Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):65–68. doi: 10.1107/S2056989017017893

Crystal structure of ethyl 2-cyano-2-(1,3-di­thian-2-yl­idene)acetate

Wafia Boukhedena a, Abdelali Fiala a, Hayet Brahim Ladouani a, Salah Eddine Lemallem a, Noudjoud Hamdouni b,*, Ali Boudjada b
PMCID: PMC5778488  PMID: 29416894

In the title compound, ethyl 2-cyano-2-(1,3-di­thian-2-yl­idene)acetate, the six-membered 1,3-di­thiane ring has a twist-boat conformation. In the crystal, the mol­ecule stack in layers up the a axis; there are no significant inter­molecular inter­actions present.

Keywords: crystal structure; 1,3-di­thian-2-yl­idene; twist-boat conformation

Abstract

The title compound, C9H11NO2S2, contains a 1,3-di­thiane ring which has a twist-boat conformation. The dihedral angle between the mean planes of the ethyl acetate group and the di­thiane ring is 17.56 (13)°. In the crystal, mol­ecules stack in layers up the a-axis direction, however, there are no significant inter­molecular inter­actions present.

Chemical context  

The derivatives of compounds such as α-oxo-ketene di­thio­acetals may undergo various transformations, in addition to the reactions involving the carbonyl group, C=C double bond, or the sulfur atoms. The emphasis in recent years has focused on the development of new and efficient inter­mediates. Some examples include (a) the preparation of highly regioselective compounds in a one-step reaction [the first example to be reported was the regiospecific synthesis of poly-substituted phenols from 1,5-dielectrophiles, via the five carbon atoms that are available in the structures of acenoyl ketene di­thio­acetals (Bi et al., 2005)]; (b) the synthesis of complex mol­ecules based on new efficient and cost-effective reactions because they allow more than one transformation into a single synthetic sequence (Dömling et al., 2012; Tietze et al., 2006); (c) the preparation of tri­fluoro­methyl-containing organic compounds of particular inter­est in the pharmaceutical and agrochemical fields due to their lipophilicity, hydro­phobic properties and stable metabolic character (Furuya et al., 2011). Muzard and co-workers have been involved in the chemistry of tri­fluoro­methyl­ketene di­thio­acetals, especially perfluoro­ketene di­thio­acetals, and have reported in their work the preparation of tri­fluoro­methyl­ketene di­thio­acetals (Muzard & Portella, 1993).

The functionalization of ketene di­thio­acetals provides more powerful tools for the development of new inter­mediates (Wang et al., 2011; Gao et al., 2010; Hu et al., 2012). Of such constructions on the skeleton of the ketene di­thio­acetals, especially those involving the formation of the C—C bonds using carboelectrophiles such as aldehydes, have provided an effective link between these compounds and a variety of organic compounds with other functional groups. Minami et al. (1996) reported in their work the synthesis of α-hy­droxy­phosphono­ketene di­thio­acetals from aldehydes. In addition, Kouno et al. (1998) have shown that phospho­rus enyne-containing groups and di­thiol­anes could be prepared by cross-coupling of di­thio­acetal cyclic α-(iodo­propane) with the corresponding alkyne phosphono­ketene.

The direct formation of the C—C bond has been carried out by reacting α-cyano ketene di­thio­acetal and Morita–Baylis–Hillman (MBH) alcohols resulting from the reaction of acrylo­nitrile and aryl aldehydes. This reaction led to the corresponding 1,4-penta­diene deriv­atives (Zhao et al., 2007).

New synthetic pathways of various inter­mediates characterized by several functional groups have been created by transforming the α-acetyl­cetaldi­thio­acetal functional group into α-hy­droxy, α-chloro and α-bromo (Liu et al., 2003) and α-ethynyl ketene (Dong et al., 2005). The creation of new pathways to access such multi-functionalized compounds has also been achieved by reactions involving cleavage of the C—S bond (Dong et al., 2011). It should be noted here that the functionalization of the alkyl­thio group of these compounds has led to products useful in a wide range of applications (Mahata et al., 2003)

Fiala et al. (2007) have studied the inhibitive action of some synthesized ketene di­thio­acetal derivatives towards the corrosion of copper in aerated nitric acid solutions. They concluded that these compounds are good inhibitors of copper corrosion in this medium. The inhibitory properties of the title compound with respect to the corrosion of a transition metal in an acid medium were investigated in a separate study.

Herein, we report on the synthesis and crystal structure of ethyl 2-cyano-2-(1,3-di­thian-2-yl­idene)acetate (I). We also examined the effect of the substitution of the methyl group of methyl 2-cyano-2-(1,3-di­thian-2-yl­idene)acetate (II) (Ham­douni et al., 2017) by the ethyl group of the title compound.graphic file with name e-74-00065-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound (I), is illus­trated in Fig. 1. The mean planes of the ethyl acetate group [C1/C2/O1/O2/C8/C9; maximum deviation of 0.051 (2) Å for atom O2] and the dithi­azane ring (S1/S2/C1–C4) are inclined to one another by 17.56 (13)°. The di­thiane ring (S1/S2/C4–C7) has a twist-boat conformation [puckering parameters: amplitude (Q) = 0.909 (2) Å, θ = 89.88 (19)°, and φ = 331.65 (16)°].

Figure 1.

Figure 1

The mol­ecular structure of the title compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The C—S bond lengths differ as expected, with the Csp 2—S bonds [S1—C4 = 1.747 (2) and S2—C4 = 1.736 (2) Å] being shorter that the Csp 3—S bonds [S1—C5 = 1.805 (3) and S2—C7 = 1.817 (3) Å]. The C2=C4 bond length is 1.378 (3) Å. All the bond lengths and angles agree well with those reported for similar compounds, for example in methyl 2-cyano-2-(1,3-di­thian-2-yl­idene)acetate, compound (II) mentioned above.

Supra­molecular features  

In the crystal of (I), mol­ecules stack in layers up the a-axis direction (Fig. 2); however, there are no significant inter­molecular inter­actions present.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound (I).

Database survey  

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016) for the 2-(1,3-di­thian-2-yl­idene) skeleton yielded eight hits. They include a number of 1,2-bis­(di­thian-2-ylidenes), such as dimethyl 1,2-bis­(di­thian-2-yl­idene)-ethane-1,2-di­carboxyl­ate (ZIGVOA; Benati et al., 1995). Since that update, the structure of the methyl analogue, (II), of the title compound has been reported by our group (Hamdouni et al., 2017). The two structures differ essentially in the orientation of the twist-boat dithi­azane ring, as shown by the structural overlap of the two mol­ecules in Fig. 3. The puckering parameters for (I) are Q = 0.909 (2) Å, θ = 89.88 (19)° and φ = 331.65 (16)°, while those for (II) are Q = 0.632 (3) Å, θ = 106.5 (3)° and φ= 114.3 (3)°. The mean planes of the ethyl acetate group [C1/C2/O1/O2/C8/C9; maximum deviation of 0.051 (2) Å for atom O2] and the dithi­azane ring (S1/S2/C1–C4) in compound (I) are inclined to one another by 17.56 (13)°. The corresponding dihedral angle in compound (II) is 11.60 (12)°. In the crystals, the mol­ecules stack along [100] in (I) and [010] in (II), and there are no significant inter­molecular inter­actions present in either.

Figure 3.

Figure 3

Structural overlap of compounds (I) and (II); the latter is shown in red.

Synthesis and crystallization  

The title compound was prepared according to a method proposed by Thuillier & Vialle (1962). Potassium carbonate, K2CO3, (42 g, 0.3 mol) and the corresponding active methyl­ene compound, ethyl 2-cyano­acetate, (0.1 mol) were taken in 50 ml of DMF. The reaction mixture was stirred magnetically, then carbon di­sulfide (9 ml, 0.15 mol) was added at all once at room temperature. The stirring was maintained for 10 min before the dropwise addition of 1,3-di­bromo­propane (0.12 mol) over a period of 20 min. After stirring at room temperature for 7 h, ice-cold water (500 ml) was added to the reaction mixture. The yellow precipitate that formed was filtered, dried and then purified by recrystallization from ethanol (yield 93%, m.p. 368 K). The title compound exhibited the following characteristics: molar mass is M w = 229 g mol−1. FT–IR (cm−1): 1700 (C=O), 1246–1004 [C—O (ester)], 2206 (C≡N), 1437 (C=C). 1H NMR (CDCl3, δ p.p.m., 250 MHz): 1.35 (t, 3H, CH3—CH2), 2.30 (m, 2H, CH2), 3.00 (t, 2H, CH2S), 3.10 (t, 2H, CH2S), 4.30 (q, 2H, CH2O). 13C NMR (CDCl3, δ p.p.m., 250 MHz):14.22 (s, CH3—CH2—O), 23.36 (s, S—CH2—CH2—CH2—S), 28.99 (s, S—CH2—CH2—CH2—S), 61.26 (s, CH3–CH2), 120.55 (s, CN), 76.69 (s, O=C—C=C), 165.56 (s, O—-C=O). MS: m/z 229.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.96–0.97 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H-atoms.

Table 1. Experimental details.

Crystal data
Chemical formula C9H11NO2S2
M r 229.31
Crystal system, space group Monoclinic, I2/a
Temperature (K) 293
a, b, c (Å) 15.826 (3), 8.0772 (6), 18.431 (2)
β (°) 111.830 (16)
V3) 2187.1 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.48 × 0.27 × 0.13
 
Data collection
Diffractometer Agilent Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.334, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4539, 2132, 1667
R int 0.035
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.138, 1.08
No. of reflections 2132
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.34

Computer programs: CrysAlis PRO (Agilent, 2013), SIR92 (Altomare et al., 1994), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017017893/su5404sup1.cif

e-74-00065-sup1.cif (235.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017893/su5404Isup2.hkl

e-74-00065-Isup2.hkl (117.4KB, hkl)

CCDC reference: 1811267

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University Constantine 1, for assistance in collecting the X-ray data on the Xcalibur diffractometer.

supplementary crystallographic information

Crystal data

C9H11NO2S2 F(000) = 960
Mr = 229.31 Dx = 1.393 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
a = 15.826 (3) Å Cell parameters from 1541 reflections
b = 8.0772 (6) Å θ = 3.7–28.9°
c = 18.431 (2) Å µ = 0.46 mm1
β = 111.830 (16)° T = 293 K
V = 2187.1 (5) Å3 Needle, pale yellow
Z = 8 0.48 × 0.27 × 0.13 mm

Data collection

Agilent Xcalibur Eos diffractometer 2132 independent reflections
Graphite monochromator 1667 reflections with I > 2σ(I)
Detector resolution: 8.02 pixels mm-1 Rint = 0.035
ω scans θmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) h = −17→19
Tmin = 0.334, Tmax = 1.000 k = −9→9
4539 measured reflections l = −22→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.4223P] where P = (Fo2 + 2Fc2)/3
2132 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S2 0.12671 (5) 0.08363 (8) 0.29431 (4) 0.0555 (3)
S1 0.11241 (5) 0.40461 (8) 0.37170 (4) 0.0589 (3)
O1 0.14349 (14) −0.1692 (2) 0.40827 (11) 0.0641 (5)
O2 0.12483 (13) −0.1107 (2) 0.52062 (11) 0.0592 (5)
N1 0.1307 (2) 0.2907 (3) 0.55919 (14) 0.0741 (7)
C1 0.13376 (16) −0.0706 (3) 0.45311 (14) 0.0477 (6)
C2 0.13016 (16) 0.1100 (3) 0.44342 (13) 0.0447 (6)
C3 0.13080 (18) 0.2096 (3) 0.50818 (15) 0.0512 (6)
C4 0.12494 (15) 0.1895 (3) 0.37572 (14) 0.0449 (6)
C5 0.1624 (2) 0.4577 (4) 0.30133 (16) 0.0620 (7)
H5A 0.166410 0.577323 0.299200 0.074*
H5B 0.224000 0.414405 0.319553 0.074*
C6 0.1113 (2) 0.3938 (3) 0.21943 (16) 0.0639 (7)
H6A 0.153558 0.381976 0.192819 0.077*
H6B 0.065809 0.474754 0.190915 0.077*
C7 0.06477 (19) 0.2289 (3) 0.21774 (15) 0.0615 (7)
H7A 0.053615 0.176859 0.167585 0.074*
H7B 0.006049 0.249883 0.221227 0.074*
C8 0.1298 (2) −0.2859 (3) 0.54028 (17) 0.0617 (7)
H8A 0.185483 −0.334042 0.539292 0.074*
H8B 0.078396 −0.344992 0.503306 0.074*
C9 0.1279 (2) −0.2958 (4) 0.62053 (19) 0.0731 (9)
H9A 0.131070 −0.409675 0.636284 0.110*
H9B 0.179046 −0.236653 0.656364 0.110*
H9C 0.072531 −0.247544 0.620570 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S2 0.0705 (5) 0.0497 (4) 0.0437 (4) 0.0033 (3) 0.0182 (3) −0.0037 (3)
S1 0.0862 (5) 0.0418 (4) 0.0494 (4) 0.0049 (3) 0.0259 (4) 0.0024 (3)
O1 0.0886 (14) 0.0476 (10) 0.0518 (11) 0.0075 (9) 0.0211 (10) −0.0022 (9)
O2 0.0821 (13) 0.0399 (9) 0.0561 (11) 0.0057 (8) 0.0262 (10) 0.0067 (8)
N1 0.115 (2) 0.0547 (14) 0.0513 (14) 0.0002 (13) 0.0293 (15) −0.0027 (12)
C1 0.0463 (13) 0.0469 (13) 0.0407 (13) 0.0027 (10) 0.0057 (10) 0.0025 (11)
C2 0.0471 (12) 0.0443 (13) 0.0349 (11) 0.0026 (10) 0.0064 (10) −0.0013 (10)
C3 0.0616 (15) 0.0447 (13) 0.0413 (13) 0.0019 (11) 0.0122 (12) 0.0057 (11)
C4 0.0417 (12) 0.0435 (13) 0.0422 (13) 0.0018 (9) 0.0073 (10) 0.0005 (10)
C5 0.0682 (17) 0.0556 (15) 0.0593 (17) −0.0084 (13) 0.0203 (14) 0.0065 (13)
C6 0.080 (2) 0.0629 (17) 0.0485 (15) −0.0046 (14) 0.0235 (14) 0.0030 (14)
C7 0.0710 (17) 0.0669 (17) 0.0389 (13) −0.0043 (14) 0.0116 (13) 0.0008 (13)
C8 0.0763 (19) 0.0408 (13) 0.0678 (19) 0.0036 (12) 0.0266 (15) 0.0098 (12)
C9 0.098 (2) 0.0544 (17) 0.078 (2) 0.0146 (15) 0.0454 (19) 0.0181 (15)

Geometric parameters (Å, º)

S2—C4 1.736 (2) C5—H5B 0.9700
S2—C7 1.817 (3) C6—C7 1.517 (4)
S1—C4 1.747 (2) C6—H6A 0.9700
S1—C5 1.805 (3) C6—H6B 0.9700
O1—C1 1.198 (3) C7—H7A 0.9700
O2—C1 1.343 (3) C7—H7B 0.9700
O2—C8 1.456 (3) C8—C9 1.492 (4)
N1—C3 1.146 (3) C8—H8A 0.9700
C1—C2 1.469 (3) C8—H8B 0.9700
C2—C4 1.378 (3) C9—H9A 0.9600
C2—C3 1.436 (3) C9—H9B 0.9600
C5—C6 1.514 (4) C9—H9C 0.9600
C5—H5A 0.9700
C4—S2—C7 100.12 (13) C5—C6—H6B 108.9
C4—S1—C5 101.16 (13) C7—C6—H6B 108.9
C1—O2—C8 116.8 (2) H6A—C6—H6B 107.7
O1—C1—O2 124.3 (2) C6—C7—S2 115.69 (19)
O1—C1—C2 125.9 (2) C6—C7—H7A 108.4
O2—C1—C2 109.8 (2) S2—C7—H7A 108.4
C4—C2—C3 118.1 (2) C6—C7—H7B 108.4
C4—C2—C1 124.0 (2) S2—C7—H7B 108.4
C3—C2—C1 117.9 (2) H7A—C7—H7B 107.4
N1—C3—C2 179.1 (3) O2—C8—C9 106.2 (2)
C2—C4—S2 122.55 (18) O2—C8—H8A 110.5
C2—C4—S1 117.99 (18) C9—C8—H8A 110.5
S2—C4—S1 119.43 (14) O2—C8—H8B 110.5
C6—C5—S1 114.9 (2) C9—C8—H8B 110.5
C6—C5—H5A 108.5 H8A—C8—H8B 108.7
S1—C5—H5A 108.5 C8—C9—H9A 109.5
C6—C5—H5B 108.5 C8—C9—H9B 109.5
S1—C5—H5B 108.5 H9A—C9—H9B 109.5
H5A—C5—H5B 107.5 C8—C9—H9C 109.5
C5—C6—C7 113.3 (2) H9A—C9—H9C 109.5
C5—C6—H6A 108.9 H9B—C9—H9C 109.5
C7—C6—H6A 108.9
C8—O2—C1—O1 1.6 (4) C7—S2—C4—C2 153.6 (2)
C8—O2—C1—C2 −178.2 (2) C7—S2—C4—S1 −24.31 (17)
O1—C1—C2—C4 9.4 (4) C5—S1—C4—C2 153.59 (19)
O2—C1—C2—C4 −170.8 (2) C5—S1—C4—S2 −28.43 (18)
O1—C1—C2—C3 −171.5 (2) C4—S1—C5—C6 65.6 (2)
O2—C1—C2—C3 8.2 (3) S1—C5—C6—C7 −32.9 (3)
C3—C2—C4—S2 178.22 (18) C5—C6—C7—S2 −37.1 (3)
C1—C2—C4—S2 −2.7 (3) C4—S2—C7—C6 65.9 (2)
C3—C2—C4—S1 −3.9 (3) C1—O2—C8—C9 174.2 (2)
C1—C2—C4—S1 175.18 (18)

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Benati, L., Calestani, G., Montevecchi, P. C. & Spagnolo, P. (1995). J. Chem. Soc. Chem. Commun. pp. 1999–2000.
  4. Bi, X., Dong, D., Liu, Q., Pan, W., Zhao, L. & Li, B. (2005). J. Am. Chem. Soc. 127, 4578–4579. [DOI] [PubMed]
  5. Dömling, A., Wang, W. & Wang, K. (2012). Chem. Rev. 112, 3083–3135. [DOI] [PMC free article] [PubMed]
  6. Dong, D., Liu, Y., Zhao, Y., Qi, Y., Wang, Z. & Liu, Q. (2005). Synthesis, 85–91.
  7. Dong, Y., Wang, M., Liu, J., Ma, W. & Liu, Q. (2011). Chem. Commun. 47, 7380–7382. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Fiala, A., Chibani, A., Darchen, A., Boulkamh, A. & Djebbar, K. (2007). Appl. Surf. Sci. 253, 9347–9356.
  10. Furuya, T., Kamlet, A. S. & Ritter, T. (2011). Nature, 473, 470–477. [DOI] [PMC free article] [PubMed]
  11. Gao, X., Di, C.-A., Hu, Y., Yang, X., Fan, H., Zhang, F., Liu, Y., Li, H. & Zhu, D. (2010). J. Am. Chem. Soc. 132, 3697–3699. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hamdouni, N., Boudjada, A., Meinnel, J., Fiala, A., Brahim Ladouani, H. & Lemallem, S. E. (2017). IUCrData, 2, x171018.
  14. Hu, Y., Qin, Y., Gao, X., Zhang, F., Di, C.-A., Zhao, Z., Li, H. & Zhu, D. (2012). Org. Lett. 14, 292–295. [DOI] [PubMed]
  15. Kouno, R., Okauchi, T., Nakamura, M., Ichikawa, J. & Minami, T. (1998). J. Org. Chem. 63, 6239–6246. [DOI] [PubMed]
  16. Liu, Q., Che, G., Yu, H., Liu, Y., Zhang, J., Zhang, Q. & Dong, D. (2003). J. Org. Chem. 68, 9148–9150. [DOI] [PubMed]
  17. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  18. Mahata, P. K., Venkatesh, C., Syam Kumar, U. K., Ila, H. & Junjappa, H. (2003). J. Org. Chem. 68, 3966–3975. [DOI] [PubMed]
  19. Minami, T., Okauchi, T., Matsuki, H., Nakamura, M., Ichikawa, J. & Ishida, M. (1996). J. Org. Chem. 61, 8132–8140. [DOI] [PubMed]
  20. Muzard, M. & Portella, C. (1993). J. Org. Chem. 58, 29–31.
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Thuillier, A. & Vialle, J. (1962). Bull. Soc. Chim. Fr. pp. 2187–2193.
  24. Tietze, L. F., Brasche, G. & Gericke, K. (2006). Domino Reactions in Organic Synthesis. Weinheim: Wiley-VCH.
  25. Wang, H., Zhao, Y.-L., Ren, C.-Q., Diallo, A. & Liu, Q. (2011). Chem. Commun. 47, 12316–12318. [DOI] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Zhao, Y.-L., Chen, L., Liu, Q. & Li, D.-W. (2007). Synlett, pp. 37–42.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017017893/su5404sup1.cif

e-74-00065-sup1.cif (235.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017017893/su5404Isup2.hkl

e-74-00065-Isup2.hkl (117.4KB, hkl)

CCDC reference: 1811267

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES