Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):59–61. doi: 10.1107/S2056989017017972

Crystal structure of (E)-2-(furan-2-yl­methyl­idene)-2,3,4,9-tetra­hydro-1H-carbazol-1-one

A Thiruvalluvar a,*, M Sridharan b,*, K J Rajendra Prasad c, M Zeller d
PMCID: PMC5778486  PMID: 29416892

The title compound crystallized with two conformationally very similar independent mol­ecules (A and B) in the asymmetric unit. In the crystal, the individual mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming A–A and B–B inversion dimers, with Inline graphic(10) rings.

Keywords: crystal structure, carbazol-1-one, furan, N–H⋯O hydrogen bonding, C–H⋯π inter­actions

Abstract

The title compound, C17H13NO2, crystallizes with two conformationally very similar independent mol­ecules (A and B) in the asymmetric unit. In the crystal, the individual mol­ecules are linked by pairs of N—H⋯O hydrogen bonds forming AA and BB inversion dimers, with R 2 2(10) rings. They stack alternately up the a-axis direction and are linked by C—H⋯π inter­actions, forming sheets parallel to the ab plane.

Chemical context  

Natural products comprising a carbazole skeleton linked to another heterocycle have received significant attention due to the promising anti­tumor properties of several of their naturally occurring representatives (Knölker & Reddy, 2002). Numerous total syntheses of these compounds have been reported that use a variety of structural modification methods for annelating heterocyclic systems to carbazole frameworks. This rapidly growing class of heteroaryl-condensed carbazoles has continued to attract attention because of their broad spectrum of useful biological activities that extend well beyond the anti­tumor properties of the naturally occurring carbazole derivatives that originally spiked the inter­est of researchers (Knölker & Reddy, 2002). Most heteroaryl carbazoles reported contain a heteroaryl moiety fused with a carbazole moiety; however, there are few reports where the heteroaryl unit is substituted with a carbazole unit (Sridharan et al., 2008). We have reported the synthesis of 1-oxo-2-aryl­idene-2,3,4,9-tetra­hydro­carbazoles from potential precursors of the 2,3,4,9-tetra­hydro­carbazole-1-one type and these synthons were utilized to derive a diverse variety of heteroannelated carbazoles (Sridharan et al., 2008; Sridharan & Rajendra Prasad, 2011; Archana et al., 2010a ,b ; Thiruvalluvar et al., 2013). Herein, we report on the crystal structure of one such compound, synthesized by the base-initialized reaction of 2,3,4,9-tetra­hydro­carbazol-1-one with furan-2-carbaldehyde.graphic file with name e-74-00059-scheme1.jpg

Structural commentary  

The title compound, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1). The conformations of the two mol­ecules are similar, as can be seen in Fig. 2, which shows the mol­ecular overlay of mol­ecule B inverted on mol­ecule A (r.m.s. deviation = 0.082 Å). The cyclo­hexene rings of the tetra­hydro­carbazole moieties have half-chair conformations in both mol­ecules. The mean plane of the tetra­hydro­carbazole moiety (r.m.s. deviations are 0.087 and 0.072 Å for mol­ecules A and B, respectively) is inclined to the furan ring by 12.89 (14)° in mol­ecule A, and 12.09 (14)° in mol­ecule B.

Figure 1.

Figure 1

The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Mol­ecular overlay of inverted mol­ecule B (red) on mol­ecule A (blue).

Supra­molecular features  

In the crystal, the individual mol­ecules are linked by pairs of N—H⋯O hydrogen bonds forming AA and BB inversion dimers, with Inline graphic(10) ring motifs, which is the main motif that facilitates packing (Table 1 and Fig. 3). The individual dimers stack alternately along the a-axis direction, as shown in Fig. 3. The stacks are connected by C—H⋯π inter­actions, forming layers parallel to the ab plane (Fig. 4 and Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg9, Cg10 are the centroids of rings O2/C14–C17, N1/C1/C6/C7/C12, N2/C18/C23/C24/C29 and C18–C23, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.93 (5) 1.90 (5) 2.792 (3) 160 (4)
N2—H2B⋯O3ii 0.89 (3) 1.91 (4) 2.788 (3) 168 (3)
C5—H5⋯Cg10 0.95 2.92 3.661 (3) 136
C8—H8ACg9 0.99 2.95 3.687 (3) 132
C25—H25BCg2iii 0.99 2.65 3.464 (3) 140
C33—H33⋯Cg1iii 0.95 2.92 3.564 (4) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Crystal packing of the title compound, viewed along the b axis, showing the hydrogen bonded AA and BB inversion dimers, with Inline graphic(10) ring motifs. The N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1; mol­ecule A blue, mol­ecule B red).

Figure 4.

Figure 4

Crystal packing of the title compound, viewed along the c axis, showing the N—H⋯O hydrogen bonds and C—H⋯π inter­actions (blue dashed lines; see Table 1). Only the H atoms involved in these inter­actions have been included; A mol­ecules are blue and B mol­ecules are red.

Database survey  

A search in the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) for the (E)-2-furyl­methyl­ene-2,3,4,9-tetra­hydro-1H-carbazol-1-one skel­eton gave four hits. These include (E)-2-[(furan-2-yl)methyl­idene]-7-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (CSD refcode: LESBAO; Thiruvalluvar et al., 2013), 2-(2-furyl­methyl­ene)-6-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (OMABAG; Sridharan & Rajendra Prasad, 2011), (E)-2-(furan-2-yl­methyl­idene)-8-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (WACYAC; Archana et al., 2010a ), and (E)-6-chloro-2-(furan-2-yl­methyl­idene)-2,3,4,9-tetra­hydro-1H-carbazol-1-one (WADDIQ; Archana et al., 2010b ), which are closely related to the title compound. Half-chair conformations of the cyclo­hexene rings are observed in LESBAO, OMABAG and WACYAC, but a planar conformation is observed in the fourth structure, WADDIQ. The crystal packing in all four compounds, and the title compound, feature N—H⋯O hydrogen-bonded dimers with Inline graphic(10) ring motifs. LESBAO and OMABAG also exhibit C—H⋯O and C—H⋯π inter­actions, but such inter­actions are not present in WACYAC and WADDIQ.

Synthesis and crystallization  

The synthesis of the title compound is illustrated in Fig. 5. An equimolar mixture of 2,3,4,9-tetra­hydro­carbazol-1-one (0.005 mol) and furan-2-carbaldehyde (0.005 mol) was treated with 25 ml of a 5% ethano­lic potassium hydroxide solution and stirred for 6 h at room temperature. The product precipitated as a yellow crystalline mass, which was filtered off and washed with 50% ethanol. A further crop of condensation product was obtained on neutralization with acetic acid and dilution with water. The product was recrystallized from ethanol to yield the title compound as yellow plate-like crystals (yield 1.17 g, 89%; m.p. 492–494 K).

Figure 5.

Figure 5

Synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atoms, H1A and H2B, were located in a difference-Fourier map and freely refined. The remaining H atoms were placed in calculated positions, with C—H bond distances of 0.95 Å (aromatic H), and 0.99 Å (methyl­ene H), and refined as riding with U iso(H) = 1.2U eq(C). Reflections 002 and 100 were obstructed by the beam stop and omitted from the refinement.

Table 2. Experimental details.

Crystal data
Chemical formula C17H13NO2
M r 263.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.353 (3), 6.3143 (13), 26.941 (6)
β (°) 96.446 (4)
V3) 2595.3 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.43 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.707, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 21411, 5293, 3646
R int 0.089
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.080, 0.147, 1.11
No. of reflections 5293
No. of parameters 369
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.30

Computer programs: SMART and SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2017 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017017972/su5413sup1.cif

e-74-00059-sup1.cif (674.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017972/su5413Isup2.hkl

e-74-00059-Isup2.hkl (421.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017972/su5413Isup3.cdx

CCDC reference: 1811751

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H13NO2 Dx = 1.348 Mg m3
Mr = 263.28 Melting point: 493 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.353 (3) Å Cell parameters from 2429 reflections
b = 6.3143 (13) Å θ = 2.7–30.5°
c = 26.941 (6) Å µ = 0.09 mm1
β = 96.446 (4)° T = 100 K
V = 2595.3 (9) Å3 Plate, yellow
Z = 8 0.43 × 0.14 × 0.06 mm
F(000) = 1104

Data collection

Bruker SMART APEX CCD diffractometer 5293 independent reflections
Radiation source: fine-focus sealed tube 3646 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.089
ω scans θmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −19→19
Tmin = 0.707, Tmax = 0.995 k = −7→7
21411 measured reflections l = −33→33

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080 Hydrogen site location: mixed
wR(F2) = 0.147 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0269P)2 + 3.5969P] where P = (Fo2 + 2Fc2)/3
5293 reflections (Δ/σ)max < 0.001
369 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.61376 (19) −0.2774 (5) 0.60261 (12) 0.0173 (7)
C2 0.6086 (2) −0.3856 (5) 0.64790 (12) 0.0217 (7)
H2 0.578325 −0.516373 0.649057 0.026*
C3 0.6495 (2) −0.2924 (5) 0.69026 (12) 0.0227 (7)
H3 0.647151 −0.360851 0.721474 0.027*
C4 0.6952 (2) −0.0974 (6) 0.68913 (13) 0.0252 (8)
H4 0.722265 −0.038237 0.719436 0.030*
C5 0.7008 (2) 0.0072 (5) 0.64487 (12) 0.0216 (7)
H5 0.732284 0.136616 0.644239 0.026*
C6 0.65914 (18) −0.0813 (5) 0.60055 (12) 0.0167 (7)
C7 0.65038 (19) −0.0186 (5) 0.54922 (12) 0.0177 (7)
C8 0.6917 (2) 0.1602 (5) 0.52424 (12) 0.0216 (7)
H8A 0.754404 0.127074 0.522669 0.026*
H8B 0.688716 0.289636 0.544707 0.026*
C9 0.6481 (2) 0.2046 (5) 0.47127 (12) 0.0203 (7)
H9A 0.604123 0.318043 0.473396 0.024*
H9B 0.693385 0.260999 0.451421 0.024*
C10 0.60272 (19) 0.0196 (5) 0.44242 (11) 0.0165 (7)
C11 0.57529 (19) −0.1702 (5) 0.46952 (12) 0.0173 (7)
C12 0.60027 (18) −0.1724 (5) 0.52269 (11) 0.0165 (7)
C13 0.58102 (19) 0.0203 (5) 0.39250 (12) 0.0199 (7)
H13 0.553651 −0.104646 0.378684 0.024*
C14 0.5942 (2) 0.1873 (6) 0.35736 (12) 0.0225 (7)
C15 0.6212 (2) 0.3920 (5) 0.35988 (13) 0.0246 (8)
H15 0.640850 0.468177 0.389436 0.030*
C16 0.6147 (2) 0.4717 (6) 0.31037 (14) 0.0326 (9)
H16 0.629385 0.610371 0.300397 0.039*
C17 0.5837 (2) 0.3117 (7) 0.28029 (13) 0.0355 (9)
H17 0.572466 0.321015 0.244960 0.043*
N1 0.57937 (16) −0.3319 (4) 0.55481 (9) 0.0179 (6)
H1A 0.539 (3) −0.439 (7) 0.5461 (17) 0.070 (15)*
O1 0.53202 (14) −0.3178 (3) 0.44786 (8) 0.0215 (5)
O2 0.57065 (15) 0.1343 (4) 0.30757 (8) 0.0303 (6)
C18 0.93890 (19) 0.1893 (5) 0.61166 (12) 0.0189 (7)
C19 0.9632 (2) 0.0632 (5) 0.65399 (12) 0.0237 (8)
H19 0.994298 −0.065812 0.651684 0.028*
C20 0.9400 (2) 0.1351 (6) 0.69894 (13) 0.0279 (8)
H20 0.954511 0.052622 0.728186 0.033*
C21 0.8948 (2) 0.3294 (6) 0.70257 (13) 0.0299 (8)
H21 0.880532 0.375123 0.734269 0.036*
C22 0.8713 (2) 0.4529 (5) 0.66135 (12) 0.0235 (8)
H22 0.840757 0.582267 0.664425 0.028*
C23 0.89304 (19) 0.3854 (5) 0.61422 (12) 0.0184 (7)
C24 0.87868 (19) 0.4659 (5) 0.56452 (12) 0.0178 (7)
C25 0.8270 (2) 0.6529 (5) 0.54360 (12) 0.0202 (7)
H25A 0.843140 0.777687 0.564918 0.024*
H25B 0.763928 0.624526 0.545017 0.024*
C26 0.8415 (2) 0.7065 (5) 0.48933 (12) 0.0229 (7)
H26A 0.786330 0.766923 0.472647 0.028*
H26B 0.886640 0.818814 0.490275 0.028*
C27 0.86940 (18) 0.5264 (5) 0.45686 (12) 0.0175 (7)
C28 0.91238 (19) 0.3342 (5) 0.48089 (12) 0.0178 (7)
C29 0.91589 (18) 0.3218 (5) 0.53430 (12) 0.0176 (7)
C30 0.86481 (19) 0.5329 (5) 0.40647 (12) 0.0201 (7)
H30 0.884312 0.409242 0.390938 0.024*
C31 0.8343 (2) 0.7024 (5) 0.37323 (12) 0.0221 (7)
C32 0.8067 (2) 0.9061 (6) 0.37738 (13) 0.0267 (8)
H32 0.798959 0.978925 0.407429 0.032*
C33 0.7916 (2) 0.9893 (6) 0.32760 (14) 0.0319 (9)
H33 0.772148 1.128015 0.318257 0.038*
C34 0.8102 (2) 0.8329 (6) 0.29687 (14) 0.0332 (9)
H34 0.805718 0.844498 0.261516 0.040*
N2 0.95203 (17) 0.1539 (4) 0.56271 (10) 0.0191 (6)
H2B 0.985 (2) 0.049 (6) 0.5523 (12) 0.026 (10)*
O3 0.94238 (15) 0.1899 (4) 0.45586 (8) 0.0242 (5)
O4 0.83651 (15) 0.6547 (4) 0.32307 (8) 0.0306 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0095 (14) 0.0212 (17) 0.0213 (17) 0.0009 (13) 0.0028 (12) −0.0031 (13)
C2 0.0188 (16) 0.0236 (18) 0.0227 (18) −0.0002 (14) 0.0015 (13) 0.0023 (14)
C3 0.0180 (16) 0.0317 (19) 0.0188 (17) 0.0003 (15) 0.0036 (13) 0.0042 (15)
C4 0.0224 (17) 0.0325 (19) 0.0203 (18) 0.0018 (15) 0.0009 (14) −0.0043 (15)
C5 0.0170 (16) 0.0219 (17) 0.0264 (19) −0.0015 (14) 0.0040 (13) −0.0058 (15)
C6 0.0093 (14) 0.0178 (16) 0.0235 (18) 0.0013 (12) 0.0044 (12) −0.0004 (13)
C7 0.0138 (15) 0.0172 (16) 0.0222 (17) 0.0018 (13) 0.0032 (12) −0.0032 (14)
C8 0.0190 (16) 0.0215 (17) 0.0241 (18) −0.0035 (14) 0.0015 (13) 0.0004 (14)
C9 0.0180 (16) 0.0180 (17) 0.0255 (18) −0.0030 (14) 0.0048 (13) 0.0020 (14)
C10 0.0116 (14) 0.0191 (16) 0.0191 (17) 0.0012 (13) 0.0032 (12) 0.0012 (13)
C11 0.0111 (14) 0.0157 (16) 0.0250 (17) 0.0013 (13) 0.0017 (12) −0.0030 (14)
C12 0.0114 (14) 0.0159 (16) 0.0227 (17) 0.0012 (13) 0.0047 (12) −0.0004 (13)
C13 0.0145 (15) 0.0188 (16) 0.0272 (19) 0.0005 (13) 0.0063 (13) −0.0013 (14)
C14 0.0152 (15) 0.0297 (19) 0.0228 (18) −0.0001 (15) 0.0036 (13) 0.0008 (15)
C15 0.0231 (17) 0.0285 (19) 0.0235 (19) −0.0021 (15) 0.0081 (14) −0.0023 (15)
C16 0.032 (2) 0.032 (2) 0.035 (2) −0.0026 (17) 0.0110 (16) 0.0117 (18)
C17 0.038 (2) 0.048 (2) 0.021 (2) −0.002 (2) 0.0056 (16) 0.0135 (19)
N1 0.0154 (13) 0.0198 (15) 0.0184 (14) −0.0022 (12) 0.0017 (11) 0.0009 (12)
O1 0.0247 (12) 0.0194 (12) 0.0201 (12) −0.0049 (10) 0.0014 (9) −0.0001 (10)
O2 0.0334 (14) 0.0365 (15) 0.0211 (13) −0.0048 (12) 0.0029 (11) 0.0018 (11)
C18 0.0125 (15) 0.0212 (16) 0.0240 (17) −0.0023 (13) 0.0066 (13) −0.0070 (14)
C19 0.0209 (17) 0.0248 (18) 0.0259 (19) 0.0035 (14) 0.0049 (14) 0.0018 (15)
C20 0.0234 (18) 0.038 (2) 0.0220 (18) −0.0006 (16) 0.0006 (14) 0.0027 (16)
C21 0.0273 (19) 0.038 (2) 0.0250 (19) 0.0020 (17) 0.0045 (15) −0.0061 (17)
C22 0.0223 (17) 0.0233 (18) 0.0251 (19) 0.0042 (15) 0.0029 (14) −0.0044 (15)
C23 0.0116 (15) 0.0178 (16) 0.0260 (18) −0.0012 (13) 0.0032 (13) −0.0016 (14)
C24 0.0115 (14) 0.0182 (17) 0.0239 (18) −0.0014 (13) 0.0030 (12) −0.0019 (14)
C25 0.0177 (16) 0.0188 (17) 0.0248 (18) 0.0011 (14) 0.0055 (13) −0.0018 (14)
C26 0.0188 (16) 0.0216 (18) 0.0294 (19) 0.0032 (14) 0.0072 (14) 0.0001 (15)
C27 0.0099 (14) 0.0181 (16) 0.0251 (18) −0.0007 (13) 0.0050 (12) −0.0021 (14)
C28 0.0109 (14) 0.0172 (16) 0.0263 (18) −0.0026 (13) 0.0062 (12) −0.0033 (14)
C29 0.0108 (14) 0.0180 (16) 0.0242 (17) −0.0037 (13) 0.0026 (12) −0.0007 (14)
C30 0.0161 (16) 0.0196 (17) 0.0247 (18) −0.0010 (13) 0.0021 (13) −0.0029 (14)
C31 0.0143 (16) 0.0297 (19) 0.0223 (18) −0.0027 (15) 0.0026 (13) 0.0000 (15)
C32 0.0182 (17) 0.031 (2) 0.031 (2) 0.0030 (15) 0.0055 (14) −0.0020 (16)
C33 0.0191 (18) 0.034 (2) 0.042 (2) 0.0046 (16) −0.0001 (15) 0.0110 (18)
C34 0.0293 (19) 0.042 (2) 0.026 (2) −0.0085 (18) −0.0057 (15) 0.0138 (18)
N2 0.0162 (14) 0.0170 (14) 0.0250 (15) 0.0043 (12) 0.0063 (11) 0.0013 (12)
O3 0.0294 (13) 0.0213 (12) 0.0227 (12) 0.0047 (11) 0.0060 (10) −0.0036 (10)
O4 0.0350 (14) 0.0331 (14) 0.0228 (13) −0.0051 (12) −0.0011 (11) 0.0020 (11)

Geometric parameters (Å, º)

C1—N1 1.379 (4) C18—N2 1.374 (4)
C1—C2 1.408 (4) C18—C19 1.406 (4)
C1—C6 1.425 (4) C18—C23 1.430 (4)
C2—C3 1.372 (4) C19—C20 1.377 (5)
C2—H2 0.9500 C19—H19 0.9500
C3—C4 1.419 (5) C20—C21 1.418 (5)
C3—H3 0.9500 C20—H20 0.9500
C4—C5 1.375 (5) C21—C22 1.372 (5)
C4—H4 0.9500 C21—H21 0.9500
C5—C6 1.406 (4) C22—C23 1.414 (4)
C5—H5 0.9500 C22—H22 0.9500
C6—C7 1.430 (4) C23—C24 1.426 (4)
C7—C12 1.387 (4) C24—C29 1.386 (4)
C7—C8 1.492 (4) C24—C25 1.497 (4)
C8—C9 1.533 (4) C25—C26 1.541 (4)
C8—H8A 0.9900 C25—H25A 0.9900
C8—H8B 0.9900 C25—H25B 0.9900
C9—C10 1.527 (4) C26—C27 1.525 (4)
C9—H9A 0.9900 C26—H26A 0.9900
C9—H9B 0.9900 C26—H26B 0.9900
C10—C13 1.349 (4) C27—C30 1.352 (4)
C10—C11 1.489 (4) C27—C28 1.494 (4)
C11—O1 1.250 (4) C28—O3 1.252 (4)
C11—C12 1.441 (4) C28—C29 1.436 (4)
C12—N1 1.389 (4) C29—N2 1.386 (4)
C13—C14 1.446 (4) C30—C31 1.440 (5)
C13—H13 0.9500 C30—H30 0.9500
C14—C15 1.357 (5) C31—C32 1.363 (5)
C14—O2 1.391 (4) C31—O4 1.389 (4)
C15—C16 1.419 (5) C32—C33 1.435 (5)
C15—H15 0.9500 C32—H32 0.9500
C16—C17 1.348 (5) C33—C34 1.340 (5)
C16—H16 0.9500 C33—H33 0.9500
C17—O2 1.367 (4) C34—O4 1.365 (4)
C17—H17 0.9500 C34—H34 0.9500
N1—H1A 0.93 (5) N2—H2B 0.89 (3)
N1—C1—C2 129.4 (3) N2—C18—C19 129.2 (3)
N1—C1—C6 108.5 (3) N2—C18—C23 108.2 (3)
C2—C1—C6 122.0 (3) C19—C18—C23 122.6 (3)
C3—C2—C1 116.6 (3) C20—C19—C18 117.1 (3)
C3—C2—H2 121.7 C20—C19—H19 121.5
C1—C2—H2 121.7 C18—C19—H19 121.5
C2—C3—C4 122.4 (3) C19—C20—C21 121.5 (3)
C2—C3—H3 118.8 C19—C20—H20 119.2
C4—C3—H3 118.8 C21—C20—H20 119.2
C5—C4—C3 121.0 (3) C22—C21—C20 121.5 (3)
C5—C4—H4 119.5 C22—C21—H21 119.3
C3—C4—H4 119.5 C20—C21—H21 119.3
C4—C5—C6 118.6 (3) C21—C22—C23 119.2 (3)
C4—C5—H5 120.7 C21—C22—H22 120.4
C6—C5—H5 120.7 C23—C22—H22 120.4
C5—C6—C1 119.4 (3) C22—C23—C24 135.1 (3)
C5—C6—C7 134.1 (3) C22—C23—C18 118.1 (3)
C1—C6—C7 106.6 (3) C24—C23—C18 106.8 (3)
C12—C7—C6 106.9 (3) C29—C24—C23 106.7 (3)
C12—C7—C8 122.5 (3) C29—C24—C25 122.2 (3)
C6—C7—C8 130.3 (3) C23—C24—C25 130.9 (3)
C7—C8—C9 113.2 (3) C24—C25—C26 113.8 (3)
C7—C8—H8A 108.9 C24—C25—H25A 108.8
C9—C8—H8A 108.9 C26—C25—H25A 108.8
C7—C8—H8B 108.9 C24—C25—H25B 108.8
C9—C8—H8B 108.9 C26—C25—H25B 108.8
H8A—C8—H8B 107.7 H25A—C25—H25B 107.7
C10—C9—C8 117.4 (3) C27—C26—C25 117.4 (3)
C10—C9—H9A 107.9 C27—C26—H26A 107.9
C8—C9—H9A 107.9 C25—C26—H26A 107.9
C10—C9—H9B 107.9 C27—C26—H26B 107.9
C8—C9—H9B 107.9 C25—C26—H26B 107.9
H9A—C9—H9B 107.2 H26A—C26—H26B 107.2
C13—C10—C11 116.1 (3) C30—C27—C28 115.5 (3)
C13—C10—C9 123.5 (3) C30—C27—C26 124.6 (3)
C11—C10—C9 120.3 (3) C28—C27—C26 119.7 (3)
O1—C11—C12 121.7 (3) O3—C28—C29 121.7 (3)
O1—C11—C10 122.4 (3) O3—C28—C27 122.0 (3)
C12—C11—C10 115.9 (3) C29—C28—C27 116.4 (3)
C7—C12—N1 109.9 (3) C24—C29—N2 110.1 (3)
C7—C12—C11 125.2 (3) C24—C29—C28 125.5 (3)
N1—C12—C11 124.9 (3) N2—C29—C28 124.3 (3)
C10—C13—C14 128.2 (3) C27—C30—C31 128.6 (3)
C10—C13—H13 115.9 C27—C30—H30 115.7
C14—C13—H13 115.9 C31—C30—H30 115.7
C15—C14—O2 108.8 (3) C32—C31—O4 109.1 (3)
C15—C14—C13 136.6 (3) C32—C31—C30 137.2 (3)
O2—C14—C13 114.6 (3) O4—C31—C30 113.7 (3)
C14—C15—C16 107.6 (3) C31—C32—C33 106.7 (3)
C14—C15—H15 126.2 C31—C32—H32 126.6
C16—C15—H15 126.2 C33—C32—H32 126.6
C17—C16—C15 106.4 (3) C34—C33—C32 106.5 (3)
C17—C16—H16 126.8 C34—C33—H33 126.7
C15—C16—H16 126.8 C32—C33—H33 126.7
C16—C17—O2 110.8 (3) C33—C34—O4 111.1 (3)
C16—C17—H17 124.6 C33—C34—H34 124.5
O2—C17—H17 124.6 O4—C34—H34 124.5
C1—N1—C12 108.0 (3) C18—N2—C29 108.2 (3)
C1—N1—H1A 126 (3) C18—N2—H2B 125 (2)
C12—N1—H1A 124 (3) C29—N2—H2B 127 (2)
C17—O2—C14 106.5 (3) C34—O4—C31 106.6 (3)
N1—C1—C2—C3 −179.9 (3) N2—C18—C19—C20 −178.6 (3)
C6—C1—C2—C3 0.1 (4) C23—C18—C19—C20 0.8 (5)
C1—C2—C3—C4 −0.2 (5) C18—C19—C20—C21 −1.0 (5)
C2—C3—C4—C5 −0.4 (5) C19—C20—C21—C22 0.9 (5)
C3—C4—C5—C6 1.0 (5) C20—C21—C22—C23 −0.4 (5)
C4—C5—C6—C1 −1.1 (4) C21—C22—C23—C24 178.5 (3)
C4—C5—C6—C7 179.3 (3) C21—C22—C23—C18 0.1 (5)
N1—C1—C6—C5 −179.5 (3) N2—C18—C23—C22 179.2 (3)
C2—C1—C6—C5 0.5 (4) C19—C18—C23—C22 −0.3 (4)
N1—C1—C6—C7 0.2 (3) N2—C18—C23—C24 0.3 (3)
C2—C1—C6—C7 −179.7 (3) C19—C18—C23—C24 −179.2 (3)
C5—C6—C7—C12 −179.4 (3) C22—C23—C24—C29 −179.1 (3)
C1—C6—C7—C12 0.9 (3) C18—C23—C24—C29 −0.6 (3)
C5—C6—C7—C8 6.7 (6) C22—C23—C24—C25 −5.3 (6)
C1—C6—C7—C8 −172.9 (3) C18—C23—C24—C25 173.3 (3)
C12—C7—C8—C9 21.2 (4) C29—C24—C25—C26 −16.9 (4)
C6—C7—C8—C9 −165.8 (3) C23—C24—C25—C26 170.0 (3)
C7—C8—C9—C10 −27.5 (4) C24—C25—C26—C27 26.2 (4)
C8—C9—C10—C13 −163.0 (3) C25—C26—C27—C30 163.6 (3)
C8—C9—C10—C11 20.5 (4) C25—C26—C27—C28 −22.1 (4)
C13—C10—C11—O1 −2.4 (4) C30—C27—C28—O3 0.3 (4)
C9—C10—C11—O1 174.3 (3) C26—C27—C28—O3 −174.4 (3)
C13—C10—C11—C12 178.7 (3) C30—C27—C28—C29 −178.4 (3)
C9—C10—C11—C12 −4.6 (4) C26—C27—C28—C29 6.8 (4)
C6—C7—C12—N1 −1.7 (3) C23—C24—C29—N2 0.6 (3)
C8—C7—C12—N1 172.7 (3) C25—C24—C29—N2 −173.9 (3)
C6—C7—C12—C11 179.7 (3) C23—C24—C29—C28 176.3 (3)
C8—C7—C12—C11 −5.9 (5) C25—C24—C29—C28 1.8 (5)
O1—C11—C12—C7 177.9 (3) O3—C28—C29—C24 −174.9 (3)
C10—C11—C12—C7 −3.2 (4) C27—C28—C29—C24 3.9 (4)
O1—C11—C12—N1 −0.5 (5) O3—C28—C29—N2 0.2 (5)
C10—C11—C12—N1 178.4 (3) C27—C28—C29—N2 179.0 (3)
C11—C10—C13—C14 175.9 (3) C28—C27—C30—C31 −174.4 (3)
C9—C10—C13—C14 −0.7 (5) C26—C27—C30—C31 0.1 (5)
C10—C13—C14—C15 −7.8 (6) C27—C30—C31—C32 5.3 (6)
C10—C13—C14—O2 175.4 (3) C27—C30—C31—O4 −178.6 (3)
O2—C14—C15—C16 0.0 (4) O4—C31—C32—C33 −0.4 (4)
C13—C14—C15—C16 −176.9 (4) C30—C31—C32—C33 175.9 (4)
C14—C15—C16—C17 0.3 (4) C31—C32—C33—C34 0.3 (4)
C15—C16—C17—O2 −0.5 (4) C32—C33—C34—O4 −0.2 (4)
C2—C1—N1—C12 178.7 (3) C19—C18—N2—C29 179.5 (3)
C6—C1—N1—C12 −1.3 (3) C23—C18—N2—C29 0.0 (3)
C7—C12—N1—C1 1.9 (3) C24—C29—N2—C18 −0.4 (3)
C11—C12—N1—C1 −179.5 (3) C28—C29—N2—C18 −176.2 (3)
C16—C17—O2—C14 0.5 (4) C33—C34—O4—C31 −0.1 (4)
C15—C14—O2—C17 −0.3 (4) C32—C31—O4—C34 0.3 (3)
C13—C14—O2—C17 177.4 (3) C30—C31—O4—C34 −177.0 (3)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg9, Cg10 are the centroids of rings O2/C14–C17, N1/C1/C6/C7/C12, N2/C18/C23/C24/C29 and C18–C23, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.93 (5) 1.90 (5) 2.792 (3) 160 (4)
N2—H2B···O3ii 0.89 (3) 1.91 (4) 2.788 (3) 168 (3)
C5—H5···Cg10 0.95 2.92 3.661 (3) 136
C8—H8A···Cg9 0.99 2.95 3.687 (3) 132
C25—H25B···Cg2iii 0.99 2.65 3.464 (3) 140
C33—H33···Cg1iii 0.95 2.92 3.564 (4) 126

Symmetry codes: (i) −x+1, −y−1, −z+1; (ii) −x+2, −y, −z+1; (iii) x, y+1, z.

Funding Statement

This work was funded by University Grants Commission grant 31–122/2005 to M. Sridharan. National Science Foundation grant . Ohio Board of Regents grant CAP-491. Youngstown State University grant .

References

  1. Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, o3145. [DOI] [PMC free article] [PubMed]
  2. Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, o3198. [DOI] [PMC free article] [PubMed]
  3. Bruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Sridharan, M., Beagle, L. K., Zeller, M., Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572–577.
  11. Sridharan, M. & Rajendra Prasad, K. J. (2011). J. Chem. Res. 35, 53–59.
  12. Thiruvalluvar, A., Archana, R., Yamuna, E., Rajendra Prasad, K. J., Butcher, R. J., Gupta, S. K. & Öztürk Yildirim, S. (2013). Acta Cryst. E69, o150. [DOI] [PMC free article] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017017972/su5413sup1.cif

e-74-00059-sup1.cif (674.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017972/su5413Isup2.hkl

e-74-00059-Isup2.hkl (421.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017017972/su5413Isup3.cdx

CCDC reference: 1811751

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES