0.6303 (4) 0.1663 (6) 1.1528 (3) 0.0247 (12)
H10 0.608900 0.131899 1.194901 0.030*
C11 0.5537 (4) 0.2208 (6) 1.1021 (3) 0.0282 (12)
C12 0.5833 (4) 0.2746 (6) 1.0406 (3) 0.0287 (13)
H12 0.530635 0.311494 1.007245 0.034*
C13 0.6938 (4) 0.2746 (5) 1.0273 (2) 0.0214 (11)
C14 0.7216 (4) 0.3439 (5) 0.9635 (2) 0.0206 (11)
H14 0.663784 0.377719 0.933102 0.025*
C15 1.0733 (4) 0.0487 (5) 1.0908 (2) 0.0191 (11)
H15A 1.121681 −0.040961 1.085098 0.023*
H15B 0.999770 0.007538 1.089495 0.023*
C16 1.1034 (4) 0.1278 (6) 1.1595 (2) 0.0222 (12)
H16A 1.051164 0.211612 1.166482 0.027*
H16B 1.174199 0.177672 1.158804 0.027*
C17 0.8220 (4) 0.4465 (5) 0.8773 (2) 0.0219 (11)
H17A 0.865362 0.542817 0.884674 0.026*
H17B 0.749153 0.478879 0.860140 0.026*
C18 0.8697 (4) 0.3449 (5) 0.8229 (2) 0.0212 (11)
H18A 0.939036 0.302111 0.841906 0.025*
H18B 0.883066 0.412405 0.784101 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
BR1 0.0376 (4) 0.0474 (4) 0.0522 (4) −0.0041 (3) 0.0256 (3) −0.0010 (3)
BR2 0.0234 (3) 0.0744 (5) 0.0400 (4) −0.0008 (3) 0.0092 (3) −0.0080 (3)
CU1 0.0192 (3) 0.0175 (3) 0.0170 (3) 0.0009 (3) 0.0002 (2) 0.0026 (3)
N1 0.028 (2) 0.017 (2) 0.010 (2) −0.0013 (18) −0.0003 (18) −0.0023 (16)
N2 0.024 (2) 0.015 (2) 0.013 (2) 0.0012 (17) −0.0001 (18) −0.0034 (16)
O1 0.0209 (19) 0.0170 (18) 0.0174 (17) 0.0007 (14) 0.0019 (15) 0.0013 (14)
O2 0.0197 (19) 0.029 (2) 0.0229 (18) 0.0018 (15) 0.0025 (15) 0.0086 (15)
S1 0.0316 (7) 0.0187 (7) 0.0190 (7) 0.0033 (6) 0.0029 (6) 0.0010 (5)
S2 0.0253 (7) 0.0192 (7) 0.0229 (7) 0.0026 (6) −0.0044 (6) −0.0016 (6)
C1 0.022 (3) 0.018 (3) 0.015 (3) −0.001 (2) −0.002 (2) −0.004 (2)
C2 0.037 (3) 0.018 (3) 0.018 (3) −0.007 (2) 0.004 (2) 0.002 (2)
C3 0.040 (3) 0.026 (3) 0.020 (3) −0.009 (3) 0.010 (3) −0.003 (2)
C4 0.029 (3) 0.027 (3) 0.025 (3) −0.003 (2) 0.010 (2) −0.006 (2)
C5 0.027 (3) 0.020 (3) 0.031 (3) −0.001 (2) 0.005 (2) −0.003 (2)
C6 0.020 (3) 0.022 (3) 0.020 (3) −0.004 (2) 0.003 (2) −0.007 (2)
C7 0.017 (3) 0.019 (3) 0.018 (3) 0.004 (2) −0.002 (2) 0.000 (2)
C8 0.021 (3) 0.014 (3) 0.024 (3) 0.000 (2) 0.004 (2) −0.006 (2)
C9 0.029 (3) 0.027 (3) 0.022 (3) 0.003 (2) 0.001 (2) 0.004 (2)
C10 0.023 (3) 0.026 (3) 0.026 (3) −0.006 (2) 0.008 (2) −0.001 (2)
C11 0.024 (3) 0.033 (3) 0.029 (3) −0.002 (2) 0.009 (2) −0.006 (2)
C12 0.021 (3) 0.033 (3) 0.030 (3) 0.001 (2) −0.003 (2) −0.003 (2)
C13 0.021 (3) 0.021 (3) 0.022 (3) −0.002 (2) −0.002 (2) −0.002 (2)
C14 0.018 (3) 0.019 (3) 0.023 (3) 0.006 (2) −0.005 (2) −0.002 (2)
C15 0.014 (3) 0.017 (3) 0.026 (3) 0.002 (2) 0.002 (2) 0.002 (2)
C16 0.026 (3) 0.021 (3) 0.019 (3) 0.002 (2) −0.002 (2) 0.003 (2)
C17 0.029 (3) 0.021 (3) 0.015 (3) 0.004 (2) −0.004 (2) 0.003 (2)
C18 0.024 (3) 0.022 (3) 0.018 (3) −0.004 (2) 0.001 (2) 0.004 (2)

Geometric parameters (Å, º)

BR1—C4 1.900 (5) C6—C7 1.433 (6)
BR2—C11 1.905 (5) C7—H7 0.9300
CU1—O2 1.890 (3) C8—C13 1.408 (6)
CU1—O1 1.915 (3) C8—C9 1.415 (6)
CU1—N2 2.006 (4) C9—C10 1.372 (6)
CU1—N1 2.018 (4) C9—H9 0.9300
CU1—O1i 2.520 (3) C10—C11 1.382 (7)
N1—C7 1.277 (5) C10—H10 0.9300
N1—C15 1.480 (5) C11—C12 1.362 (7)
N2—C14 1.284 (5) C12—C13 1.413 (6)
N2—C17 1.471 (5) C12—H12 0.9300
O1—C1 1.315 (5) C13—C14 1.441 (6)
O2—C8 1.304 (5) C14—H14 0.9300
S1—C16 1.808 (5) C15—C16 1.511 (6)
S1—S2 2.0435 (17) C15—H15A 0.9700
S2—C18ii 1.832 (5) C15—H15B 0.9700
C1—C2 1.410 (6) C16—H16A 0.9700
C1—C6 1.415 (6) C16—H16B 0.9700
C2—C3 1.371 (6) C17—C18 1.517 (6)
C2—H2 0.9300 C17—H17A 0.9700
C3—C4 1.403 (7) C17—H17B 0.9700
C3—H3 0.9300 C18—S2ii 1.832 (5)
C4—C5 1.369 (7) C18—H18A 0.9700
C5—C6 1.407 (6) C18—H18B 0.9700
C5—H5 0.9300
O2—CU1—O1 170.63 (14) C13—C8—C9 117.8 (4)
O2—CU1—N2 92.36 (15) C10—C9—C8 121.4 (5)
O1—CU1—N2 91.68 (14) C10—C9—H9 119.3
O2—CU1—N1 87.85 (14) C8—C9—H9 119.3
O1—CU1—N1 91.88 (14) C9—C10—C11 119.7 (5)
N2—CU1—N1 156.01 (14) C9—C10—H10 120.1
O2—CU1—O1i 92.59 (12) C11—C10—H10 120.1
O1—CU1—O1i 78.91 (12) C12—C11—C10 121.2 (5)
N2—CU1—O1i 90.61 (12) C12—C11—BR2 120.0 (4)
N1—CU1—O1i 113.35 (13) C10—C11—BR2 118.8 (4)
C7—N1—C15 115.8 (4) C11—C12—C13 120.2 (5)
C7—N1—CU1 122.7 (3) C11—C12—H12 119.9
C15—N1—CU1 121.2 (3) C13—C12—H12 119.9
C14—N2—C17 116.0 (4) C8—C13—C12 119.7 (4)
C14—N2—CU1 123.6 (3) C8—C13—C14 122.2 (4)
C17—N2—CU1 120.2 (3) C12—C13—C14 117.9 (4)
C1—O1—CU1 127.1 (3) N2—C14—C13 127.6 (4)
C8—O2—CU1 129.2 (3) N2—C14—H14 116.2
C16—S1—S2 103.67 (16) C13—C14—H14 116.2
C18ii—S2—S1 101.41 (16) N1—C15—C16 110.9 (4)
O1—C1—C2 119.0 (4) N1—C15—H15A 109.5
O1—C1—C6 123.5 (4) C16—C15—H15A 109.5
C2—C1—C6 117.5 (4) N1—C15—H15B 109.5
C3—C2—C1 121.8 (5) C16—C15—H15B 109.5
C3—C2—H2 119.1 H15A—C15—H15B 108.0
C1—C2—H2 119.1 C15—C16—S1 113.1 (3)
C2—C3—C4 120.0 (4) C15—C16—H16A 109.0
C2—C3—H3 120.0 S1—C16—H16A 109.0
C4—C3—H3 120.0 C15—C16—H16B 109.0
C5—C4—C3 119.9 (5) S1—C16—H16B 109.0
C5—C4—BR1 119.9 (4) H16A—C16—H16B 107.8
C3—C4—BR1 120.2 (4) N2—C17—C18 113.8 (4)
C4—C5—C6 120.7 (5) N2—C17—H17A 108.8
C4—C5—H5 119.7 C18—C17—H17A 108.8
C6—C5—H5 119.7 N2—C17—H17B 108.8
C5—C6—C1 120.1 (4) C18—C17—H17B 108.8
C5—C6—C7 117.3 (4) H17A—C17—H17B 107.7
C1—C6—C7 122.7 (4) C17—C18—S2ii 113.1 (3)
N1—C7—C6 128.2 (4) C17—C18—H18A 109.0
N1—C7—H7 115.9 S2ii—C18—H18A 109.0
C6—C7—H7 115.9 C17—C18—H18B 109.0
O2—C8—C13 124.2 (4) S2ii—C18—H18B 109.0
O2—C8—C9 118.0 (4) H18A—C18—H18B 107.8

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+2.

References

  1. Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487–1490.
  2. Bera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559–560.
  3. Bruker (2008). APEX2, SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  4. Dhar, S., Nethaji, M. & Chakravarty, A. R. (2004). Dalton Trans. pp. 4180–4184. [DOI] [PubMed]
  5. Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 344–348. [DOI] [PubMed]
  6. Gilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891–1895.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Jacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742–4758. [DOI] [PubMed]
  9. Mitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). Polyhedron, 16, 3735–3742.
  10. Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436. [DOI] [PubMed]
  11. Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131–2140. [DOI] [PubMed]
  12. Rusanova, J. A. & Bederak, D. (2017). Acta Cryst. E73, 1797–1800. [DOI] [PMC free article] [PubMed]
  13. Salivon, N. F., Filinchuk, Y. E. & Olijnyk, V. V. (2006). Z. Anorg. Allg. Chem. 632, 1610–1613.
  14. Salivon, N. F., Olijnik, V. V. & Shkurenko, A. A. (2007). Russ. J. Coord. Chem. 33, 908–913.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Vinogradova, E. A., Vassilyeva, O. Y., Kokozay, V. N., Squattrito, P. J., Reedijk, J., Van Albada, G. A., Linert, W., Tiwary, S. K. & Raithby, P. R. (2001). New J. Chem. 25, 949–953.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Xia, J.-H., Liu, Z. & Jin, L.-X. (2008). Chin. J. Inorg. Chem. 5, 823–826.
  21. Zhang, S.-H., Wang, Y., Feng, C. & Li, G. Z. (2010). J. Coord. Chem. 63, 3697–3705.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017017790/lh5862sup1.cif

e-74-00038-sup1.cif (673.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017790/lh5862Isup2.hkl

e-74-00038-Isup2.hkl (314.1KB, hkl)

CCDC reference: 1810837

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES