Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):51–54. doi: 10.1107/S2056989017017819

Crystal structure of (S)-5-chloro-N-({2-oxo-3-[4-(3-oxomorpholin-4-yl)phen­yl]oxazolidin-5-yl}meth­yl)thio­phene-2-carboxamide

Jie Shen a, Gu-Ping Tang b, Xiu-Rong Hu a,*
PMCID: PMC5778484  PMID: 29416890

The asymmetric unit of the crystal of the title compound contains two rivaroxaban mol­ecules with different conformations.

Keywords: crystal structure, rivaroxaban, Hirshfeld surface, hydrogen bonds

Abstract

The asymmetric unit of the crystal of the title compound (common name rivaroxaban), C19H18ClN3O5, contains two rivaroxaban mol­ecules with different conformations; the C—C—N—C torsion angles between the oxazolidine and thio­phene rings are −171.1 (7) and −106.8 (9)° in the two independent mol­ecules. In the crystal, classical N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular architecture.

Chemical context  

At present, the incidence of thromboic disease is extremely high; this is mainly caused by vascular endothelial injury, increased blood coagulation, increased platelet number and decreased anti­coagulant activity (Lassila, 2012). In anti­coagulants, warfarin and heparin have dominated the market, but they have some defects such as making making patients bleed easily and be prone to thrombocytopenia and osteoporosis (Mega & Carreras, 2012). In recent years, factor Xa inhibitors, the new type of anti­coagulant drugs, have received more and more attention, and rivaroxaban is a representative drug of factor Xa inhibitors (Goel & Srivathsan, 2012).graphic file with name e-74-00051-scheme1.jpg

Rivaroxaban is a novel oral direct factor Xa inhibitor that inhibits factor Xa selectively, thereby prolongs prothrombin time and reduces thrombin generation (Ansell, 2007). It does not have a direct effect on thrombin but it inhibits the formation of thrombin by inhibiting factor Xa activity, which impedes the formation of fibrin in turn and ultimately inhibits thrombus formation and enlargement (Perzborn et al., 2005). In 2011, rivaroxaban was approved by the US Food and Drug Administration (FDA) for the prevention of stroke or systemic embolism in patients with non-valvular atrial fibrillation. The patent WO2007039132 (Ludescher et al., 2012) concerned crystalline form I, form II, form III, the amorphous form, the hydrate, the NMP solvate and the THF clathrate of rivaroxaban. However, there are few reports on the single-crystal structure of rivaroxaban. As part of our ongoing structural studies of pharmaceutical compounds, the crystal structure of rivaroxaban is presented here.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains two mol­ecules with different conformations. In the N-methyl­formamide moieties of mol­ecules A and B, the C7—C6—N1—C5 torsion angles are −171.1 (7) and −106.8 (9)°, respectively (Table 1). The oxazolidine ring of mol­ecule A is almost planar [the maximum deviation is 0.048 (6) Å for the O2A atom], whereas the oxazolidine ring of mol­ecule B displays an envelope conformation with atom C8B as the flap. The morpholine rings of the two mol­ecules display similar twisted boat conformations. Atoms O4 and C17 deviate from the C16/N3/C19/C18 mean plane by 0.230 (2) and 0.517 (2) Å, respectively, in mol­ecule A and by 0.290 (2) and 0.489 (2) Å in mol­ecule B.

Figure 1.

Figure 1

The mol­ecular structure of the title compound,showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

Table 1. Selected torsion angles (°).

C3A—C4A—C5A—O1A 172.0 (10) C7A—C6A—N1A—C5A −171.1 (7)
C3B—C4B—C5B—O1B −169.2 (9) O1B—C5B—N1B—C6B 10.8 (13)
O1A—C5A—N1A—C6A −4.0 (13) C4B—C5B—N1B—C6B −166.0 (7)
C4A—C5A—N1A—C6A 176.0 (6) C7B—C6B—N1B—C5B −106.8 (9)

Supra­molecular features  

In the crystal, N—H⋯O hydrogen bonds (Table 2, Fig. 2) link the independent mol­ecules A and B into dimers, and weak C—H⋯O hydrogen bonds link the dimers to form a three-dimensional supra­molecular architecture (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O3B 0.86 2.16 3.008 (11) 169
N1B—H1B⋯O3A 0.86 2.22 3.016 (11) 153
C3A—H3A⋯O3B 0.93 2.48 3.357 (11) 157
C6B—H6B1⋯O5A i 0.97 2.41 3.227 (10) 141
C7A—H7A⋯O5B ii 0.98 2.41 3.288 (8) 149
C8A—H8A2⋯O1B iii 0.97 2.52 3.459 (11) 163
C8B—H8B1⋯O1A iv 0.97 2.15 2.961 (12) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The supermolecular structure showing the inter­molecular inter­actions (Table 2) as dashed lines.

Hirshfeld surface analysis  

The Hirshfeld surface of a mol­ecule in a crystal is constructed by calculating the spherical atom electron densities. On the d norm surface, when inter­molecular contacts are shorter than the sum of van der Waals radii, they are highlighted in red, longer contacts in blue and contacts around the sum of van der Waals radii in white. The Hirshfeld surface analyses and two-dimensional fingerprint plots for the title compound were generated by CrystalExplorer (Wolff et al., 2013), and are illustrated in Figs. 3 and 4, respectively.

Figure 3.

Figure 3

Plots of d norm mapped on the Hirshfeld surfaces of the title compound showing the N—H⋯O hydrogen bonds.

Figure 4.

Figure 4

The two-dimensional fingerprint of title compound showing contributions from different contacts.

The light-red spots on the Hirshfeld surface are the results of N—H⋯O, C—H⋯O and C—Cl⋯O inter­actions (Fig. 3). The H⋯H contacts, which comprise 27% of the total Hirshfeld surface area, appear in the central region of the fingerprint plot (Fig. 3 b). The O⋯H/H⋯O inter­actions (22.4%), which are the most significant inter­molecular inter­actions and link the mol­ecular dimers into infinite chains along the b axis, appear as two obvious spikes (Fig. 3 c). At the top left (d i < d e) and bottom right (d i > d e) of the fingerprint plot, there are characteristic ‘wings’ that are identified resulting from the C⋯H/H⋯C inter­actions (18.7%) shown in Fig. 3 d.

Synthesis and crystallization  

The crude product was supplied by the Zhejiang Huadong Pharmaceutical Co., Ltd. It was recrystallized from methanol solution, giving colourless crystals suitable for X-ray diffraction.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. N-bound atoms H1A and H1B were found in difference-Fourier maps, but placed in calculated positions with N—H = 0.86 Å and refined as riding with U iso(H) = 1.2U eq(N). All other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and included in the refinement in a riding model, with U iso(H) = 1.2 or 1.5U eq(carrier atom).

Table 3. Experimental details.

Crystal data
Chemical formula C19H18ClN3O5S
M r 435.87
Crystal system, space group Triclinic, P1
Temperature (K) 296
a, b, c (Å) 9.0184 (6), 10.9980 (8), 11.2386 (8)
α, β, γ (°) 63.426 (2), 74.414 (3), 78.144 (2)
V3) 955.56 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.39 × 0.27 × 0.06
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.868, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 8375, 6267, 3981
R int 0.043
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.149, 1.00
No. of reflections 6267
No. of parameters 524
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.48
Absolute structure Flack (1983), 2519 Friedel pairs
Absolute structure parameter −0.07 (13)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and WinGX and DIAMOND (Brandenburg & Putz, 2006).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017017819/xu5913sup1.cif

e-74-00051-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017819/xu5913Isup2.hkl

e-74-00051-Isup2.hkl (300.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017819/xu5913Isup3.cml

CCDC reference: 1810879

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Zhejiang Jingxin Pharmaceutical Co. Ltd for support in the form of raw materials.

supplementary crystallographic information

Crystal data

C19H18ClN3O5S Z = 2
Mr = 435.87 F(000) = 452
Triclinic, P1 Dx = 1.515 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0184 (6) Å Cell parameters from 6182 reflections
b = 10.9980 (8) Å θ = 3.3–27.5°
c = 11.2386 (8) Å µ = 0.35 mm1
α = 63.426 (2)° T = 296 K
β = 74.414 (3)° Platelet, colorless
γ = 78.144 (2)° 0.39 × 0.27 × 0.06 mm
V = 955.56 (12) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 6267 independent reflections
Radiation source: rotating anode 3981 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
Detector resolution: 10.00 pixels mm-1 θmax = 26.0°, θmin = 3.3°
ω scans h = −11→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −13→13
Tmin = 0.868, Tmax = 0.979 l = −13→12
8375 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.9688P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.33 e Å3
6267 reflections Δρmin = −0.47 e Å3
524 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraints Extinction coefficient: 0.0153 (18)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2519 Friedel pairs
Secondary atom site location: difference Fourier map Absolute structure parameter: −0.07 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A −0.1583 (9) 1.0666 (8) 0.2283 (8) 0.0439 (19)
C2A −0.0913 (9) 0.9526 (9) 0.2067 (9) 0.055 (2)
H2A −0.1318 0.9137 0.1654 0.066*
C3A 0.0484 (9) 0.9019 (8) 0.2560 (8) 0.049 (2)
H3A 0.1097 0.8251 0.2496 0.059*
C4A 0.0845 (9) 0.9721 (8) 0.3113 (8) 0.044 (2)
C5A 0.2153 (9) 0.9561 (8) 0.3737 (8) 0.046 (2)
C6A 0.4500 (8) 0.8320 (8) 0.4481 (8) 0.0536 (19)
H6A1 0.4173 0.8227 0.5410 0.064*
H6A2 0.5024 0.9143 0.3946 0.064*
C7A 0.5590 (6) 0.7108 (6) 0.4437 (6) 0.0432 (14)
H7A 0.5844 0.7152 0.3515 0.052*
C8A 0.7087 (8) 0.6965 (8) 0.4921 (7) 0.0468 (18)
H8A1 0.7986 0.7055 0.4193 0.056*
H8A2 0.7049 0.7645 0.5259 0.056*
C9A 0.5857 (9) 0.4996 (8) 0.6187 (8) 0.0426 (18)
C10A 0.8327 (8) 0.5027 (8) 0.6745 (7) 0.0371 (17)
C11A 0.9704 (8) 0.5597 (9) 0.6184 (8) 0.051 (2)
H11A 0.9842 0.6319 0.5327 0.061*
C12A 1.0901 (9) 0.5086 (9) 0.6909 (8) 0.052 (2)
H12A 1.1832 0.5479 0.6538 0.063*
C13A 1.0706 (9) 0.4001 (8) 0.8169 (7) 0.0405 (19)
C14A 0.9315 (9) 0.3423 (9) 0.8685 (8) 0.048 (2)
H14A 0.9183 0.2673 0.9521 0.058*
C15A 0.8124 (9) 0.3937 (8) 0.7984 (7) 0.0425 (18)
H15A 0.7192 0.3546 0.8350 0.051*
C16A 1.2171 (11) 0.4524 (11) 0.9410 (11) 0.067 (3)
H16A 1.1206 0.5014 0.9664 0.080*
H16B 1.2822 0.5185 0.8665 0.080*
C17A 1.2969 (10) 0.3788 (11) 1.0610 (9) 0.065 (3)
H17A 1.3259 0.4449 1.0837 0.078*
H17B 1.2270 0.3213 1.1393 0.078*
C18A 1.3869 (11) 0.1916 (9) 1.0115 (10) 0.059 (2)
H18A 1.3534 0.1208 1.1008 0.071*
H18B 1.4791 0.1531 0.9671 0.071*
C19A 1.2629 (9) 0.2279 (9) 0.9317 (8) 0.048 (2)
C1B 1.0264 (9) −0.0628 (8) 0.7509 (8) 0.0427 (19)
C2B 0.9694 (9) 0.0466 (9) 0.7726 (9) 0.052 (2)
H2B 1.0163 0.0829 0.8121 0.062*
C3B 0.8282 (10) 0.1024 (10) 0.7290 (9) 0.054 (2)
H3B 0.7724 0.1812 0.7352 0.065*
C4B 0.7817 (9) 0.0297 (8) 0.6767 (8) 0.0427 (19)
C5B 0.6395 (9) 0.0457 (9) 0.6254 (8) 0.047 (2)
C6B 0.3859 (8) 0.1766 (7) 0.5957 (8) 0.056 (2)
H6B1 0.3174 0.2091 0.6606 0.068*
H6B2 0.3573 0.0878 0.6168 0.068*
C7B 0.3595 (7) 0.2715 (6) 0.4581 (6) 0.0417 (13)
H7B 0.4197 0.2367 0.3911 0.050*
C8B 0.1891 (8) 0.2963 (7) 0.4524 (9) 0.052 (2)
H8B1 0.1633 0.2406 0.4154 0.062*
H8B2 0.1238 0.2786 0.5414 0.062*
C9B 0.2926 (8) 0.5022 (9) 0.3553 (7) 0.0397 (18)
C10B 0.0478 (8) 0.5025 (8) 0.2993 (7) 0.0347 (16)
C11B −0.0894 (9) 0.4413 (8) 0.3481 (8) 0.0444 (19)
H11B −0.1005 0.3637 0.4297 0.053*
C12B −0.2088 (9) 0.4918 (9) 0.2796 (8) 0.049 (2)
H12B −0.2986 0.4478 0.3144 0.059*
C13B −0.1964 (9) 0.6065 (8) 0.1604 (8) 0.0391 (18)
C14B −0.0649 (8) 0.6727 (8) 0.1093 (7) 0.0392 (17)
H14B −0.0578 0.7520 0.0292 0.047*
C15B 0.0591 (8) 0.6212 (8) 0.1778 (7) 0.0367 (17)
H15B 0.1485 0.6658 0.1425 0.044*
C16B −0.3420 (11) 0.5655 (11) 0.0280 (11) 0.069 (3)
H16C −0.3988 0.4912 0.0998 0.083*
H16D −0.2424 0.5266 −0.0061 0.083*
C17B −0.4295 (10) 0.6406 (12) −0.0841 (10) 0.065 (3)
H17C −0.3674 0.7069 −0.1616 0.078*
H17D −0.4543 0.5772 −0.1126 0.078*
C18B −0.5312 (10) 0.8161 (9) −0.0125 (9) 0.056 (2)
H18C −0.6237 0.8480 0.0378 0.067*
H18D −0.5027 0.8917 −0.0996 0.067*
C19B −0.4012 (9) 0.7757 (9) 0.0650 (8) 0.0437 (19)
N1A 0.3152 (7) 0.8431 (7) 0.3946 (7) 0.0498 (17)
H1A 0.2999 0.7788 0.3769 0.060*
N2A 0.7116 (7) 0.5601 (7) 0.5999 (6) 0.0372 (14)
N3A 1.1862 (8) 0.3562 (7) 0.8972 (7) 0.0432 (15)
N1B 0.5436 (7) 0.1595 (7) 0.6146 (7) 0.0532 (17)
H1B 0.5767 0.2250 0.6192 0.064*
N2B 0.1756 (6) 0.4401 (6) 0.3618 (6) 0.0368 (14)
N3B −0.3186 (7) 0.6567 (7) 0.0831 (6) 0.0409 (15)
O1A 0.2326 (8) 1.0454 (7) 0.4062 (8) 0.084 (2)
O2A 0.4876 (6) 0.5867 (5) 0.5382 (6) 0.0555 (15)
O3A 0.5553 (7) 0.3836 (6) 0.6960 (6) 0.0604 (16)
O4A 1.4274 (7) 0.2998 (7) 1.0281 (7) 0.0691 (19)
O5A 1.2297 (8) 0.1426 (7) 0.9017 (6) 0.0673 (17)
O1B 0.6129 (7) −0.0440 (6) 0.6016 (7) 0.0673 (17)
O2B 0.3984 (6) 0.4081 (6) 0.4212 (6) 0.0482 (13)
O3B 0.3058 (7) 0.6245 (6) 0.3060 (6) 0.0541 (14)
O4B −0.5669 (7) 0.7076 (7) −0.0354 (6) 0.0594 (16)
O5B −0.3806 (7) 0.8525 (6) 0.1100 (6) 0.0622 (16)
S1A −0.0530 (2) 1.1087 (2) 0.3076 (2) 0.0611 (6)
S1B 0.9128 (2) −0.1087 (2) 0.6818 (2) 0.0563 (6)
Cl1A −0.3274 (2) 1.1591 (2) 0.1863 (2) 0.0640 (6)
Cl1B 1.1962 (2) −0.1602 (2) 0.7917 (2) 0.0675 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.037 (4) 0.045 (5) 0.042 (4) −0.002 (4) −0.016 (3) −0.008 (4)
C2A 0.054 (5) 0.043 (5) 0.064 (5) 0.001 (4) −0.017 (4) −0.019 (4)
C3A 0.040 (4) 0.034 (4) 0.072 (5) 0.015 (3) −0.030 (4) −0.018 (4)
C4A 0.041 (5) 0.038 (5) 0.054 (4) 0.005 (4) −0.019 (4) −0.016 (4)
C5A 0.040 (4) 0.036 (4) 0.067 (5) 0.000 (3) −0.023 (4) −0.021 (4)
C6A 0.044 (4) 0.049 (4) 0.081 (5) 0.002 (3) −0.028 (4) −0.031 (4)
C7A 0.041 (3) 0.043 (3) 0.043 (3) −0.002 (2) −0.015 (3) −0.013 (3)
C8A 0.039 (4) 0.044 (4) 0.050 (4) 0.001 (3) −0.021 (3) −0.008 (3)
C9A 0.056 (5) 0.025 (4) 0.048 (4) 0.014 (3) −0.030 (4) −0.013 (3)
C10A 0.034 (4) 0.041 (4) 0.042 (4) 0.006 (3) −0.014 (3) −0.023 (4)
C11A 0.032 (4) 0.064 (6) 0.047 (4) −0.013 (4) −0.011 (3) −0.009 (4)
C12A 0.033 (4) 0.050 (5) 0.058 (5) −0.004 (3) −0.008 (4) −0.010 (4)
C13A 0.033 (4) 0.049 (5) 0.042 (4) 0.006 (3) −0.017 (3) −0.020 (4)
C14A 0.052 (5) 0.042 (4) 0.047 (4) 0.001 (4) −0.015 (4) −0.016 (4)
C15A 0.038 (4) 0.048 (5) 0.044 (4) −0.009 (3) −0.017 (3) −0.015 (4)
C16A 0.067 (6) 0.073 (6) 0.092 (7) 0.013 (5) −0.050 (5) −0.051 (6)
C17A 0.057 (5) 0.091 (7) 0.066 (6) 0.004 (5) −0.027 (5) −0.046 (5)
C18A 0.061 (5) 0.053 (6) 0.071 (5) 0.014 (4) −0.032 (4) −0.031 (5)
C19A 0.045 (4) 0.046 (5) 0.052 (4) 0.008 (4) −0.021 (4) −0.019 (4)
C1B 0.032 (4) 0.046 (5) 0.041 (4) 0.001 (3) −0.016 (3) −0.008 (4)
C2B 0.039 (4) 0.062 (6) 0.067 (5) −0.003 (4) −0.028 (4) −0.029 (5)
C3B 0.052 (5) 0.060 (6) 0.065 (5) 0.000 (4) −0.027 (4) −0.033 (5)
C4B 0.034 (4) 0.037 (5) 0.057 (5) −0.001 (3) −0.021 (4) −0.015 (4)
C5B 0.038 (4) 0.045 (5) 0.053 (5) 0.006 (4) −0.019 (3) −0.014 (4)
C6B 0.035 (4) 0.042 (4) 0.080 (5) 0.004 (3) −0.025 (4) −0.011 (4)
C7B 0.041 (3) 0.036 (3) 0.055 (4) 0.001 (2) −0.024 (3) −0.020 (3)
C8B 0.047 (4) 0.031 (4) 0.080 (5) 0.002 (3) −0.033 (4) −0.017 (4)
C9B 0.024 (3) 0.055 (5) 0.048 (4) −0.011 (3) −0.010 (3) −0.024 (4)
C10B 0.027 (3) 0.035 (4) 0.050 (4) −0.001 (3) −0.016 (3) −0.021 (4)
C11B 0.046 (4) 0.035 (4) 0.046 (4) 0.000 (3) −0.021 (3) −0.006 (3)
C12B 0.034 (4) 0.054 (5) 0.065 (5) −0.009 (3) −0.023 (4) −0.021 (4)
C13B 0.036 (4) 0.037 (4) 0.053 (4) 0.006 (3) −0.022 (3) −0.023 (4)
C14B 0.036 (4) 0.038 (4) 0.043 (4) 0.000 (3) −0.018 (3) −0.011 (3)
C15B 0.032 (4) 0.035 (4) 0.038 (4) −0.004 (3) −0.010 (3) −0.009 (3)
C16B 0.064 (5) 0.066 (6) 0.111 (8) 0.023 (5) −0.054 (6) −0.058 (6)
C17B 0.051 (5) 0.095 (7) 0.076 (6) 0.000 (5) −0.031 (5) −0.053 (6)
C18B 0.047 (5) 0.053 (5) 0.056 (5) 0.002 (4) −0.020 (4) −0.011 (4)
C19B 0.034 (4) 0.049 (5) 0.047 (4) 0.005 (3) −0.013 (3) −0.019 (4)
N1A 0.044 (4) 0.037 (4) 0.076 (4) 0.008 (3) −0.027 (3) −0.027 (3)
N2A 0.028 (3) 0.037 (3) 0.041 (3) 0.000 (2) −0.014 (2) −0.010 (3)
N3A 0.041 (3) 0.045 (4) 0.053 (4) 0.010 (3) −0.026 (3) −0.025 (3)
N1B 0.039 (4) 0.042 (4) 0.071 (4) −0.001 (3) −0.032 (3) −0.008 (3)
N2B 0.034 (3) 0.035 (3) 0.049 (3) −0.002 (2) −0.024 (3) −0.016 (3)
N3B 0.040 (3) 0.046 (4) 0.050 (4) 0.003 (3) −0.028 (3) −0.024 (3)
O1A 0.074 (4) 0.074 (5) 0.153 (6) 0.024 (3) −0.068 (4) −0.076 (5)
O2A 0.053 (3) 0.031 (3) 0.079 (4) −0.002 (2) −0.045 (3) −0.003 (3)
O3A 0.060 (3) 0.041 (4) 0.082 (4) −0.011 (3) −0.039 (3) −0.011 (3)
O4A 0.049 (4) 0.084 (5) 0.081 (4) 0.005 (3) −0.030 (3) −0.035 (4)
O5A 0.070 (4) 0.055 (4) 0.088 (4) 0.006 (3) −0.036 (3) −0.034 (3)
O1B 0.069 (4) 0.054 (4) 0.107 (5) 0.006 (3) −0.047 (3) −0.046 (4)
O2B 0.041 (3) 0.045 (3) 0.066 (3) −0.004 (2) −0.027 (2) −0.020 (3)
O3B 0.057 (3) 0.037 (3) 0.071 (3) −0.004 (2) −0.035 (3) −0.013 (3)
O4B 0.046 (3) 0.066 (4) 0.073 (4) 0.004 (3) −0.034 (3) −0.027 (3)
O5B 0.068 (4) 0.051 (4) 0.078 (4) 0.014 (3) −0.037 (3) −0.032 (3)
S1A 0.0506 (12) 0.0551 (14) 0.0912 (17) 0.0171 (10) −0.0335 (12) −0.0409 (14)
S1B 0.0468 (12) 0.0469 (13) 0.0783 (15) 0.0098 (9) −0.0291 (10) −0.0255 (12)
Cl1A 0.0391 (11) 0.0656 (16) 0.0746 (14) 0.0071 (10) −0.0234 (11) −0.0167 (12)
Cl1B 0.0391 (11) 0.0587 (15) 0.0823 (15) 0.0071 (10) −0.0275 (11) −0.0062 (12)

Geometric parameters (Å, º)

C1A—C2A 1.371 (11) C1B—S1B 1.703 (9)
C1A—Cl1A 1.704 (8) C1B—Cl1B 1.722 (8)
C1A—S1A 1.707 (9) C2B—C3B 1.408 (12)
C2A—C3A 1.420 (12) C2B—H2B 0.9300
C2A—H2A 0.9300 C3B—C4B 1.361 (12)
C3A—C4A 1.315 (12) C3B—H3B 0.9300
C3A—H3A 0.9300 C4B—C5B 1.491 (12)
C4A—C5A 1.471 (12) C4B—S1B 1.714 (8)
C4A—S1A 1.733 (8) C5B—O1B 1.213 (10)
C5A—O1A 1.239 (10) C5B—N1B 1.344 (10)
C5A—N1A 1.344 (10) C6B—N1B 1.456 (10)
C6A—N1A 1.456 (10) C6B—C7B 1.480 (9)
C6A—C7A 1.496 (8) C6B—H6B1 0.9700
C6A—H6A1 0.9700 C6B—H6B2 0.9700
C6A—H6A2 0.9700 C7B—O2B 1.460 (8)
C7A—O2A 1.451 (7) C7B—C8B 1.518 (9)
C7A—C8A 1.540 (9) C7B—H7B 0.9800
C7A—H7A 0.9800 C8B—N2B 1.449 (9)
C8A—N2A 1.447 (9) C8B—H8B1 0.9700
C8A—H8A1 0.9700 C8B—H8B2 0.9700
C8A—H8A2 0.9700 C9B—O3B 1.222 (9)
C9A—O3A 1.217 (9) C9B—N2B 1.340 (9)
C9A—O2A 1.351 (9) C9B—O2B 1.348 (9)
C9A—N2A 1.353 (10) C10B—C11B 1.390 (11)
C10A—C15A 1.367 (10) C10B—C15B 1.402 (10)
C10A—C11A 1.370 (11) C10B—N2B 1.404 (10)
C10A—N2A 1.425 (10) C11B—C12B 1.370 (11)
C11A—C12A 1.399 (12) C11B—H11B 0.9300
C11A—H11A 0.9300 C12B—C13B 1.365 (11)
C12A—C13A 1.379 (11) C12B—H12B 0.9300
C12A—H12A 0.9300 C13B—C14B 1.371 (11)
C13A—C14A 1.386 (11) C13B—N3B 1.453 (10)
C13A—N3A 1.429 (11) C14B—C15B 1.405 (10)
C14A—C15A 1.379 (11) C14B—H14B 0.9300
C14A—H14A 0.9300 C15B—H15B 0.9300
C15A—H15A 0.9300 C16B—N3B 1.465 (11)
C16A—N3A 1.448 (11) C16B—C17B 1.492 (13)
C16A—C17A 1.516 (12) C16B—H16C 0.9700
C16A—H16A 0.9700 C16B—H16D 0.9700
C16A—H16B 0.9700 C17B—O4B 1.413 (10)
C17A—O4A 1.382 (10) C17B—H17C 0.9700
C17A—H17A 0.9700 C17B—H17D 0.9700
C17A—H17B 0.9700 C18B—O4B 1.439 (11)
C18A—O4A 1.413 (11) C18B—C19B 1.523 (12)
C18A—C19A 1.500 (12) C18B—H18C 0.9700
C18A—H18A 0.9700 C18B—H18D 0.9700
C18A—H18B 0.9700 C19B—O5B 1.225 (10)
C19A—O5A 1.240 (11) C19B—N3B 1.323 (9)
C19A—N3A 1.369 (10) N1A—H1A 0.8600
C1B—C2B 1.309 (11) N1B—H1B 0.8600
C2A—C1A—Cl1A 126.4 (7) O1B—C5B—N1B 123.9 (9)
C2A—C1A—S1A 112.0 (6) O1B—C5B—C4B 119.9 (8)
Cl1A—C1A—S1A 121.6 (5) N1B—C5B—C4B 116.1 (8)
C1A—C2A—C3A 110.7 (8) N1B—C6B—C7B 115.4 (6)
C1A—C2A—H2A 124.6 N1B—C6B—H6B1 108.4
C3A—C2A—H2A 124.6 C7B—C6B—H6B1 108.4
C4A—C3A—C2A 114.8 (8) N1B—C6B—H6B2 108.4
C4A—C3A—H3A 122.6 C7B—C6B—H6B2 108.4
C2A—C3A—H3A 122.6 H6B1—C6B—H6B2 107.5
C3A—C4A—C5A 132.7 (7) O2B—C7B—C6B 111.0 (6)
C3A—C4A—S1A 111.3 (7) O2B—C7B—C8B 102.7 (5)
C5A—C4A—S1A 116.0 (6) C6B—C7B—C8B 111.7 (6)
O1A—C5A—N1A 120.8 (8) O2B—C7B—H7B 110.4
O1A—C5A—C4A 120.5 (8) C6B—C7B—H7B 110.4
N1A—C5A—C4A 118.7 (7) C8B—C7B—H7B 110.4
N1A—C6A—C7A 110.4 (6) N2B—C8B—C7B 101.2 (5)
N1A—C6A—H6A1 109.6 N2B—C8B—H8B1 111.5
C7A—C6A—H6A1 109.6 C7B—C8B—H8B1 111.5
N1A—C6A—H6A2 109.6 N2B—C8B—H8B2 111.5
C7A—C6A—H6A2 109.6 C7B—C8B—H8B2 111.5
H6A1—C6A—H6A2 108.1 H8B1—C8B—H8B2 109.3
O2A—C7A—C6A 109.4 (5) O3B—C9B—N2B 128.6 (8)
O2A—C7A—C8A 104.3 (5) O3B—C9B—O2B 121.8 (7)
C6A—C7A—C8A 113.4 (6) N2B—C9B—O2B 109.6 (7)
O2A—C7A—H7A 109.9 C11B—C10B—C15B 117.5 (7)
C6A—C7A—H7A 109.9 C11B—C10B—N2B 121.1 (7)
C8A—C7A—H7A 109.9 C15B—C10B—N2B 121.1 (7)
N2A—C8A—C7A 103.1 (6) C12B—C11B—C10B 122.0 (7)
N2A—C8A—H8A1 111.1 C12B—C11B—H11B 119.0
C7A—C8A—H8A1 111.1 C10B—C11B—H11B 119.0
N2A—C8A—H8A2 111.1 C11B—C12B—C13B 120.2 (7)
C7A—C8A—H8A2 111.1 C11B—C12B—H12B 119.9
H8A1—C8A—H8A2 109.1 C13B—C12B—H12B 119.9
O3A—C9A—O2A 120.6 (8) C12B—C13B—C14B 120.2 (7)
O3A—C9A—N2A 128.2 (8) C12B—C13B—N3B 120.7 (7)
O2A—C9A—N2A 111.1 (7) C14B—C13B—N3B 119.1 (7)
C15A—C10A—C11A 120.9 (8) C13B—C14B—C15B 120.2 (7)
C15A—C10A—N2A 121.0 (7) C13B—C14B—H14B 119.9
C11A—C10A—N2A 118.1 (7) C15B—C14B—H14B 119.9
C10A—C11A—C12A 119.6 (8) C10B—C15B—C14B 119.9 (7)
C10A—C11A—H11A 120.2 C10B—C15B—H15B 120.0
C12A—C11A—H11A 120.2 C14B—C15B—H15B 120.0
C13A—C12A—C11A 120.2 (8) N3B—C16B—C17B 111.0 (8)
C13A—C12A—H12A 119.9 N3B—C16B—H16C 109.4
C11A—C12A—H12A 119.9 C17B—C16B—H16C 109.4
C12A—C13A—C14A 118.6 (8) N3B—C16B—H16D 109.4
C12A—C13A—N3A 120.5 (8) C17B—C16B—H16D 109.4
C14A—C13A—N3A 120.8 (7) H16C—C16B—H16D 108.0
C15A—C14A—C13A 121.4 (8) O4B—C17B—C16B 108.2 (7)
C15A—C14A—H14A 119.3 O4B—C17B—H17C 110.1
C13A—C14A—H14A 119.3 C16B—C17B—H17C 110.1
C10A—C15A—C14A 119.3 (8) O4B—C17B—H17D 110.1
C10A—C15A—H15A 120.3 C16B—C17B—H17D 110.1
C14A—C15A—H15A 120.3 H17C—C17B—H17D 108.4
N3A—C16A—C17A 110.6 (8) O4B—C18B—C19B 114.2 (7)
N3A—C16A—H16A 109.5 O4B—C18B—H18C 108.7
C17A—C16A—H16A 109.5 C19B—C18B—H18C 108.7
N3A—C16A—H16B 109.5 O4B—C18B—H18D 108.7
C17A—C16A—H16B 109.5 C19B—C18B—H18D 108.7
H16A—C16A—H16B 108.1 H18C—C18B—H18D 107.6
O4A—C17A—C16A 109.3 (7) O5B—C19B—N3B 123.4 (8)
O4A—C17A—H17A 109.8 O5B—C19B—C18B 118.8 (8)
C16A—C17A—H17A 109.8 N3B—C19B—C18B 117.7 (8)
O4A—C17A—H17B 109.8 C5A—N1A—C6A 118.4 (7)
C16A—C17A—H17B 109.8 C5A—N1A—H1A 120.8
H17A—C17A—H17B 108.3 C6A—N1A—H1A 120.8
O4A—C18A—C19A 116.1 (8) C9A—N2A—C10A 126.5 (7)
O4A—C18A—H18A 108.3 C9A—N2A—C8A 111.0 (6)
C19A—C18A—H18A 108.3 C10A—N2A—C8A 122.5 (6)
O4A—C18A—H18B 108.3 C19A—N3A—C13A 120.9 (8)
C19A—C18A—H18B 108.3 C19A—N3A—C16A 121.8 (7)
H18A—C18A—H18B 107.4 C13A—N3A—C16A 117.3 (7)
O5A—C19A—N3A 121.9 (8) C5B—N1B—C6B 122.7 (8)
O5A—C19A—C18A 120.5 (8) C5B—N1B—H1B 118.7
N3A—C19A—C18A 117.6 (8) C6B—N1B—H1B 118.7
C2B—C1B—S1B 113.9 (6) C9B—N2B—C10B 126.6 (7)
C2B—C1B—Cl1B 125.4 (7) C9B—N2B—C8B 111.3 (6)
S1B—C1B—Cl1B 120.6 (5) C10B—N2B—C8B 121.9 (6)
C1B—C2B—C3B 111.7 (8) C19B—N3B—C13B 121.8 (7)
C1B—C2B—H2B 124.1 C19B—N3B—C16B 123.4 (7)
C3B—C2B—H2B 124.1 C13B—N3B—C16B 114.7 (7)
C4B—C3B—C2B 113.3 (8) C9A—O2A—C7A 109.8 (6)
C4B—C3B—H3B 123.3 C17A—O4A—C18A 110.9 (8)
C2B—C3B—H3B 123.3 C9B—O2B—C7B 109.4 (5)
C3B—C4B—C5B 132.1 (8) C17B—O4B—C18B 110.3 (7)
C3B—C4B—S1B 110.3 (6) C1A—S1A—C4A 91.2 (4)
C5B—C4B—S1B 117.5 (6) C1B—S1B—C4B 90.7 (4)
Cl1A—C1A—C2A—C3A −179.5 (6) C15A—C10A—N2A—C9A −18.4 (11)
S1A—C1A—C2A—C3A −0.4 (9) C11A—C10A—N2A—C9A 161.4 (8)
C1A—C2A—C3A—C4A 0.2 (11) C15A—C10A—N2A—C8A 160.6 (7)
C2A—C3A—C4A—C5A 180.0 (9) C11A—C10A—N2A—C8A −19.5 (10)
C2A—C3A—C4A—S1A 0.1 (10) C7A—C8A—N2A—C9A −1.0 (8)
C3A—C4A—C5A—O1A 172.0 (10) C7A—C8A—N2A—C10A 179.8 (6)
S1A—C4A—C5A—O1A −8.1 (12) O5A—C19A—N3A—C13A −4.1 (12)
C3A—C4A—C5A—N1A −8.0 (15) C18A—C19A—N3A—C13A 177.6 (8)
S1A—C4A—C5A—N1A 171.9 (6) O5A—C19A—N3A—C16A 175.3 (9)
N1A—C6A—C7A—O2A −67.0 (8) C18A—C19A—N3A—C16A −2.9 (12)
N1A—C6A—C7A—C8A 177.1 (6) C12A—C13A—N3A—C19A −117.5 (9)
O2A—C7A—C8A—N2A 5.4 (7) C14A—C13A—N3A—C19A 67.9 (10)
C6A—C7A—C8A—N2A 124.3 (6) C12A—C13A—N3A—C16A 63.0 (11)
C15A—C10A—C11A—C12A −2.2 (13) C14A—C13A—N3A—C16A −111.6 (10)
N2A—C10A—C11A—C12A 178.0 (8) C17A—C16A—N3A—C19A −19.1 (12)
C10A—C11A—C12A—C13A 1.1 (13) C17A—C16A—N3A—C13A 160.4 (7)
C11A—C12A—C13A—C14A 1.0 (12) O1B—C5B—N1B—C6B 10.8 (13)
C11A—C12A—C13A—N3A −173.7 (8) C4B—C5B—N1B—C6B −166.0 (7)
C12A—C13A—C14A—C15A −2.0 (12) C7B—C6B—N1B—C5B −106.8 (9)
N3A—C13A—C14A—C15A 172.7 (8) O3B—C9B—N2B—C10B 7.6 (12)
C11A—C10A—C15A—C14A 1.2 (12) O2B—C9B—N2B—C10B −176.3 (6)
N2A—C10A—C15A—C14A −179.0 (7) O3B—C9B—N2B—C8B −168.0 (8)
C13A—C14A—C15A—C10A 1.0 (12) O2B—C9B—N2B—C8B 8.1 (8)
N3A—C16A—C17A—O4A 54.0 (11) C11B—C10B—N2B—C9B −157.4 (7)
O4A—C18A—C19A—O5A 173.5 (8) C15B—C10B—N2B—C9B 29.2 (11)
O4A—C18A—C19A—N3A −8.2 (11) C11B—C10B—N2B—C8B 17.8 (11)
S1B—C1B—C2B—C3B −1.8 (10) C15B—C10B—N2B—C8B −155.6 (7)
Cl1B—C1B—C2B—C3B −179.5 (6) C7B—C8B—N2B—C9B −20.0 (8)
C1B—C2B—C3B—C4B 1.1 (11) C7B—C8B—N2B—C10B 164.2 (6)
C2B—C3B—C4B—C5B 176.6 (8) O5B—C19B—N3B—C13B 0.8 (12)
C2B—C3B—C4B—S1B 0.1 (10) C18B—C19B—N3B—C13B −177.4 (7)
C3B—C4B—C5B—O1B −169.2 (9) O5B—C19B—N3B—C16B −179.3 (9)
S1B—C4B—C5B—O1B 7.1 (11) C18B—C19B—N3B—C16B 2.5 (12)
C3B—C4B—C5B—N1B 7.7 (13) C12B—C13B—N3B—C19B 114.8 (9)
S1B—C4B—C5B—N1B −176.0 (6) C14B—C13B—N3B—C19B −67.9 (10)
N1B—C6B—C7B—O2B −59.1 (9) C12B—C13B—N3B—C16B −65.2 (10)
N1B—C6B—C7B—C8B −173.0 (6) C14B—C13B—N3B—C16B 112.2 (9)
O2B—C7B—C8B—N2B 23.1 (7) C17B—C16B—N3B—C19B 18.5 (13)
C6B—C7B—C8B—N2B 142.1 (6) C17B—C16B—N3B—C13B −161.5 (8)
C15B—C10B—C11B—C12B 1.5 (11) O3A—C9A—O2A—C7A −172.5 (7)
N2B—C10B—C11B—C12B −172.1 (7) N2A—C9A—O2A—C7A 8.0 (8)
C10B—C11B—C12B—C13B −0.8 (13) C6A—C7A—O2A—C9A −129.8 (6)
C11B—C12B—C13B—C14B −0.7 (12) C8A—C7A—O2A—C9A −8.2 (8)
C11B—C12B—C13B—N3B 176.6 (7) C16A—C17A—O4A—C18A −67.0 (11)
C12B—C13B—C14B—C15B 1.4 (11) C19A—C18A—O4A—C17A 44.0 (11)
N3B—C13B—C14B—C15B −175.9 (7) O3B—C9B—O2B—C7B −175.1 (6)
C11B—C10B—C15B—C14B −0.8 (10) N2B—C9B—O2B—C7B 8.5 (7)
N2B—C10B—C15B—C14B 172.8 (7) C6B—C7B—O2B—C9B −139.8 (6)
C13B—C14B—C15B—C10B −0.6 (11) C8B—C7B—O2B—C9B −20.3 (7)
N3B—C16B—C17B—O4B −53.3 (11) C16B—C17B—O4B—C18B 68.4 (10)
O4B—C18B—C19B—O5B −167.4 (7) C19B—C18B—O4B—C17B −46.9 (9)
O4B—C18B—C19B—N3B 10.9 (10) C2A—C1A—S1A—C4A 0.4 (7)
O1A—C5A—N1A—C6A −4.0 (13) Cl1A—C1A—S1A—C4A 179.5 (5)
C4A—C5A—N1A—C6A 176.0 (6) C3A—C4A—S1A—C1A −0.2 (7)
C7A—C6A—N1A—C5A −171.1 (7) C5A—C4A—S1A—C1A 179.8 (6)
O3A—C9A—N2A—C10A −4.6 (13) C2B—C1B—S1B—C4B 1.6 (7)
O2A—C9A—N2A—C10A 174.9 (6) Cl1B—C1B—S1B—C4B 179.4 (5)
O3A—C9A—N2A—C8A 176.3 (8) C3B—C4B—S1B—C1B −0.9 (7)
O2A—C9A—N2A—C8A −4.2 (8) C5B—C4B—S1B—C1B −178.0 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O3B 0.86 2.16 3.008 (11) 169
N1B—H1B···O3A 0.86 2.22 3.016 (11) 153
C3A—H3A···O3B 0.93 2.48 3.357 (11) 157
C6B—H6B1···O5Ai 0.97 2.41 3.227 (10) 141
C7A—H7A···O5Bii 0.98 2.41 3.288 (8) 149
C8A—H8A2···O1Biii 0.97 2.52 3.459 (11) 163
C8B—H8B1···O1Aiv 0.97 2.15 2.961 (12) 140

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x, y−1, z.

References

  1. Ansell (2007). J. Thromb. Haemost. 5 (Suppl. 1), 60–64. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal ImpactGbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Goel, R. & Srivathsan, K. (2012). Curr. Cardiol. Rev. 8, 158–165. [DOI] [PMC free article] [PubMed]
  6. Higashi, T. (1995). ABSCOR. Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan.
  7. Lassila, R. (2012). Scand. J. Surg. 101, 94–99. [DOI] [PubMed]
  8. Ludescher, J, Ziegert-Knepper, R. E., Pichler, A., Sturm, H. Griesser, U. & Haddow, M. (2012). Patent WO2007039132.
  9. Mega, J. & Carreras, E. T. (2012). J. Hematology Am. Soc. Hematol. Educ. Program. 2012, 547–552. [DOI] [PubMed]
  10. Perzborn, E., Strassburger, J., Wilmen, A., Pohlmann, J., Roehrig, S., Schlemmer, K. & Straub, A. (2005). J. Thromb. Haemost. 3, 514–521. [DOI] [PubMed]
  11. Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  12. Rigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2013). CrystalExplorer. University of Western Australia, Perth, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017017819/xu5913sup1.cif

e-74-00051-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017819/xu5913Isup2.hkl

e-74-00051-Isup2.hkl (300.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017819/xu5913Isup3.cml

CCDC reference: 1810879

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES