The packing motifs in the title compounds both feature C—H⋯O interactions but they show distinctly different Hirshfeld surface fingerprints.
Keywords: crystal structure, benzoxathiol-2-one, hydrogen bonds, Hirshfeld surface
Abstract
The crystal structures of 6-methoxy-1,3-benzoxathiol-2-one, C9H8O3S, (I), and 2-oxo-1,3-benzoxathiol-6-yl acetate, C9H6O4S, (II), are described. Compound (I) is almost planar (r.m.s. deviation for the non-H atoms = 0.011 Å), whereas (II) shows a substantial twist between the fused-ring system and the acetate substituent [dihedral angle = 74.42 (3)°]. For both structures, the bond distances in the heterocyclic ring suggest that little if any conjugation occurs. In the crystal of (I), C—H⋯O hydrogen bonds link the molecules into [1-11] chains incorporating alternating R 2 2(8) and R 2 2(12) inversion dimers. The extended structure of (II) features C(7) [201] chains linked by C—H⋯O hydrogen bonds, with further C—H⋯O bonds and weak π–π stacking interactions connecting the chains into a three-dimensional network. Hirshfeld fingerprint analyses for (I) and (II) are presented and discussed.
Chemical context
1,3-Benzoxathiol-2-one and its derivatives have various biological properties including antibacterial, antimycotic, antioxidant, antitumor and anti-inflammatory activities (Vellasco Júnior et al., 2011 ▸; Chazin et al., 2015 ▸). They also act as inhibitors of carbonic anhydrase II (Barrese et al., 2008 ▸) and monoamine oxidase (Mostert et al., 2016 ▸). The first synthesized 1,3-benzoxathiol-2-one, 6-hydroxy-1,3-benzoxathiol-2-one C7H4O3S, also known as tioxolone or thioxolone, has been used for many years in the treatment of acne and other skin diseases (e.g. psoriasis) (Berg & Fiedler, 1959 ▸).
A recent study reported the syntheses and antifungal activities of some derivatives of tioxolone (Terra et al., 2018 ▸). In the present article we report the crystal structures and Hirshfeld surface analyses of two compounds with different substituents at the 6-position of the ring system obtained in that study, viz. 6-methoxy-1,3-benzoxathiol-2-one, C9H8O3S, (I), and 2-oxo-1,3-benzoxathiol-6-yl acetate, C9H8O3S, (II)..
Structural commentary
Compound (I) crystallizes in space group P
with one molecule in the asymmetric unit (Fig. 1 ▸), which is almost planar (r.m.s. deviation for the non-hydrogen atoms = 0.011 Å): the ethoxy side chain adopts an extended conformation [C6—O3—C8—C9 = 179.82 (12)°]. Within the oxathiol-2-one ring system, the C1—O1, C1=O2 and C1—S1 bond lengths are 1.3732 (18), 1.1905 (19) and 1.7766 (16)Å, respectively, and the O1—C1—S1 and C1—S1—C3 bond angles are 111.07 (11) and 90.62 (7)°, respectively. These distance data suggest that there is little if any conjugation (i.e. partial double-bond character) involving the C1—O1 and C1—S1 bonds with the C1=O2 group.
Figure 1.
The molecular structure of (I), showing 50% displacement ellipsoids.
A single molecule of compound (II) makes up the asymmetric unit in space group P21/c (Fig. 2 ▸). The ring system is almost planar (r.m.s. deviation for C1–C7/O1/S1 = 0.032 Å) but there is a substantial twist about the C6—O3 bond, as indicated by the dihedral angle between the ring system and the acetate group of 74.42 (3)°. Key geometrical data for the heterocyclic ring are C1—O1 = 1.3864 (15), C1=O2 = 1.1936 (15), C1—S1 = 1.7709 (13) Å, O1—C1—S1 = 111.57 (8) and C1—S1—C3 = 90.43 (6)°. These data are similar to the equivalent values for (I) and again indicate a lack of significant electronic delocalization within the oxathiol-2-one ring system.
Figure 2.
The molecular structure of (II), showing 50% displacement ellipsoids.
Supramolecular features
In the crystal of (I), the molecules are linked by C—H⋯O hydrogen bonds (Table 1 ▸). The C5—H5⋯O3i [symmetry code: (i) −x, 1 − y, −z] link generates inversion dimers featuring
(8) loops. Based on its length, the C7—H7⋯O2ii [symmetry code: (ii) 1 − x, −y, 1 − z] bond is much weaker, but if it is considered significant, it generates a second inversion dimer [with an
(12) graph-set symbol], which links the dimers into [1
1] chains (Fig. 3 ▸). No C—H⋯π interactions could be identified in the crystal of (I) and any aromatic π–π stacking must be extremely weak, as the shortest centroid–centroid separation is 3.9149 (10) Å.
Table 1. Hydrogen-bond geometry (Å, °) for (I) .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C5—H5⋯O3i | 0.95 | 2.48 | 3.432 (2) | 175 |
| C7—H7⋯O2ii | 0.95 | 2.66 | 3.5983 (19) | 170 |
Symmetry codes: (i)
; (ii)
.
Figure 3.
Fragment of a [1
1] hydrogen-bonded chain in (I); all hydrogen atoms except H5 and H7 have been omitted for clarity. Symmetry codes as in Table 1 ▸.
In the crystal of (II), C4—H4⋯O4i [symmetry code: (i) x − 1,
− y, z −
] hydrogen bonds (Table 2 ▸) link the molecules into C(7) chains propagating in [201], with adjacent molecules in the chain related by c-glide symmetry (plus translation) (Fig. 4 ▸). The C9—H9C⋯O2ii [symmetry code: (ii) 1 − x, −y, 1 − z] bonds arising from the methyl group generate inversion dimers [
(16) loops], which connect the chains into a three-dimensional network. There are no C—H⋯π bonds in the crystal of (II) but the packing is consolidated by weak aromatic π–π stacking between inversion-related C2–C7 benzene rings with a centroid–centroid separation of 3.7220 (8) Å.
Table 2. Hydrogen-bond geometry (Å, °) for (II) .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C4—H4⋯O4i | 0.95 | 2.35 | 3.2606 (15) | 159 |
| C9—H9C⋯O2ii | 0.98 | 2.50 | 3.4030 (16) | 153 |
Symmetry codes: (i)
; (ii)
.
Figure 4.
Fragment of a [201] hydrogen-bonded chain in (II); all hydrogen atoms except H4 omitted for clarity. Symmetry codes as in Table 2 ▸; additionally (iii) x − 2, y, z − 1.
Hirshfeld analyses
Hirshfeld surface fingerprint plots for (I) (Fig. 5 ▸), (II) (Fig. 6 ▸) and tioxolone (refcode: EVOQEL), which features classical O—H⋯O hydrogen bonds (Byres & Cox, 2004 ▸) (Fig. 7 ▸) were calculated with CrystalExplorer17 (Turner et al., 2017 ▸). The plot for EVOQEL has very pronounced ‘wingtip’ features that correspond to the short, classical O—H⋯O hydrogen bond found in this structure (compare: McKinnon et al., 2007 ▸). In (I) and (II), the wingtips associated with the longer and presumably weaker C—H⋯O bonds are far less pronounced.
Figure 5.
Hirshfeld fingerprint plot for (I)
Figure 6.
Hirshfeld fingerprint plot for (II)
Figure 7.
Hirshfeld fingerprint plot for tioxolone [atomic coordinates from Byres & Cox (2004 ▸)].
When the fingerprint plots are decomposed into the separate types of contacts (McKinnon et al., 2007 ▸), some interesting differences arise (Table 3 ▸): as a percentage of surface interactions, H⋯H contacts (i.e. van der Waals interactions) are far more prominent in (I) than in (II), which is comparable with EVOQEL, whereas C⋯H/H⋯C contacts are similar for the three structures. The O⋯H/H⋯O contacts are the most important contributors in all three structures, and in (II) they actually contribute a higher percentage to the surface than in EVOQEL, despite the fact that EVOQEL features both O—H⋯O and C—H⋯O hydrogen bonds and only one of its hydrogen atoms is not involved in such bonds (Byres & Cox, 2004 ▸). The C⋯C contacts (associated with aromatic π–π stacking) contribute a small percentage in (I) and (II) and about twice the amount in EVOQEL where the shortest centroid–centroid separation is 3.508 (2) Å. Despite the small percentage for (II), the Hirshfeld surface (Fig. 8 ▸) clearly shows red spots associated with these contacts. The S⋯H/H⋯S contacts are similar in the three structures, and not insignificant at ∼10% of the surfaces, but they can hardly represent directional C—H⋯S hydrogen bonds, as the shortest H⋯S separations (3.21, 3.11 and 3.28 Å in (I), (II) and EVOQEL, respectively) are much longer than the van der Waals contact distance (Bondi, 1964 ▸) of 3.00 Å for H and S. Finally, S⋯O/O⋯S contacts have very different contributions in the three structures: negligible in (I), but clearly present in (II) and EVOQEL. This seems to correlate with the shortest S⋯O contact distances of 3.623 (2), 3.2742 (10) and 3.341 (2) Å for (I), (II) and EVOQEL, respectively: the distance in (II) is actually slightly shorter than the van der Waals contact distance of 3.32Å for sulfur and oxygen,
Table 3. Hirshfeld contact interactions (%).
| Contact type | (I) | (II) | EVOQEL |
|---|---|---|---|
| H⋯H | 28.7 | 14.8 | 13.5 |
| O⋯H/H⋯O | 30.1 | 39.5 | 36.0 |
| C⋯H/H⋯C | 11.3 | 13.4 | 8.6 |
| S⋯H/H⋯S | 11.1 | 10.8 | 8.8 |
| C⋯C | 5.9 | 4.4 | 10.4 |
| S⋯O/O⋯S | 1.5 | 7.0 | 10.1 |
Figure 8.
Hirshfeld surface plot mapped over d norm for (II) showing red spots associated with short C⋯C and C⋯O contacts: the slightly smaller spots refer to the former.
Database survey
A survey of of the Cambridge Structural Database (Groom et al., 2016 ▸: updated to September 2017) for the benzoxathiol-2-one fused ring system (any substituents) yielded just three matches, viz. 6-hydroxy-1,3-benzoxathiol-2-one (refcode: EVOQEL; Byres & Cox, 2004 ▸); N-(4,7-dimethyl-2-oxo-benzo[1,3]oxathiol-5-yl)-4-benzenesulfonamide (NAJQOG; Avdeenko et al., 2009 ▸); 7-phenyl-1,3-benzoxathiol-2-one (JOSGUV; Zhao et al., 2014 ▸). To this list may be added the structure of 6-methoxy-5-nitrobenzo[d][1,3]oxathiol-2-one (CCDC deposition number 1404755) as recently reported by Terra et al. (2017 ▸).
Synthesis and crystallization
Compounds (I) and (II) were prepared as described previously (Terra et al., 2018 ▸) and recrystallized from methanol solution as colourless plates of (I) and colourless blocks of (II).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The hydrogen atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding atoms. The constraint U iso(H) = 1.2U eq(carrier) or 1.5U eq(methyl carrier) was applied in all cases. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.
Table 4. Experimental details.
| (I) | (II) | |
|---|---|---|
| Crystal data | ||
| Chemical formula | C9H8O3S | C9H6O4S |
| M r | 196.21 | 210.20 |
| Crystal system, space group | Triclinic, P
|
Monoclinic, P21/c |
| Temperature (K) | 100 | 100 |
| a, b, c (Å) | 3.9149 (6), 10.3237 (12), 11.7003 (14) | 5.6232 (5), 14.5650 (14), 10.8572 (11) |
| α, β, γ (°) | 66.526 (6), 81.110 (9), 84.349 (9) | 90, 96.045 (2), 90 |
| V (Å3) | 428.18 (10) | 884.28 (15) |
| Z | 2 | 4 |
| Radiation type | Mo Kα | Mo Kα |
| μ (mm−1) | 0.35 | 0.35 |
| Crystal size (mm) | 0.17 × 0.17 × 0.03 | 0.26 × 0.11 × 0.08 |
| Data collection | ||
| Diffractometer | Rigaku Saturn CCD | Rigaku Saturn CCD |
| Absorption correction | Multi-scan (FS_ABSCOR; Rigaku, 2013 ▸) | Multi-scan (FS_ABSCOR; Rigaku, 2013 ▸) |
| T min, T max | 0.714, 1.000 | 0.829, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 5189, 1674, 1540 | 11487, 2028, 1903 |
| R int | 0.040 | 0.036 |
| (sin θ/λ)max (Å−1) | 0.617 | 0.650 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.034, 0.094, 1.04 | 0.028, 0.081, 1.10 |
| No. of reflections | 1674 | 2028 |
| No. of parameters | 119 | 128 |
| H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.52, −0.20 | 0.33, −0.21 |
Supplementary Material
Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017018072/nk2242sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017018072/nk2242Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017018072/nk2242Isup4.cml
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017018072/nk2242IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989017018072/nk2242IIsup5.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.
supplementary crystallographic information
6-Methoxy-1,3-benzoxathiol-2-one (I). Crystal data
| C9H8O3S | Z = 2 |
| Mr = 196.21 | F(000) = 204 |
| Triclinic, P1 | Dx = 1.522 Mg m−3 |
| a = 3.9149 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 10.3237 (12) Å | Cell parameters from 1390 reflections |
| c = 11.7003 (14) Å | θ = 1.9–27.5° |
| α = 66.526 (6)° | µ = 0.35 mm−1 |
| β = 81.110 (9)° | T = 100 K |
| γ = 84.349 (9)° | Plate, colourless |
| V = 428.18 (10) Å3 | 0.17 × 0.17 × 0.03 mm |
6-Methoxy-1,3-benzoxathiol-2-one (I). Data collection
| Rigaku Saturn CCD diffractometer | 1540 reflections with I > 2σ(I) |
| ω scans | Rint = 0.040 |
| Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) | θmax = 26.0°, θmin = 1.9° |
| Tmin = 0.714, Tmax = 1.000 | h = −4→4 |
| 5189 measured reflections | k = −12→12 |
| 1674 independent reflections | l = −14→14 |
6-Methoxy-1,3-benzoxathiol-2-one (I). Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
| wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0766P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 1674 reflections | Δρmax = 0.52 e Å−3 |
| 119 parameters | Δρmin = −0.20 e Å−3 |
| 0 restraints |
6-Methoxy-1,3-benzoxathiol-2-one (I). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
6-Methoxy-1,3-benzoxathiol-2-one (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.0898 (4) | 0.15148 (16) | 0.62375 (14) | 0.0238 (3) | |
| C2 | 0.1487 (4) | 0.21490 (16) | 0.40934 (14) | 0.0221 (3) | |
| C3 | −0.0473 (4) | 0.33140 (16) | 0.41485 (14) | 0.0221 (3) | |
| C4 | −0.1375 (4) | 0.43830 (16) | 0.30435 (15) | 0.0238 (3) | |
| H4 | −0.2733 | 0.5190 | 0.3064 | 0.029* | |
| C5 | −0.0252 (4) | 0.42431 (16) | 0.19181 (15) | 0.0245 (3) | |
| H5 | −0.0854 | 0.4961 | 0.1157 | 0.029* | |
| C6 | 0.1770 (4) | 0.30535 (16) | 0.18846 (14) | 0.0223 (3) | |
| C7 | 0.2673 (4) | 0.19732 (16) | 0.29857 (14) | 0.0230 (3) | |
| H7 | 0.4028 | 0.1161 | 0.2975 | 0.028* | |
| C8 | 0.4817 (4) | 0.18554 (16) | 0.06172 (15) | 0.0240 (3) | |
| H8A | 0.3576 | 0.0970 | 0.1095 | 0.029* | |
| H8B | 0.7026 | 0.1773 | 0.0959 | 0.029* | |
| C9 | 0.5494 (4) | 0.21106 (18) | −0.07580 (15) | 0.0283 (4) | |
| H9A | 0.6977 | 0.1336 | −0.0867 | 0.042* | |
| H9B | 0.6651 | 0.3005 | −0.1224 | 0.042* | |
| H9C | 0.3294 | 0.2157 | −0.1077 | 0.042* | |
| O1 | 0.2250 (3) | 0.11453 (11) | 0.52491 (10) | 0.0244 (3) | |
| O2 | 0.1322 (3) | 0.07887 (11) | 0.72936 (10) | 0.0282 (3) | |
| O3 | 0.2727 (3) | 0.30495 (11) | 0.07165 (10) | 0.0251 (3) | |
| S1 | −0.14241 (9) | 0.31705 (4) | 0.57093 (3) | 0.02391 (16) |
6-Methoxy-1,3-benzoxathiol-2-one (I). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0236 (8) | 0.0232 (7) | 0.0273 (8) | −0.0042 (6) | −0.0017 (6) | −0.0124 (6) |
| C2 | 0.0220 (7) | 0.0193 (7) | 0.0254 (8) | −0.0039 (6) | −0.0056 (6) | −0.0076 (6) |
| C3 | 0.0218 (7) | 0.0212 (7) | 0.0264 (8) | −0.0034 (6) | −0.0037 (6) | −0.0117 (6) |
| C4 | 0.0228 (7) | 0.0213 (8) | 0.0301 (8) | 0.0010 (6) | −0.0056 (6) | −0.0125 (6) |
| C5 | 0.0257 (8) | 0.0216 (7) | 0.0273 (8) | −0.0009 (6) | −0.0069 (6) | −0.0096 (6) |
| C6 | 0.0214 (7) | 0.0222 (8) | 0.0258 (7) | −0.0045 (6) | −0.0026 (6) | −0.0112 (6) |
| C7 | 0.0223 (7) | 0.0201 (7) | 0.0286 (8) | −0.0013 (6) | −0.0042 (6) | −0.0110 (6) |
| C8 | 0.0245 (7) | 0.0216 (7) | 0.0280 (8) | 0.0002 (6) | −0.0040 (6) | −0.0120 (6) |
| C9 | 0.0289 (8) | 0.0302 (8) | 0.0288 (8) | −0.0026 (7) | −0.0007 (6) | −0.0153 (7) |
| O1 | 0.0290 (6) | 0.0210 (5) | 0.0239 (6) | 0.0013 (4) | −0.0044 (4) | −0.0096 (4) |
| O2 | 0.0335 (6) | 0.0260 (6) | 0.0246 (6) | −0.0001 (5) | −0.0037 (5) | −0.0095 (5) |
| O3 | 0.0300 (6) | 0.0221 (6) | 0.0247 (6) | 0.0026 (4) | −0.0044 (4) | −0.0112 (5) |
| S1 | 0.0252 (2) | 0.0234 (2) | 0.0259 (2) | 0.00092 (16) | −0.00403 (16) | −0.01255 (17) |
6-Methoxy-1,3-benzoxathiol-2-one (I). Geometric parameters (Å, º)
| C1—O2 | 1.1905 (19) | C5—H5 | 0.9500 |
| C1—O1 | 1.3732 (18) | C6—O3 | 1.3617 (18) |
| C1—S1 | 1.7766 (16) | C6—C7 | 1.395 (2) |
| C2—C3 | 1.380 (2) | C7—H7 | 0.9500 |
| C2—C7 | 1.383 (2) | C8—O3 | 1.4452 (18) |
| C2—O1 | 1.3926 (18) | C8—C9 | 1.508 (2) |
| C3—C4 | 1.394 (2) | C8—H8A | 0.9900 |
| C3—S1 | 1.7552 (16) | C8—H8B | 0.9900 |
| C4—C5 | 1.381 (2) | C9—H9A | 0.9800 |
| C4—H4 | 0.9500 | C9—H9B | 0.9800 |
| C5—C6 | 1.405 (2) | C9—H9C | 0.9800 |
| O2—C1—O1 | 122.22 (14) | C2—C7—C6 | 116.34 (14) |
| O2—C1—S1 | 126.71 (12) | C2—C7—H7 | 121.8 |
| O1—C1—S1 | 111.07 (11) | C6—C7—H7 | 121.8 |
| C3—C2—C7 | 123.62 (14) | O3—C8—C9 | 107.02 (12) |
| C3—C2—O1 | 114.96 (13) | O3—C8—H8A | 110.3 |
| C7—C2—O1 | 121.41 (13) | C9—C8—H8A | 110.3 |
| C2—C3—C4 | 119.56 (14) | O3—C8—H8B | 110.3 |
| C2—C3—S1 | 110.37 (11) | C9—C8—H8B | 110.3 |
| C4—C3—S1 | 130.07 (12) | H8A—C8—H8B | 108.6 |
| C5—C4—C3 | 118.55 (14) | C8—C9—H9A | 109.5 |
| C5—C4—H4 | 120.7 | C8—C9—H9B | 109.5 |
| C3—C4—H4 | 120.7 | H9A—C9—H9B | 109.5 |
| C4—C5—C6 | 120.85 (14) | C8—C9—H9C | 109.5 |
| C4—C5—H5 | 119.6 | H9A—C9—H9C | 109.5 |
| C6—C5—H5 | 119.6 | H9B—C9—H9C | 109.5 |
| O3—C6—C7 | 123.91 (13) | C1—O1—C2 | 112.97 (12) |
| O3—C6—C5 | 115.01 (13) | C6—O3—C8 | 117.75 (12) |
| C7—C6—C5 | 121.08 (14) | C3—S1—C1 | 90.62 (7) |
| C7—C2—C3—C4 | 0.7 (2) | C5—C6—C7—C2 | −0.4 (2) |
| O1—C2—C3—C4 | 179.88 (13) | O2—C1—O1—C2 | −179.25 (14) |
| C7—C2—C3—S1 | −179.08 (11) | S1—C1—O1—C2 | 0.23 (15) |
| O1—C2—C3—S1 | 0.14 (16) | C3—C2—O1—C1 | −0.24 (18) |
| C2—C3—C4—C5 | −0.3 (2) | C7—C2—O1—C1 | 178.99 (12) |
| S1—C3—C4—C5 | 179.33 (12) | C7—C6—O3—C8 | −0.3 (2) |
| C3—C4—C5—C6 | −0.3 (2) | C5—C6—O3—C8 | 179.90 (13) |
| C4—C5—C6—O3 | −179.56 (13) | C9—C8—O3—C6 | 179.82 (12) |
| C4—C5—C6—C7 | 0.6 (2) | C2—C3—S1—C1 | −0.01 (11) |
| C3—C2—C7—C6 | −0.3 (2) | C4—C3—S1—C1 | −179.71 (15) |
| O1—C2—C7—C6 | −179.47 (13) | O2—C1—S1—C3 | 179.32 (15) |
| O3—C6—C7—C2 | 179.87 (13) | O1—C1—S1—C3 | −0.13 (11) |
6-Methoxy-1,3-benzoxathiol-2-one (I). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C5—H5···O3i | 0.95 | 2.48 | 3.432 (2) | 175 |
| C7—H7···O2ii | 0.95 | 2.66 | 3.5983 (19) | 170 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z+1.
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Crystal data
| C9H6O4S | F(000) = 432 |
| Mr = 210.20 | Dx = 1.579 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.6232 (5) Å | Cell parameters from 3355 reflections |
| b = 14.5650 (14) Å | θ = 2.3–27.5° |
| c = 10.8572 (11) Å | µ = 0.35 mm−1 |
| β = 96.045 (2)° | T = 100 K |
| V = 884.28 (15) Å3 | Block, colourless |
| Z = 4 | 0.26 × 0.11 × 0.08 mm |
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Data collection
| Rigaku Saturn CCD diffractometer | 1903 reflections with I > 2σ(I) |
| ω scans | Rint = 0.036 |
| Absorption correction: multi-scan (FS_ABSCOR; Rigaku, 2013) | θmax = 27.5°, θmin = 2.4° |
| Tmin = 0.829, Tmax = 1.000 | h = −7→7 |
| 11487 measured reflections | k = −18→18 |
| 2028 independent reflections | l = −14→14 |
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
| wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0423P)2 + 0.328P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.10 | (Δ/σ)max = 0.001 |
| 2028 reflections | Δρmax = 0.33 e Å−3 |
| 128 parameters | Δρmin = −0.21 e Å−3 |
| 0 restraints |
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.1830 (2) | 0.03032 (8) | 0.18546 (11) | 0.0210 (2) | |
| C2 | 0.1514 (2) | 0.07946 (8) | 0.38446 (11) | 0.0167 (2) | |
| C3 | −0.0602 (2) | 0.11624 (8) | 0.32717 (11) | 0.0174 (2) | |
| C4 | −0.2186 (2) | 0.16130 (8) | 0.39666 (11) | 0.0194 (2) | |
| H4 | −0.3625 | 0.1872 | 0.3580 | 0.023* | |
| C5 | −0.1609 (2) | 0.16746 (8) | 0.52441 (11) | 0.0191 (2) | |
| H5 | −0.2657 | 0.1979 | 0.5742 | 0.023* | |
| C6 | 0.0505 (2) | 0.12894 (8) | 0.57848 (10) | 0.0175 (2) | |
| C7 | 0.2139 (2) | 0.08489 (8) | 0.51080 (11) | 0.0175 (2) | |
| H7 | 0.3595 | 0.0601 | 0.5491 | 0.021* | |
| C8 | 0.2608 (2) | 0.18164 (8) | 0.76657 (11) | 0.0183 (2) | |
| C9 | 0.2792 (2) | 0.16577 (9) | 0.90343 (11) | 0.0222 (3) | |
| H9A | 0.1197 | 0.1535 | 0.9284 | 0.033* | |
| H9B | 0.3465 | 0.2204 | 0.9467 | 0.033* | |
| H9C | 0.3833 | 0.1129 | 0.9248 | 0.033* | |
| O1 | 0.29007 (15) | 0.03350 (6) | 0.30638 (8) | 0.01950 (19) | |
| O2 | 0.27313 (17) | −0.00958 (7) | 0.10631 (8) | 0.0282 (2) | |
| O3 | 0.08651 (15) | 0.12684 (6) | 0.70829 (7) | 0.0207 (2) | |
| O4 | 0.37694 (17) | 0.23332 (7) | 0.71088 (8) | 0.0275 (2) | |
| S1 | −0.09135 (5) | 0.09103 (2) | 0.16863 (3) | 0.02017 (11) |
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0246 (6) | 0.0209 (6) | 0.0177 (6) | −0.0017 (5) | 0.0030 (4) | 0.0015 (4) |
| C2 | 0.0164 (5) | 0.0158 (5) | 0.0181 (6) | −0.0015 (4) | 0.0026 (4) | −0.0003 (4) |
| C3 | 0.0194 (5) | 0.0177 (5) | 0.0148 (5) | −0.0023 (4) | −0.0004 (4) | 0.0001 (4) |
| C4 | 0.0180 (5) | 0.0194 (6) | 0.0202 (6) | 0.0019 (4) | −0.0009 (4) | 0.0003 (4) |
| C5 | 0.0194 (5) | 0.0185 (6) | 0.0196 (6) | −0.0010 (4) | 0.0028 (4) | −0.0020 (4) |
| C6 | 0.0208 (5) | 0.0178 (5) | 0.0137 (5) | −0.0055 (4) | 0.0007 (4) | 0.0004 (4) |
| C7 | 0.0158 (5) | 0.0182 (6) | 0.0178 (6) | −0.0017 (4) | −0.0008 (4) | 0.0019 (4) |
| C8 | 0.0201 (5) | 0.0182 (5) | 0.0163 (5) | 0.0003 (4) | 0.0005 (4) | −0.0020 (4) |
| C9 | 0.0287 (6) | 0.0235 (6) | 0.0140 (5) | −0.0009 (5) | 0.0007 (4) | −0.0007 (4) |
| O1 | 0.0190 (4) | 0.0230 (4) | 0.0167 (4) | 0.0017 (3) | 0.0025 (3) | −0.0010 (3) |
| O2 | 0.0336 (5) | 0.0321 (5) | 0.0200 (5) | 0.0048 (4) | 0.0076 (4) | −0.0030 (4) |
| O3 | 0.0239 (4) | 0.0251 (5) | 0.0128 (4) | −0.0076 (3) | 0.0006 (3) | 0.0003 (3) |
| O4 | 0.0317 (5) | 0.0327 (5) | 0.0176 (4) | −0.0140 (4) | 0.0008 (4) | −0.0002 (4) |
| S1 | 0.02389 (18) | 0.02219 (18) | 0.01374 (17) | 0.00119 (11) | −0.00123 (12) | 0.00007 (10) |
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Geometric parameters (Å, º)
| C1—O2 | 1.1936 (15) | C5—H5 | 0.9500 |
| C1—O1 | 1.3864 (15) | C6—C7 | 1.3923 (16) |
| C1—S1 | 1.7709 (13) | C6—O3 | 1.4030 (13) |
| C2—C7 | 1.3820 (17) | C7—H7 | 0.9500 |
| C2—O1 | 1.3835 (14) | C8—O4 | 1.2008 (15) |
| C2—C3 | 1.3905 (16) | C8—O3 | 1.3665 (14) |
| C3—C4 | 1.3908 (16) | C8—C9 | 1.4965 (16) |
| C3—S1 | 1.7506 (12) | C9—H9A | 0.9800 |
| C4—C5 | 1.3936 (16) | C9—H9B | 0.9800 |
| C4—H4 | 0.9500 | C9—H9C | 0.9800 |
| C5—C6 | 1.3875 (16) | ||
| O2—C1—O1 | 121.54 (12) | C7—C6—O3 | 119.12 (10) |
| O2—C1—S1 | 126.88 (10) | C2—C7—C6 | 115.92 (11) |
| O1—C1—S1 | 111.57 (8) | C2—C7—H7 | 122.0 |
| C7—C2—O1 | 122.33 (10) | C6—C7—H7 | 122.0 |
| C7—C2—C3 | 122.57 (11) | O4—C8—O3 | 122.31 (11) |
| O1—C2—C3 | 115.05 (10) | O4—C8—C9 | 127.77 (11) |
| C2—C3—C4 | 120.37 (11) | O3—C8—C9 | 109.92 (10) |
| C2—C3—S1 | 110.57 (9) | C8—C9—H9A | 109.5 |
| C4—C3—S1 | 128.97 (9) | C8—C9—H9B | 109.5 |
| C3—C4—C5 | 118.37 (11) | H9A—C9—H9B | 109.5 |
| C3—C4—H4 | 120.8 | C8—C9—H9C | 109.5 |
| C5—C4—H4 | 120.8 | H9A—C9—H9C | 109.5 |
| C6—C5—C4 | 119.62 (11) | H9B—C9—H9C | 109.5 |
| C6—C5—H5 | 120.2 | C2—O1—C1 | 112.32 (9) |
| C4—C5—H5 | 120.2 | C8—O3—C6 | 118.24 (9) |
| C5—C6—C7 | 123.14 (11) | C3—S1—C1 | 90.43 (6) |
| C5—C6—O3 | 117.42 (10) | ||
| C7—C2—C3—C4 | 0.48 (18) | C7—C2—O1—C1 | 174.88 (10) |
| O1—C2—C3—C4 | 177.81 (10) | C3—C2—O1—C1 | −2.46 (14) |
| C7—C2—C3—S1 | −176.35 (9) | O2—C1—O1—C2 | −177.20 (11) |
| O1—C2—C3—S1 | 0.98 (13) | S1—C1—O1—C2 | 2.77 (12) |
| C2—C3—C4—C5 | −0.77 (18) | O4—C8—O3—C6 | 2.67 (17) |
| S1—C3—C4—C5 | 175.41 (9) | C9—C8—O3—C6 | −177.05 (10) |
| C3—C4—C5—C6 | −0.02 (17) | C5—C6—O3—C8 | −111.17 (12) |
| C4—C5—C6—C7 | 1.17 (18) | C7—C6—O3—C8 | 75.10 (14) |
| C4—C5—C6—O3 | −172.28 (10) | C2—C3—S1—C1 | 0.52 (9) |
| O1—C2—C7—C6 | −176.54 (10) | C4—C3—S1—C1 | −175.96 (12) |
| C3—C2—C7—C6 | 0.60 (17) | O2—C1—S1—C3 | 178.09 (12) |
| C5—C6—C7—C2 | −1.43 (17) | O1—C1—S1—C3 | −1.88 (9) |
| O3—C6—C7—C2 | 171.91 (10) |
2-Oxo-1,3-benzoxathiol-6-yl acetate (II). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C4—H4···O4i | 0.95 | 2.35 | 3.2606 (15) | 159 |
| C9—H9C···O2ii | 0.98 | 2.50 | 3.4030 (16) | 153 |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1.
References
- Avdeenko, A. P., Pirozhenko, V. V., Konovalov, S. A., Roman’kov, D. A., Palamarchuk, G. V. & Shishkin, O. V. (2009). Russ. J. Org. Chem. 45, 408–416.
- Barrese, A. A. III, Genis, C., Fisher, S. Z., Orwenyo, J. N., Kumara, M. T., Dutta, S. K., Phillips, E., Kiddle, J. J., Tu, C., Silverman, D. N., Govindasamy, L., Agbandje-McKenna, M., McKenna, R. & Tripp, B. C. (2008). Biochemistry, 47, 3174–3184. [DOI] [PubMed]
- Berg, A. H. & Fiedler, H. (1959). US Patent 2,886,488.
- Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
- Byres, M. & Cox, P. J. (2004). Acta Cryst. C60, o395–o396. [DOI] [PubMed]
- Chazin, E. L., Sanches, P. S., Lindgren, E. B., Vellasco Júnior, W. T., Pinto, L. C., Burbano, R. M. R., Yoneda, J. D., Leal, K. Z., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Montenegro, R. C. & Vasconcelos, T. R. A. (2015). Molecules, 20, 1968–1983. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
- Mostert, S., Petzer, A. & Petzer, J. P. (2016). Bioorg. Med. Chem. Lett. 26, 1200–1204. [DOI] [PubMed]
- Rigaku (2013). PS_ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2014). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Terra, L., Chazin, E. de L., Sanches, P. de S., Saito, M., de Souza, M. V. N., Gomes, C. R. B., Wardell, J. L., Wardell, S. M. S. V., Sathler, P. C., Silva, G. C. C., Lione, V. O., Kalil1, M., Joffily, A., Castro1, H. C. & Vasconcelos, T. R. A. (2018). Med. Chem (Bentham) 14, 1–7
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.
- Vellasco, W. T., Gomes, C. F. B. & Vasconcelos, T. R. A. (2011). Mini-Rev. Org. Chem. 8, 103–109.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zhao, Y., Xie, Y., Xia, C. & Huang, H. (2014). Adv. Synth. Catal. 356, 2471–2476.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989017018072/nk2242sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017018072/nk2242Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017018072/nk2242Isup4.cml
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017018072/nk2242IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989017018072/nk2242IIsup5.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report








