Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 1;74(Pt 1):72–77. doi: 10.1107/S2056989017018060

Crystal structure and hydrogen bonding in N-(1-de­oxy-β-d-fructo­pyranos-1-yl)-2-amino­isobutyric acid

Valeri V Mossine a,*, Charles L Barnes b, Thomas P Mawhinney a
PMCID: PMC5778490  PMID: 29416896

The asymmetric unit contains two conformationally unequal zwitterion mol­ecules that differ in the intra­molecular hydrogen-bonding patterns. The 2C5 β-fructo­pyran­ose conformation also dominates in the compound’s solution.

Keywords: crystal structure, fructosamine, Maillard reaction, d-fructose-2-amino­isobutyric acid, hydrogen bonding, Hirshfeld surface analysis

Abstract

The title compound, alternatively called d-fructose-2-amino­isobutyric acid (FruAib), C10H19NO7, (I), crystallizes exclusively in the β-pyran­ose form, with two conformationally non-equivalent mol­ecules [(IA) and (IB)] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β-pyran­ose, 10.4% β-furan­ose, 10.1% α-furan­ose, 3.0% α-pyran­ose and <0.7% the acyclic forms. The carbohydrate ring in (I) has the normal 2 C 5 chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyran­ose structures. All carboxyl, hy­droxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intra­molecular hydrogen bonds bridge the amino acid and sugar portions in both mol­ecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar–amino acids suggests an increasing role of intra­molecular heteroatom inter­actions in crystal structures with an increasing proportion of C—H bonds.

Chemical context  

d-Fructose-amino acids are derivatives of fructosamine and represent the major fraction of the early Maillard reaction products which form non-enzymatically both in processed foods and in vivo (Mossine & Mawhinney, 2010). Naturally occurring d-fructose-amino acids act as inter­mediates in the formation of food aroma and colour, while elevated fructosamine content in humans has been linked to the development of diabetic complications and tissue damage. Synthetic fructo­samine derivatives have been offered as lectin blockers and anti­oxidants that might stimulate immune system (Tarnawski, Kuliś-Orzechowska & Szelepin, 2007), be potentially useful in prevention of cancer metastasis (Mossine et al., 2010), or neuroinflammation (Song et al., 2016). The chemical and biological reactivity of fructosamines stems from their structural instability. Thus, in solutions, fructosamine derivatives rapidly establish a equilibrium between several cyclic and acyclic forms (Kaufmann et al., 2016), as exemplified in Fig. 1 for the title compound. The acyclic tautomers, while present in minute (<1%) proportions, are responsible for chemical transformations of fructosamines in numerous redox, isomerization, or degradation reactions. The cyclic conformers are responsible for the carbohydrate recognition by proteins such as lectins, transporters or enzymes, and thus define a number of biological activities of fructosamines (Mossine & Mawhinney, 2010).graphic file with name e-74-00072-scheme1.jpg

Figure 1.

Figure 1

Equilibrium in aqueous solution of (I), at 293 K and pH 6.

As a part of our structure–activity studies, we have prepared d-fructose-2-amino­isobutyric acid (FruAib), a structural analogue of an efficient blocker of galectins-1, −3 and −4, d-fructose-l-leucine (Mossine et al., 2008). In this work, we report on the mol­ecular and crystal structure of FruAib, C10H19NO7 (I), with an emphasis on hydrogen-bonding patterns in the structure. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar-amino acids is also completed.

Structural commentary  

Crystalline FruAib has two conformationally nonequivalent mol­ecules, (IA) and (IB), in the asymmetric unit. The mol­ecular structures and atomic numbering are shown in Figs. 2 and 3. The mol­ecules may be considered as conjugates of a carbohydrate, 1-amino-1-de­oxy-d-fructose, and an amino acid, 2-amino­isobutyric acid, which are joined through the common amino group. The β-d-fructo­pyran­ose rings of the carbohydrate portions in both (IA) and (IB) exist in the 2 C 5 chair conformation, with puckering parameters Q = 0.582 Å, q = 177.7°, and f = 224° for (IA) and Q =0.565 Å, q = 175.5°, and f = 268° for (IB). These parameters correspond to a conformation with the lowest energy possible for fructose (French et al., 1997), with (IB) providing a better fit. The bond distances and the valence angles are close to the average values for a number of crystalline pyran­ose structures (Jeffrey & Taylor, 1980). In the solution of FruAib, the β-d-pyran­ose anomer dominates the equilibrium, at 76.6%, as follows from the 13C NMR spectrum (Fig. 1, Supporting Table S1). In the 1H NMR spectrum of the major anomer (see Section 5), the vicinal proton–proton coupling constants J 3,4 = 9.8 Hz and J 4,5 = 3.4 Hz indicate H4 is in the trans disposition to H3 and in the gauche disposition to H5. Hence, the predominant conformation of FruAib in solution is the 2 C 5 β-d-fructo­pyran­ose, as well.

Figure 2.

Figure 2

Atomic numbering and displacement ellipsoids at the 50% probability level for mol­ecule (IA). Intra­molecular N—H⋯O and O—H⋯O inter­actions are shown as dotted lines.

Figure 3.

Figure 3

Atomic numbering and displacement ellipsoids at the 50% probability level for mol­ecule (IB). Intra­molecular N—H⋯O and O—H⋯O inter­actions are shown as dotted lines.

The amino acid portions of both (IA) and (IB) are in the zwitterion form with a positively charged tetra­hedral secondary ammonium nitro­gen and a negatively charged deprotonated carboxyl group. Each mol­ecule has three intra­molecular inter­actions (Table 1), two of which bridge the carboxyl­ate, ammonium, and the carbohydrate portions of the mol­ecules. The intra­molecular hydrogen-bonding patterns differ in the mol­ecules. Thus, in (IB), the string of short heteroatom contacts stretches from O4B through O7B and can be denoted in terms of the Inline graphic(5) pattern descriptor. In (IA), the intra­molecular hydrogen bonding is fragmented between the shorter zwitterionic bridge O7A⋯H1NA⋯O6A [the Inline graphic(3) pattern] and the O2A—H⋯O3A contact. In the 1H NMR spectrum of FruAib (see Section 5), the two protons attached to C1 produce two distinct signals at 3.297 and 3.210 ppm, with J 1A,1B = −12.7 Hz. The inequality of these protons indicates restricted rotation around the C1—C2 and C1—C7 bonds, thus suggesting that the intra­molecular hydrogen bonds retain the structure in solution (Mossine et al., 1994). There are non-equivalences in carboxyl­ate C—O distances that are observed in both mol­ecules and which could be attributed to unequal participation of the oxygen atoms in hydrogen bonding. In (IA), O8A is involved in a three-center hydrogen-bonding inter­action, with H⋯O8A distances of 1.79 and 1.98 Å, while for the O7A inter­action, the distances are 1.91 and 2.30 Å (Table 1), which explains the elongation of the C8A—O8A bond (1.260 Å), as compared to the C8A—O7A distance (1.249 Å). Similar considerations can be applied to (IB), where O7B is involved in two short heteroatom contacts and O8B participates in only one (Table 1), hence the difference in the C8B—O7B (1.263 Å) and C8B—O8B (1.241 Å) bond lengths.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O6A 0.86 (3) 2.40 (3) 2.813 (3) 110 (2)
N1A—H1NA⋯O7A 0.86 (3) 2.30 (3) 2.674 (2) 107 (2)
O2B—H2OB⋯O8A i 0.84 (3) 1.78 (3) 2.596 (3) 165 (3)
N1A—H2NA⋯O7B 0.98 (3) 1.78 (3) 2.743 (3) 169 (3)
O5A—H5OA⋯O2B ii 0.76 (4) 2.14 (4) 2.886 (3) 168 (4)
O5B—H5OB⋯O3A iii 0.83 (4) 1.99 (4) 2.804 (3) 165 (3)
O2A—H2OA⋯O3A 0.82 (4) 2.62 (3) 2.847 (2) 97 (3)
O3A—H3OA⋯O4B iv 0.78 (4) 2.08 (4) 2.785 (3) 149 (3)
O4A—H4OA⋯O8A v 0.84 (4) 2.00 (4) 2.822 (3) 170 (4)
O2A—H2OA⋯O8B 0.82 (4) 1.87 (4) 2.657 (3) 161 (4)
O4B—H4OB⋯O3B 0.84 (4) 2.51 (4) 2.886 (2) 108 (3)
O4B—H4OB⋯O4A vi 0.84 (5) 2.14 (5) 2.864 (3) 145 (5)
N1B—H2NB⋯O7A i 0.90 (3) 1.91 (3) 2.795 (3) 168 (3)
N1B—H1NB⋯O3B 0.90 (4) 2.02 (4) 2.800 (3) 144 (3)
N1B—H1NB⋯O7B 0.90 (4) 2.40 (3) 2.681 (3) 100 (2)
O3B—H3OB⋯O5B vii 0.86 (4) 1.92 (4) 2.717 (3) 154 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Supra­molecular features  

FruAib crystallizes in the triclinic space group P1, with two non-equivalent mol­ecules per unit cell. The mol­ecular packing of (I) features infinite chains of hydrogen bonds spiralling along the a axis (Fig. 4). The basic hydrogen-bonding patterns are depicted in Fig. 5 and include the main infinite chain pattern Inline graphic(12); in the crystal, these infinite chains are connected through homodromic rings [Inline graphic(8)] and short chains [D 1 2(5) and D(4)]. Thus, hydrogen bonds form a three-dimensional network of short heteroatomic contacts throughout the crystal of (I). In addition, there are a number of close C—H⋯O contacts that may qualify as weak hydrogen bonds (Table 2). Inter­estingly, mol­ecule (IA) provides most of donors for these contacts.

Figure 4.

Figure 4

The mol­ecular packing in (I). Color code for crystallographic axes: red −a, green −b, blue −c. Hydrogen bonds are shown as cyan dotted lines.

Figure 5.

Figure 5

Hydrogen-bond patterns in the crystal structure of (I).

Table 2. Suspected C—H⋯O contacts (Å, °) in (I).

D—H⋯A D—H H⋯A DA D—H⋯A Symmetry code
C1A—H1A1⋯O3A 0.99 2.56 2.909 (3) 101  
C4A—H4A⋯O4B 1.00 2.63 3.608 (3) 167 x, y, z + 1
C9A—H9A1⋯O8A 0.98 2.55 3.313 (3) 135 x + 1, y, z
C9A—H9A3⋯O3B 0.98 2.66 3.575 (3) 156  
C9A—H9A3⋯O7B 0.98 2.68 3.381 (3) 129  
C10A—H10A⋯O7B 0.98 2.72 3.451 (3) 132  
C10A—H10B⋯O3B 0.98 2.64 3.076 (3) 107 x − 1, y, z
C5B—H5B⋯O8A 1.00 2.41 3.355 (3) 156 x, y, z − 1
C6B—H6B2⋯O5A 0.99 2.61 3.556 (3) 161 x + 1, y − 1, z
C10B—H10E⋯O5A 0.98 2.71 3.517 (3) 140 x + 1, y − 1, z
C10B—H10F⋯O7A 0.98 2.70 3.443 (3) 133 x + 1, y − 1, z

Database survey  

Search of SciFinder, Google Scholar, and the Cambridge Structural Database (Groom et al., 2016) by both structure and chemical names revealed no previous structural description of d-fructose-2-amino­isobutyric acid: thus the compound appears to be novel. The d-fructosamine portion of the mol­ecule is more inter­esting for a structure comparison survey due to its conformational instability and practical significance to food and health sciences. The most closely related structures are d-fructose-glycine (FruGly, CCDC 1307697; Mossine et al., 1995) and d-fructose-l-proline (FruPro, CCDC 628806, 628807, 631528; Tarnawski, Ślepokura et al., 2007). These d-fructose-amino acids crystallize in the 2 C 5 β-pyran­ose conformations and exist as zwitterions as well, with the intra­molecular hydrogen bonding that necessarily involves the amino acid carboxyl­ate, the ammonium group and one hy­droxy group donated by the carbohydrate moiety. However, none of these structures features the involvement of the pyran­ose ring O6 in the intra­molecular hydrogen bonding found in (IA). On the other hand, (IB) is structurally close to both FruGly (Mossine et al., 1995) and FruPro (Tarnawski, Ślepokura et al., 2007). In the mol­ecules, the conformations around the C1—C2 bond are trans–gauche, with respective values of the N—C1—C2—O6 torsion angle falling into the 165–177° range and are stabilized with the similar intra­molecular hydrogen-bonding pattern O3⋯H1N⋯O7.

A compendium of structures close to (I) is presented in Table 3. In addition to FruPro and FruGly, two structures isomeric to FruGly were included: d-galactose-glycine (GalGly, CCDC123625; Mossine et al., 1996) and d-glucose-glycine (GlcGly, CCDC123624; Mossine et al., 1996). In sugar-amino acids, as demonstrated in Table 3, an increase in the proportion of C—H bonds leads to an increase in number of intra­molecular hydrogen bonds. Such tendency towards the ‘inter­nalization’ of hydrogen bonding was also noticed as a result of a comparative analysis of the ‘fingerprint plots’ based on the calculated Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and delineated for the O⋯H/H⋯O contacts (Fig. 6). Table 3 lists the relative abundances of these contacts calculated for (IA), (IB) and structurally close sugar-amino acids. There is an obvious trend towards decrease in the proportion of inter­molecular O⋯H contacts as the number of the C—H bonds in the structure increases, although a total number of hydrogen-bonds per mol­ecule increases as well.

Table 3. Hydrogen bonding and contributions of the O⋯H/H⋯O contacts to the Hirshfeld surfaces of sugar-amino acids.

Notes: (*) All sugar-amino acids are in the pyran­ose form and all have four hy­droxy, one carboxyl and one ammonium group, and one pyran­ose ring oxygen; (**) hydrogen-bond selection criteria: DA < 2.9 Å; H⋯A < 2.7 Å; D—H⋯A >95°.

Structure* No. of CH/CH2/CH3 groups (total C—H) No. of intra/inter hydrogen-bonds** % of O⋯H/H⋯O contacts on Hirshfeld surface Reference
GalGly 3/3/0 (9) 2/6 55.7 Mossine et al. (1996)
GlcGly 3/3/0 (9) 3/6 57.6 Mossine et al. (1996)
FruGly 3/3/0 (9) 2/6 51.6 Mossine et al. (1995)
FruAib (IA) 3/2/2 (13) 3/5 44.0 This work
FruAib (IB) 3/2/2 (13) 3/5 45.9 This work
FruPro·H2O 4/5/0 (14) 3/6 49.2 Mossine et al. (2007)
FruPro·2H2O 4/5/0 (14) 3/6 49.3 Tarnawski, Ślepokura et al. (2007)
FruPro·MeOH 4/5/1 (17) 4/5 40.2 Tarnawski, Ślepokura et al. (2007)

Figure 6.

Figure 6

Two-dimensional fingerprint plots produced for the Hirshfeld surfaces of (IA) and (IB). The full plots for (IA) and (IB) are shown in (a) and (b), respectively. Contributions to the plots from the H⋯H contacts are shown in (c) and (d) and the contributions from the O⋯H/H⋯O contacts are depicted in (e) and (f).

Synthesis and crystallization  

2-Amino­isobutyric acid (2.1 g, 0.02 mol), d-glucose (9 g, 0.05 mol), and sodium acetate (0.82 g, 0.01 mol) were dissolved in 100 ml of a methanol/glycerol (3:1) mixture and refluxed for 3 h. The reaction progress was monitored by TLC on silica. The reaction mixture was diluted with 900 ml of water and passed through a column charged with 80 ml of Amberlite IRN-77 (H+-form). The target compound was then eluted with 0.2 M pyridine, and fractions containing pure FruAib were pooled and evaporated. The residue was redissolved in 100 ml of water, decolorized with 0.5 g of charcoal and evaporated to a syrup. The latter was dissolved in 30 ml of ethanol and made nearly cloudy with dropwise addition of acetone. Crystallization occurred within a week at room temperature. Yield 2.0 g (38%, based on starting Aib). Major (β-pyran­ose anomer) peaks (ppm) in the 13C NMR spectrum in D2O: 179.35 (C8); 98.33 (C2); 72.39 (C4); 72.21 (C3); 71.79 (C5); 67.00 (C7); 66.68 (C6); 51.72 (C1); 24.66, 24.47 (C9, C10). See Supporting Table S1 for minor peak assignments in the spectrum. Major signals (ppm) and resolved coupling constants (Hz) in the 1H NMR spectrum: 4.038 (dd, H6B); 4.021 (m, H5); 3.903 (dd, H4); 3.784 (d, H3); 3.775 (dd, H6A); 3.297 (d, H1B); 3.210 (d, H1A); 1.517 (s, 3H10); 1.512 (s, 3H9); J 1A,1B = −12.7; J 3,4 = 9.8; J 4,5 = 3.4; J 5,6A = 1.3; J 6A,6B = −12.9.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. Hy­droxy and nitro­gen-bound H atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding, with C—H = 0.98 Å (meth­yl), 0.99 Å (methyl­ene) or 1.00 Å (methine) and with U iso(H) = 1.2U eq(methine or methyl­ene) or 1.5U eq(meth­yl). As a result of the unrealistic value obtained for the Flack absolute structure parameter [−0.5 (3) for 2254 quotients (Parsons et al., 2013)], the absolute configuration of the ring system (2R,3S,4R,5R) was assigned on the basis of the known configuration for the starting compound d-glucose (McNaught, 1996).

Table 4. Experimental details.

Crystal data
Chemical formula C10H19NO7
M r 265.26
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 5.8008 (19), 9.636 (3), 10.676 (4)
α, β, γ (°) 87.766 (3), 86.330 (4), 82.042 (4)
V3) 589.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.25 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.86, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 6952, 5160, 4927
R int 0.022
(sin θ/λ)max−1) 0.652
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.081, 1.03
No. of reflections 5160
No. of parameters 377
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Absolute structure Flack x determined using 2254 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.5 (3)

Computer programs: APEX2 and SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), X-SEED (Barbour, 2001), Mercury (Macrae et al., 2008), CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017018060/zs2396sup1.cif

e-74-00072-sup1.cif (232.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017018060/zs2396Isup2.hkl

e-74-00072-Isup2.hkl (410.5KB, hkl)

CCDC reference: 1583254

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Shaokai Jiang for assistance with acquiring NMR spectra.

supplementary crystallographic information

Crystal data

C10H19NO7 Z = 2
Mr = 265.26 F(000) = 284
Triclinic, P1 Dx = 1.494 Mg m3
a = 5.8008 (19) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.636 (3) Å Cell parameters from 4131 reflections
c = 10.676 (4) Å θ = 2.8–27.6°
α = 87.766 (3)° µ = 0.13 mm1
β = 86.330 (4)° T = 100 K
γ = 82.042 (4)° Plate, colourless
V = 589.5 (3) Å3 0.25 × 0.20 × 0.08 mm

Data collection

Bruker APEXII CCD area detector diffractometer 4927 reflections with I > 2σ(I)
ω scans Rint = 0.022
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) θmax = 27.6°, θmin = 1.9°
Tmin = 0.86, Tmax = 0.99 h = −7→7
6952 measured reflections k = −12→12
5160 independent reflections l = −13→13

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.30 e Å3
5160 reflections Δρmin = −0.22 e Å3
377 parameters Absolute structure: Flack x determined using 2254 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraints Absolute structure parameter: −0.5 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.4852 (3) 0.7001 (2) 0.59886 (18) 0.0140 (4)
C1A 0.2937 (4) 0.6814 (2) 0.6955 (2) 0.0155 (4)
H1A1 0.258387 0.583790 0.696105 0.019*
H1A2 0.150865 0.745067 0.675402 0.019*
O2A 0.5882 (3) 0.6392 (2) 0.84699 (16) 0.0201 (4)
C2A 0.3701 (4) 0.7143 (2) 0.8240 (2) 0.0149 (4)
O3A 0.1611 (3) 0.54217 (18) 0.93040 (17) 0.0200 (4)
C3A 0.1796 (4) 0.6889 (2) 0.9256 (2) 0.0160 (4)
H3A 0.027565 0.743040 0.902764 0.019*
O4A 0.0554 (3) 0.7173 (2) 1.14090 (17) 0.0235 (4)
C4A 0.2446 (4) 0.7366 (2) 1.0515 (2) 0.0166 (4)
H4A 0.388769 0.676038 1.077616 0.020*
O5A 0.0858 (3) 0.9847 (2) 1.01890 (19) 0.0256 (4)
C5A 0.2914 (4) 0.8897 (2) 1.0402 (2) 0.0173 (5)
H5A 0.356155 0.914273 1.119767 0.021*
O6A 0.3959 (3) 0.85831 (17) 0.81688 (15) 0.0185 (3)
C6A 0.4700 (4) 0.9059 (3) 0.9321 (2) 0.0208 (5)
H6A1 0.492827 1.005718 0.921278 0.025*
H6A2 0.621286 0.851162 0.951912 0.025*
O7A 0.2928 (3) 0.95121 (17) 0.51308 (16) 0.0205 (4)
C7A 0.4156 (4) 0.7112 (2) 0.4646 (2) 0.0140 (4)
O8A 0.1246 (3) 0.86077 (17) 0.35794 (16) 0.0204 (4)
C8A 0.2629 (4) 0.8535 (2) 0.4449 (2) 0.0147 (4)
C9A 0.6394 (4) 0.7138 (3) 0.3809 (2) 0.0190 (5)
H9A1 0.718756 0.791634 0.404061 0.028*
H9A2 0.600415 0.726203 0.292846 0.028*
H9A3 0.742340 0.625157 0.392235 0.028*
C10A 0.2936 (4) 0.5854 (2) 0.4386 (2) 0.0176 (5)
H10A 0.386894 0.499035 0.467924 0.026*
H10B 0.276226 0.581322 0.348147 0.026*
H10C 0.139289 0.595194 0.483013 0.026*
N1B 0.9798 (3) 0.1994 (2) 0.51896 (19) 0.0148 (4)
C1B 0.7661 (4) 0.1679 (2) 0.4597 (2) 0.0162 (4)
H1B1 0.628379 0.230040 0.494220 0.019*
H1B2 0.742314 0.069761 0.481061 0.019*
O2B 0.9828 (3) 0.10708 (18) 0.26199 (16) 0.0177 (3)
C2B 0.7867 (4) 0.1888 (2) 0.3164 (2) 0.0153 (4)
O3B 1.0020 (3) 0.39052 (17) 0.31557 (16) 0.0179 (3)
C3B 0.7993 (4) 0.3425 (2) 0.2743 (2) 0.0147 (4)
H3B 0.660381 0.401144 0.314343 0.018*
O4B 0.7785 (3) 0.50320 (19) 0.09278 (18) 0.0220 (4)
C4B 0.7840 (4) 0.3599 (2) 0.1331 (2) 0.0157 (4)
H4B 0.923045 0.303446 0.090998 0.019*
O5B 0.3592 (3) 0.39757 (19) 0.13899 (18) 0.0212 (4)
C5B 0.5615 (4) 0.3074 (3) 0.0932 (2) 0.0178 (5)
H5B 0.564638 0.306047 −0.000506 0.021*
O6B 0.5737 (3) 0.15023 (18) 0.28044 (16) 0.0184 (3)
C6B 0.5487 (4) 0.1611 (3) 0.1472 (2) 0.0196 (5)
H6B1 0.396939 0.132758 0.129061 0.023*
H6B2 0.673214 0.095284 0.105088 0.023*
O7B 0.7832 (3) 0.45290 (18) 0.59469 (17) 0.0248 (4)
C7B 0.9506 (4) 0.2216 (2) 0.6593 (2) 0.0158 (4)
O8B 0.6794 (4) 0.3715 (2) 0.78640 (18) 0.0301 (5)
C8B 0.7867 (4) 0.3608 (2) 0.6822 (2) 0.0174 (5)
C9B 1.1926 (4) 0.2407 (3) 0.7005 (3) 0.0241 (5)
H9B1 1.299035 0.153209 0.689055 0.036*
H9B2 1.180988 0.264886 0.789159 0.036*
H9B3 1.252503 0.316092 0.649424 0.036*
C10B 0.8641 (5) 0.0944 (3) 0.7269 (2) 0.0221 (5)
H10D 0.705980 0.087100 0.702985 0.033*
H10E 0.862555 0.104968 0.817864 0.033*
H10F 0.968250 0.009301 0.703146 0.033*
H1NA 0.536 (5) 0.778 (3) 0.613 (3) 0.016 (7)*
H2OB 1.012 (6) 0.032 (3) 0.303 (3) 0.021 (7)*
H2NA 0.599 (5) 0.616 (3) 0.607 (3) 0.019 (7)*
H5OA 0.040 (6) 1.015 (4) 1.082 (4) 0.027 (9)*
H5OB 0.311 (6) 0.453 (4) 0.082 (4) 0.032 (9)*
H3OA 0.030 (7) 0.539 (4) 0.951 (3) 0.029 (9)*
H4OA 0.086 (7) 0.750 (4) 1.208 (4) 0.045 (11)*
H2OA 0.590 (6) 0.555 (4) 0.840 (3) 0.033 (9)*
H4OB 0.852 (10) 0.549 (5) 0.138 (5) 0.074 (15)*
H2NB 1.090 (5) 0.124 (3) 0.507 (3) 0.017 (7)*
H1NB 1.021 (6) 0.276 (4) 0.478 (3) 0.029 (8)*
H3OB 1.114 (7) 0.365 (4) 0.261 (4) 0.045 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0143 (9) 0.0143 (9) 0.0131 (9) −0.0003 (7) −0.0011 (7) −0.0013 (7)
C1A 0.0159 (10) 0.0182 (11) 0.0124 (10) −0.0020 (8) 0.0001 (8) −0.0009 (8)
O2A 0.0173 (8) 0.0212 (9) 0.0204 (9) 0.0038 (7) −0.0035 (6) −0.0043 (7)
C2A 0.0162 (10) 0.0133 (10) 0.0150 (10) −0.0010 (8) −0.0018 (8) −0.0020 (8)
O3A 0.0232 (9) 0.0181 (8) 0.0197 (8) −0.0070 (7) 0.0012 (7) −0.0010 (7)
C3A 0.0196 (11) 0.0155 (10) 0.0129 (10) −0.0019 (8) 0.0001 (8) −0.0012 (8)
O4A 0.0285 (9) 0.0306 (10) 0.0135 (8) −0.0125 (8) 0.0040 (7) −0.0050 (7)
C4A 0.0183 (11) 0.0174 (11) 0.0144 (11) −0.0040 (9) 0.0002 (8) −0.0008 (9)
O5A 0.0301 (10) 0.0236 (9) 0.0199 (9) 0.0087 (8) −0.0009 (8) −0.0050 (8)
C5A 0.0217 (11) 0.0157 (11) 0.0147 (11) −0.0024 (9) −0.0006 (8) −0.0033 (9)
O6A 0.0255 (9) 0.0161 (8) 0.0145 (8) −0.0054 (7) 0.0011 (6) −0.0018 (6)
C6A 0.0246 (12) 0.0197 (11) 0.0197 (12) −0.0078 (9) 0.0005 (9) −0.0054 (9)
O7A 0.0259 (9) 0.0160 (8) 0.0188 (8) 0.0021 (7) −0.0040 (7) −0.0038 (7)
C7A 0.0158 (10) 0.0153 (10) 0.0109 (10) −0.0015 (8) −0.0014 (8) −0.0007 (8)
O8A 0.0221 (9) 0.0177 (8) 0.0212 (9) 0.0011 (7) −0.0076 (7) 0.0001 (7)
C8A 0.0149 (10) 0.0152 (10) 0.0131 (10) −0.0006 (8) 0.0029 (8) −0.0001 (8)
C9A 0.0178 (11) 0.0208 (11) 0.0169 (11) 0.0004 (9) 0.0030 (9) 0.0005 (9)
C10A 0.0210 (11) 0.0152 (10) 0.0171 (11) −0.0028 (9) −0.0028 (9) −0.0033 (9)
N1B 0.0150 (9) 0.0152 (9) 0.0138 (9) −0.0004 (7) −0.0006 (7) −0.0013 (8)
C1B 0.0148 (10) 0.0182 (11) 0.0155 (11) −0.0021 (8) −0.0011 (8) 0.0003 (8)
O2B 0.0199 (8) 0.0157 (8) 0.0160 (8) 0.0030 (6) −0.0002 (6) −0.0006 (7)
C2B 0.0144 (10) 0.0159 (11) 0.0153 (11) −0.0014 (8) −0.0012 (8) −0.0003 (9)
O3B 0.0170 (8) 0.0211 (8) 0.0171 (8) −0.0072 (7) −0.0007 (7) −0.0023 (7)
C3B 0.0129 (10) 0.0155 (10) 0.0158 (11) −0.0023 (8) −0.0003 (8) −0.0005 (8)
O4B 0.0236 (9) 0.0201 (9) 0.0236 (9) −0.0073 (7) −0.0063 (7) 0.0068 (7)
C4B 0.0138 (10) 0.0173 (11) 0.0156 (11) −0.0016 (8) −0.0004 (8) 0.0008 (8)
O5B 0.0153 (8) 0.0230 (9) 0.0242 (9) −0.0002 (7) −0.0014 (7) 0.0055 (7)
C5B 0.0162 (11) 0.0234 (12) 0.0142 (11) −0.0032 (9) −0.0023 (8) −0.0011 (9)
O6B 0.0180 (8) 0.0213 (8) 0.0174 (8) −0.0063 (6) −0.0033 (6) 0.0001 (7)
C6B 0.0202 (11) 0.0194 (11) 0.0200 (12) −0.0037 (9) −0.0045 (9) −0.0029 (9)
O7B 0.0320 (10) 0.0188 (8) 0.0197 (9) 0.0081 (7) 0.0022 (7) 0.0017 (7)
C7B 0.0181 (11) 0.0168 (11) 0.0116 (10) 0.0008 (8) −0.0008 (8) −0.0003 (8)
O8B 0.0396 (12) 0.0237 (9) 0.0224 (10) 0.0062 (8) 0.0097 (8) −0.0014 (7)
C8B 0.0178 (11) 0.0159 (10) 0.0176 (11) 0.0023 (9) −0.0018 (9) −0.0028 (9)
C9B 0.0194 (12) 0.0299 (13) 0.0225 (12) 0.0021 (10) −0.0069 (9) −0.0063 (10)
C10B 0.0266 (13) 0.0206 (12) 0.0173 (11) 0.0007 (10) 0.0018 (9) 0.0028 (9)

Geometric parameters (Å, º)

O2A—C2A 1.399 (3) O3B—H3OB 0.86 (4)
O3A—C3A 1.431 (3) C4A—H4A 1.0000
O4A—C4A 1.435 (3) O4B—H4OB 0.84 (6)
O6A—C2A 1.415 (3) C5A—H5A 1.0000
O6A—C6A 1.440 (3) O5B—H5OB 0.83 (4)
O7A—C8A 1.250 (3) C6A—H6A2 0.9900
O8A—C8A 1.259 (3) C6A—H6A1 0.9900
N1A—C1A 1.492 (3) C9A—H9A3 0.9800
N1A—C7A 1.510 (3) C9A—H9A1 0.9800
O2A—H2OA 0.82 (4) C9A—H9A2 0.9800
O3A—H3OA 0.78 (4) C10A—H10C 0.9800
O4A—H4OA 0.83 (4) C10A—H10B 0.9800
O5A—H5OA 0.76 (4) C10A—H10A 0.9800
C1A—C2A 1.526 (3) C1B—C2B 1.535 (3)
N1A—H1NA 0.87 (3) N1B—H2NB 0.91 (3)
N1A—H2NA 0.98 (3) N1B—H1NB 0.90 (4)
C2A—C3A 1.536 (3) C2B—C3B 1.541 (3)
O2B—C2B 1.398 (3) C3B—C4B 1.517 (3)
C3A—C4A 1.524 (3) C4B—C5B 1.540 (3)
O3B—C3B 1.423 (3) C5B—C6B 1.512 (4)
C4A—C5A 1.535 (3) C7B—C10B 1.526 (3)
O4B—C4B 1.427 (3) C7B—C8B 1.551 (3)
C5A—C6A 1.519 (3) C7B—C9B 1.535 (3)
O5B—C5B 1.431 (3) C1B—H1B1 0.9900
O6B—C2B 1.418 (3) C1B—H1B2 0.9900
O6B—C6B 1.437 (3) C3B—H3B 1.0000
C7A—C8A 1.541 (3) C4B—H4B 1.0000
C7A—C10A 1.529 (3) C5B—H5B 1.0000
C7A—C9A 1.531 (3) C6B—H6B1 0.9900
O7B—C8B 1.262 (3) C6B—H6B2 0.9900
O8B—C8B 1.240 (3) C9B—H9B1 0.9800
C1A—H1A1 0.9900 C9B—H9B2 0.9800
C1A—H1A2 0.9900 C9B—H9B3 0.9800
N1B—C1B 1.500 (3) C10B—H10D 0.9800
N1B—C7B 1.517 (3) C10B—H10E 0.9800
O2B—H2OB 0.83 (3) C10B—H10F 0.9800
C3A—H3A 1.0000
C2A—O6A—C6A 112.33 (18) C7A—C10A—H10C 109.00
C1A—N1A—C7A 115.41 (17) C7A—C10A—H10A 110.00
C2A—O2A—H2OA 112 (2) C7A—C10A—H10B 109.00
C3A—O3A—H3OA 104 (3) H10A—C10A—H10B 109.00
C4A—O4A—H4OA 107 (3) H10A—C10A—H10C 109.00
C5A—O5A—H5OA 107 (3) H10B—C10A—H10C 109.00
C7A—N1A—H1NA 106 (2) C7B—N1B—H2NB 107 (2)
C7A—N1A—H2NA 107.4 (19) C7B—N1B—H1NB 111 (2)
H1NA—N1A—H2NA 115 (3) H2NB—N1B—H1NB 112 (3)
N1A—C1A—C2A 108.99 (18) N1B—C1B—C2B 111.65 (18)
C1A—N1A—H1NA 108 (2) C1B—N1B—H2NB 106.7 (19)
C1A—N1A—H2NA 105.3 (18) C1B—N1B—H1NB 106 (2)
O2A—C2A—O6A 107.46 (18) O2B—C2B—O6B 113.03 (17)
O6A—C2A—C1A 105.52 (16) O6B—C2B—C1B 102.24 (17)
O6A—C2A—C3A 109.62 (16) O6B—C2B—C3B 108.88 (17)
C1A—C2A—C3A 109.73 (18) C1B—C2B—C3B 112.86 (16)
O2A—C2A—C1A 110.90 (17) O2B—C2B—C1B 112.22 (18)
O2A—C2A—C3A 113.29 (17) O2B—C2B—C3B 107.61 (18)
O3A—C3A—C2A 107.71 (16) O3B—C3B—C2B 111.53 (18)
O3A—C3A—C4A 111.05 (17) O3B—C3B—C4B 112.03 (18)
C2A—C3A—C4A 109.56 (18) C2B—C3B—C4B 110.23 (16)
O4A—C4A—C3A 107.02 (18) O4B—C4B—C3B 111.32 (17)
C3A—C4A—C5A 110.21 (17) C3B—C4B—C5B 110.08 (18)
O4A—C4A—C5A 112.35 (17) O4B—C4B—C5B 108.48 (19)
O5A—C5A—C4A 112.39 (19) O5B—C5B—C4B 110.2 (2)
O5A—C5A—C6A 108.72 (18) O5B—C5B—C6B 108.56 (19)
C4A—C5A—C6A 109.36 (18) C4B—C5B—C6B 109.76 (19)
O6A—C6A—C5A 111.20 (19) O6B—C6B—C5B 113.0 (2)
C2B—O6B—C6B 113.45 (17) N1B—C7B—C8B 108.36 (17)
N1A—C7A—C8A 108.17 (16) C8B—C7B—C9B 107.71 (18)
C8A—C7A—C10A 113.58 (19) C8B—C7B—C10B 113.61 (19)
C9A—C7A—C10A 111.62 (18) C9B—C7B—C10B 110.7 (2)
N1A—C7A—C9A 107.01 (18) N1B—C7B—C9B 106.01 (19)
N1A—C7A—C10A 108.96 (16) N1B—C7B—C10B 110.12 (17)
C8A—C7A—C9A 107.24 (18) O8B—C8B—C7B 116.38 (19)
O7A—C8A—O8A 126.3 (2) O7B—C8B—O8B 127.0 (2)
O7A—C8A—C7A 117.51 (19) O7B—C8B—C7B 116.61 (19)
O8A—C8A—C7A 116.13 (18) N1B—C1B—H1B1 109.00
N1A—C1A—H1A2 110.00 N1B—C1B—H1B2 109.00
C2A—C1A—H1A1 110.00 C2B—C1B—H1B1 109.00
C2A—C1A—H1A2 110.00 C2B—C1B—H1B2 109.00
H1A1—C1A—H1A2 108.00 H1B1—C1B—H1B2 108.00
N1A—C1A—H1A1 110.00 O3B—C3B—H3B 108.00
C1B—N1B—C7B 115.17 (17) C2B—C3B—H3B 108.00
C2B—O2B—H2OB 110 (2) C4B—C3B—H3B 108.00
O3A—C3A—H3A 109.00 O4B—C4B—H4B 109.00
C4A—C3A—H3A 109.00 C3B—C4B—H4B 109.00
C2A—C3A—H3A 110.00 C5B—C4B—H4B 109.00
C3B—O3B—H3OB 107 (3) O5B—C5B—H5B 109.00
O4A—C4A—H4A 109.00 C4B—C5B—H5B 109.00
C5A—C4A—H4A 109.00 C6B—C5B—H5B 109.00
C3A—C4A—H4A 109.00 O6B—C6B—H6B1 109.00
C4B—O4B—H4OB 113 (3) O6B—C6B—H6B2 109.00
C4A—C5A—H5A 109.00 C5B—C6B—H6B1 109.00
O5A—C5A—H5A 109.00 C5B—C6B—H6B2 109.00
C6A—C5A—H5A 109.00 H6B1—C6B—H6B2 108.00
C5B—O5B—H5OB 110 (3) C7B—C9B—H9B1 109.00
C5A—C6A—H6A2 109.00 C7B—C9B—H9B2 110.00
O6A—C6A—H6A2 109.00 C7B—C9B—H9B3 109.00
O6A—C6A—H6A1 109.00 H9B1—C9B—H9B2 109.00
C5A—C6A—H6A1 109.00 H9B1—C9B—H9B3 109.00
H6A1—C6A—H6A2 108.00 H9B2—C9B—H9B3 110.00
C7A—C9A—H9A2 109.00 C7B—C10B—H10D 109.00
C7A—C9A—H9A1 109.00 C7B—C10B—H10E 110.00
H9A1—C9A—H9A3 109.00 C7B—C10B—H10F 109.00
C7A—C9A—H9A3 109.00 H10D—C10B—H10E 109.00
H9A1—C9A—H9A2 109.00 H10D—C10B—H10F 109.00
H9A2—C9A—H9A3 109.00 H10E—C10B—H10F 109.00
C6A—O6A—C2A—O2A −61.2 (2) C9A—C7A—C8A—O8A 89.4 (2)
C6A—O6A—C2A—C1A −179.57 (18) C10A—C7A—C8A—O7A 147.9 (2)
C6A—O6A—C2A—C3A 62.3 (2) N1A—C7A—C8A—O7A 26.8 (3)
C2A—O6A—C6A—C5A −61.7 (2) N1A—C7A—C8A—O8A −155.48 (19)
C1A—N1A—C7A—C10A −53.2 (2) C1B—N1B—C7B—C10B 56.0 (2)
C1A—N1A—C7A—C8A 70.7 (2) C1B—N1B—C7B—C8B −68.8 (2)
C1A—N1A—C7A—C9A −174.04 (18) C1B—N1B—C7B—C9B 175.78 (18)
C7A—N1A—C1A—C2A −163.70 (16) C7B—N1B—C1B—C2B 163.55 (16)
N1A—C1A—C2A—O6A 64.6 (2) N1B—C1B—C2B—O6B 178.40 (16)
N1A—C1A—C2A—C3A −177.35 (16) N1B—C1B—C2B—C3B −64.8 (2)
N1A—C1A—C2A—O2A −51.4 (2) N1B—C1B—C2B—O2B 57.0 (2)
O2A—C2A—C3A—O3A −59.4 (2) O2B—C2B—C3B—O3B −61.3 (2)
O6A—C2A—C3A—O3A −179.43 (17) O6B—C2B—C3B—O3B 175.87 (17)
O6A—C2A—C3A—C4A −58.5 (2) O6B—C2B—C3B—C4B −59.0 (2)
C1A—C2A—C3A—O3A 65.1 (2) C1B—C2B—C3B—O3B 63.1 (2)
C1A—C2A—C3A—C4A −173.98 (16) C1B—C2B—C3B—C4B −171.81 (19)
O2A—C2A—C3A—C4A 61.5 (2) O2B—C2B—C3B—C4B 63.8 (2)
O3A—C3A—C4A—C5A 173.44 (18) O3B—C3B—C4B—C5B −179.66 (18)
C2A—C3A—C4A—O4A 177.02 (16) C2B—C3B—C4B—O4B 175.84 (18)
O3A—C3A—C4A—O4A −64.1 (2) O3B—C3B—C4B—O4B −59.3 (2)
C2A—C3A—C4A—C5A 54.6 (2) C2B—C3B—C4B—C5B 55.5 (2)
O4A—C4A—C5A—C6A −172.33 (18) O4B—C4B—C5B—C6B −173.64 (18)
C3A—C4A—C5A—O5A 67.8 (2) C3B—C4B—C5B—O5B 67.9 (2)
O4A—C4A—C5A—O5A −51.5 (2) O4B—C4B—C5B—O5B −54.1 (2)
C3A—C4A—C5A—C6A −53.1 (2) C3B—C4B—C5B—C6B −51.6 (2)
O5A—C5A—C6A—O6A −67.5 (2) O5B—C5B—C6B—O6B −68.2 (2)
C4A—C5A—C6A—O6A 55.5 (3) C4B—C5B—C6B—O6B 52.4 (2)
C6B—O6B—C2B—C3B 60.3 (2) N1B—C7B—C8B—O7B −27.2 (3)
C2B—O6B—C6B—C5B −58.7 (2) N1B—C7B—C8B—O8B 155.3 (2)
C6B—O6B—C2B—O2B −59.3 (2) C9B—C7B—C8B—O7B 87.1 (2)
C6B—O6B—C2B—C1B 179.89 (18) C9B—C7B—C8B—O8B −90.4 (3)
C9A—C7A—C8A—O7A −88.3 (2) C10B—C7B—C8B—O7B −149.9 (2)
C10A—C7A—C8A—O8A −34.4 (3) C10B—C7B—C8B—O8B 32.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1NA···O6A 0.86 (3) 2.40 (3) 2.813 (3) 110 (2)
N1A—H1NA···O7A 0.86 (3) 2.30 (3) 2.674 (2) 107 (2)
O2B—H2OB···O8Ai 0.84 (3) 1.78 (3) 2.596 (3) 165 (3)
N1A—H2NA···O7B 0.98 (3) 1.78 (3) 2.743 (3) 169 (3)
O5A—H5OA···O2Bii 0.76 (4) 2.14 (4) 2.886 (3) 168 (4)
O5B—H5OB···O3Aiii 0.83 (4) 1.99 (4) 2.804 (3) 165 (3)
O2A—H2OA···O3A 0.82 (4) 2.62 (3) 2.847 (2) 97 (3)
O3A—H3OA···O4Biv 0.78 (4) 2.08 (4) 2.785 (3) 149 (3)
O4A—H4OA···O8Av 0.84 (4) 2.00 (4) 2.822 (3) 170 (4)
O2A—H2OA···O8B 0.82 (4) 1.87 (4) 2.657 (3) 161 (4)
O4B—H4OB···O3B 0.84 (4) 2.51 (4) 2.886 (2) 108 (3)
O4B—H4OB···O4Avi 0.84 (5) 2.14 (5) 2.864 (3) 145 (5)
N1B—H2NB···O7Ai 0.90 (3) 1.91 (3) 2.795 (3) 168 (3)
N1B—H1NB···O3B 0.90 (4) 2.02 (4) 2.800 (3) 144 (3)
N1B—H1NB···O7B 0.90 (4) 2.40 (3) 2.681 (3) 100 (2)
O3B—H3OB···O5Bvii 0.86 (4) 1.92 (4) 2.717 (3) 154 (4)

Symmetry codes: (i) x+1, y−1, z; (ii) x−1, y+1, z+1; (iii) x, y, z−1; (iv) x−1, y, z+1; (v) x, y, z+1; (vi) x+1, y, z−1; (vii) x+1, y, z.

Table S1. C13-NMR spectrum and anomeric distribution of D-fructose-2-aminoisobutyric acid in D2O

carbon α-pyranose β-pyranose α-furanose β-furanose
C1 51.55 51.72 49.81 51.35
C2 99.08 98.33 104.65 101.85
C3 73.12 72.21 85.26 80.64
C4 74.85 72.39 78.69 77.17
C5 68.74 71.79 85.32 83.78
C6 65.80 66.68 63.63 64.76
C7 n.r. 67.00 66.76 66.85
C8 n.r. 179.35 179.37 179.46
C9 or C10 24.55 24.66 24.64 24.64
C9 or C10 24.16 24.47 24.36 24.43
References
% for FruAib 3.0 75.6 10.1 10.4 This work
% for D-Fru 2.1 68.6 5.7 23.0 Kaufmann et al., 2016
% for FruGly 5 66 15 14 Mossine et al., 1994
% for FruAla 5.1 71.5 10.8 11.6 Kaufmann et al., 2016
% for FruPro 4.2 64.8 12.9 16.9 Kaufmann et al., 2016

Funding Statement

This work was funded by University of Missouri Agriculture Experiment Station Chemical Laboratories grant .

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker. (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. French, A. D., Dowd, M. K. & Reilly, P. J. (1997). J. Mol. Struct. Theochem, 395–396, 271–287.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Jeffrey, G. A. & Taylor, R. (1980). J. Comput. Chem. 1, 99–109.
  6. Kaufmann, M., Meissner, P. M., Pelke, D., Mügge, C. & Kroh, L. W. (2016). Carbohydr. Res. 428, 87–99. [DOI] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008.
  9. Mossine, V. V., Barnes, C. L., Glinsky, G. V. & Feather, M. S. (1996). Carbohydr. Res. 284, 11–24. [DOI] [PubMed]
  10. Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2007). J. Carbohydr. Chem. 26, 249–266.
  11. Mossine, V. V., Glinsky, G. V., Barnes, C. L. & Feather, M. S. (1995). Carbohydr. Res. 266, 5–14. [DOI] [PubMed]
  12. Mossine, V. V., Glinsky, G. V. & Feather, M. S. (1994). Carbohydr. Res. 262, 257–270. [DOI] [PubMed]
  13. Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In Galectins, Klyosov, A. A., Platt, D. & Witczak, Z. J., Eds. John Wiley & Sons, pp. 235–270.
  14. Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2010). In The Maillard Reaction: Interface between Aging, Nutrition and Metabolism, edited by M. C. Thomas and J. Forbes, pp. 170–179. Royal Society of Chemistry.
  15. Mossine, V. V. & Mawhinney, T. P. (2010). Adv. Carbohydr. Chem. Biochem. 64, 291–402. [DOI] [PubMed]
  16. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Song, H., Lu, Y., Qu, Z., Mossine, V. V., Martin, M. B., Hou, J., Cui, J., Peculis, B. A., Mawhinney, T. P., Cheng, J., Greenlief, C. M., Fritsche, K., Schmidt, F. J., Walter, R. B., Lubahn, D. B., Sun, G. Y. & Gu, Z. (2016). Sci. Rep. 6, 35323. [DOI] [PMC free article] [PubMed]
  21. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  22. Tarnawski, M., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Int. Immunopharmacol. 7, 1577–1581. [DOI] [PubMed]
  23. Tarnawski, M., Ślepokura, K., Lis, T., Kuliś-Orzechowska, R. & Szelepin, B. (2007). Carbohydr. Res. 342, 1264–1270. [DOI] [PubMed]
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017018060/zs2396sup1.cif

e-74-00072-sup1.cif (232.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017018060/zs2396Isup2.hkl

e-74-00072-Isup2.hkl (410.5KB, hkl)

CCDC reference: 1583254

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES