Skip to main content
Journal of Ophthalmology logoLink to Journal of Ophthalmology
. 2018 Jan 8;2018:9781987. doi: 10.1155/2018/9781987

Prevalence and Related Factors for Myopia in School-Aged Children in Qingdao

Jin Tao Sun 1, Meng An 2, Xiao Bo Yan 1, Guo Hua Li 1, Da Bo Wang 3,
PMCID: PMC5817287  PMID: 29507811

Abstract

Purpose

To investigate the prevalence and related factors for myopia in school-aged children in the Economic and Technological Development Zone of Qingdao, Eastern China.

Methods

A total of 4890 (aged 10 to 15 years) students were initially enrolled in this study. 3753 (76.75%) students with completed refractive error and questionnaire data were analyzed. The children underwent a comprehensive eye examination. Multiple logistic regression models were applied to assess possible factors associated with myopia.

Results

The prevalence of myopia increased as the children's grade increased (χ2 = 560.584, P < 0.001). Low myopia was the main form of myopia in adolescent students (30.22%). With the growth of age, students spent significantly more time on near work (P = 0.03) and less time on outdoor activity (P < 0.001). In multivariate models, only the following variables were significantly associated with myopia: age, two myopic parents, outdoor activity time, and continuous near work without 5 min rest.

Conclusions

The prevalence of myopia increased as the grade increased. Age, two myopic parents, and continuous near work time without 5 min rest were risk factors for myopia. Outdoor activities had protective effect for myopia.

1. Introduction

Myopia has become a major global public health problem, particularly in East Asia [1]. The direct cost of providing eyeglasses to people who need refractive correction are also enormous. In the United States, the National Health and Nutrition Examination Survey (NHANES) reported the annual direct cost of correcting distance vision impairment due to refractive errors to be between US$3.9 and US$7.2 billion [2]. The prevalence of myopia is generally highest in populations of East Asian, particularly in urban locations such as Guangzhou [3], Taiwan [4], Hong Kong [5], and Korea [6]. Affected by many factors, such as visual function, psychology, aesthetics, and economy, the quality of life in patients of myopia was seriously impaired [7].

In recent years, Chinese scientific research institutions have carried out large-scale epidemiological survey on myopia in the northern and southern areas. Numerous cross-sectional studies have provided information on the pattern of prevalence and risk factors for myopia. Although the exact pathogenic mechanism of myopia is still unclear, most scholars believe that myopia is the result of a combination of genetic and environmental factors. Recent epidemiological surveys have shown that the prevalence of myopia varies widely, depending on age, gender, geography, and ethnicity [811]. What is more, some studies have explored other relevant influencing factors, including more time spent on near work activity [12], higher educational level [13], and less time participating in outdoor activities [14]. Whereas the evidence on this issue is controversial, a cross-sectional study in Beijing demonstrated that a higher prevalence of myopia in high school students was associated with shorter near work distance [15]. Lin et al. [16] reported that outdoor activities were associated with less myopic refraction, but they did not find any significant association between near work and myopic refraction in this study. Furthermore, Low et al. [17] reported that neither near work nor outdoor activity was found to be associated with early myopia. The conflict results are mainly attributed to the following aspects: (1) There are no uniform questionnaire. (2) The results of questionnaire survey are affected by geography, culture, cognitive ability, and memory biases of the respondents. (3) The outcome used to reflect myopia was mainly noncycloplegic autorefraction. Recently, a standardized myopia questionnaire, which was developed by the Sydney Myopia Study group, was used to acquire information on near work/outdoor activities, habitual reading distance, and so on [18]. In this study, we investigated the prevalence and the risk factors for myopia in schoolchildren in the eastern coastal city of China, by the method of cluster sampling, with particular attention to variables such as the duration and type of outdoor activities and near work.

2. Methods

2.1. Study Participants

The Childhood Errors of Refraction Study was a cross-sectional epidemiological study investigating the prevalence of refractive error in 10–15-year-old school-aged children conducted from December 2015 to January 2016. The sample calculation formula n = (μα/δ)2p(1 − p) was used to estimate the number of samples. With a stratified-clustered sampling method, 6 primary (aged 7 to 12 years) and 4 secondary (aged 13 to 15 years) schools including 4890 students (2529 [51.72%] male) were randomly selected from 22 primary and 19 secondary schools. This met the sample number criteria for total number of samples, providing a representative sample of Economic and Technological Development Zone of Qingdao primary and secondary schools.

2.2. Ethics Statement

The study was approved by the Ethics Committee of the Review Board of the Qingdao Economic and Technological Development Area First people's Hospital and adhered to the Declaration of Helsinki. Written informed consent was obtained from parents or guardians.

2.3. Examination

The children underwent a comprehensive eye examination, including measurement of visual acuity, color vision, assessment of ocular motility, slit-lamp examination, autorefraction, cycloplegic autorefraction, and fundus examination using a direct ophthalmoscope (YZ6E; Six Six Vision Corp., Suzhou, China). The cycloplegic autorefraction was measured by a binocular open-field autorefractor (RM-8000A, Topcon, Japan) with a measurement range of −25 to +22 diopters (D). Cycloplegia was induced in each eye by instillation of three drops of 0.5% tropicamide 5 min apart. Extra tropicamide (1 or 2 drops) was also used in some children to obtain adequate mydriasis (a minimum pupil diameter of 6 mm and disappearance of papillary light reflex).

2.4. Questionnaire Survey

A standardized myopia questionnaire, which was modified from the Sydney Myopia Study (SMS) group, was adapted and applied to this study. The questionnaire was translated by ophthalmologists, an epidemiologist, and a statistician in our study group. It is composed of two parts: the parental version and the children's version. A pilot study in the Anyang Childhood Eye Study (ACES) proved that this questionnaire is valid and reliable [19]. In order to ensure the quality of investigation, school mobilization was implemented in selected school sampling units by project members through a meeting in which the details regarding the questionnaire were explained to the parents and guardians. Primary school students were allowed to complete the questionnaire with the help of parents. The questionnaire was administered to obtain information on near work time, continuous near work time without 5 min rest, near work distance, outdoor activities, and so on. Parental refractive status was also obtained from the questionnaire. Average hours spent on near work (<50 cm working distance) were summed from questions regarding drawing, homework, reading, making handicrafts, and handheld computer use. Time spent on outdoor activities was based on questions about playing outdoors, family picnics, taking a walk, bicycle riding, hiking, and outdoor sports after school on weekdays and weekends. To assess the duration of continuous reading, children were asked about the time they spent in continuous reading or other near work before taking a break of 5 minutes or longer. They were then classified into five categories: category A: 0–15 min; category B: 15–30 min; category C: 30–45 min; category D: 45–60 min; and category E: >60 min. From response to a question “How far did you often write your homework,” the distance from objects when doing near work was classified into four categories: category A: >30 cm; category B: 20–30 cm; category C: 10–20 cm; and category D: <10 cm.

2.5. Quality Control

The equipment was checked and calibrated daily. All examiners were senior clinical ophthalmologists. Data entry was completed by well-trained staff.

2.6. Definitions and Data Analysis

Spherical equivalent (SE) was calculated with the following equation: SE = spherical diopter +0.5 × cylinder diopter. Myopia, emmetropia, and hyperopia was defined as the SE < −0.50 D (low myopia < −0.5 to >−3.0 D, moderate myopia ≤ −3.0 to >−6.0 D, and high myopia ≤ −6.0 D), −0.50 D ≤ SE ≤ +0.50 D, and SE > + 0.50 D, respectively [20]. Statistical analysis was performed using a commercially available statistical software package (SPSS for Windows, version 20.0, IBM-SPSS, Chicago, Illinois, USA). First, we examined the associations between the prevalence of myopia and other parameters in a univariate analysis. Multiple logistic regression analysis was then used to determine independent factors. Odds ratios (OR) and their 95% confidence intervals (CI) for myopia were calculated. All P values were 2-sided and were considered statistically significant when the values were less than 0.05.

3. Result

The mean refractive error was −1.62 (±1.82) D, and the overall prevalence of myopia was 52.02%. The prevalence of myopia in students increased with age (χ2 = 560.58, P < 0.001); the prevalence of myopia in students at 10 years old was only 22.61%, as it increased to 56.93% in students at 13 years old, and the rate was the highest (69.34%) in students at 15 years old (Table 1). There was no significant statistical difference in prevalence of myopia between boys and girls (χ2 = 0.709, P = 0.400, Table 2).

Table 1.

The prevalence of myopia in different age groups.

Age (years) Number (n) Myopia (n) Myopia (%)
10 690 156 22.61
11 678 222 32.74
12 671 307 45.75
13 685 390 56.93
14 1080 716 66.30
15 1086 753 69.34
Total 4890 2544 52.02

Table 2.

The prevalence of myopia of different genders in different age groups.

Age (years) Male Female
n Myopia (%) n Myopia (%)
10 361 94 (26.0) 329 62 (18.8)
11 348 119 (34.2) 330 103 (31.2)
12 351 156 (44.4) 320 151 (47.2)
13 344 199 (57.8) 341 191 (56.0)
14 560 346 (61.8) 520 370 (71.2)
15 565 387 (68.5) 521 366 (70.2)
Total 2529 1301 (51.4) 2361 1243 (52.6)

In addition, we found that low myopia was still the main form of adolescent myopia. The proportion of high myopia increased with age (χ2 = 567.054, P < 0.001, Table 3). Table 4 presents the time that students spent on near work and outdoor activities. The older children had spent significantly more time on near work (P = 0.03) and less time on outdoor activities than the young ones (P < 0.001).

Table 3.

The prevalence of low, moderate, and high myopia in different age groups.

Age (years) No myopia Low myopia Moderate myopia High myopia
n % n % n % n %
10 534 77.39 130 18.84 17 2.46 9 1.30
11 456 67.26 162 23.89 50 7.37 10 1.47
12 364 54.25 192 28.61 89 13.26 26 3.87
13 295 45.07 226 32.99 117 17.08 47 6.86
14 364 33.70 380 35.19 247 22.87 89 8.24
15 333 30.66 388 35.73 266 24.49 99 9.12
Total 2346 47.98 1478 30.22 786 16.07 280 5.73

Table 4.

Near work and outdoor activity time (hours per day) of the students.

Age (years) n Near work (h/d) Outdoor activity (h/d)
(Mean ± SD) (Mean ± SD)
10 562 3.32 ± 1.32 2.28 ± 1.21
11 559 3.42 ± 1.56 2.24 ± 1.26
12 536 3.41 ± 1.82 2.06 ± 1.32
13 561 3.78 ± 1.42 1.88 ± 1.12
14 752 4.32 ± 1.84 1.64 ± 1.14
15 783 4.62 ± 1.26 1.42 ± 0.96
P value P = 0.03 P < 0.001

The results of univariate and multivariate analyses of factors associated with myopia are shown in Table 5. Univariate analysis showed that the following variables were significantly associated with myopia: age, one myopic parent, two myopic parents, near work distance, near work time, outdoor activity time, and continuous near work without 5 min rest. In multivariate models, only the following variables were significantly associated with myopia: age, two myopic parents, outdoor activity time, and continuous near work without 5 min rest.

Table 5.

Associations between myopia and possible risk factors.

Variables Univariate analysis Multivariate analysis
Odds ratio 95% CI P Odds ratio 95% CI P
Age 1.43 1.34–1.52 0.012 1.23 1.18–1.27 <0.001
Sex
 Boys 1 1
 Girls 1.64 0.48–2.21 0.14 1.68 0.42–1.92 0.12
Parental myopia
 None 1 1
 One myopic 1.47 1.24–1.96 0.01 1.62 0.71–2.34 0.12
 Two myopic 2.32 1.72–3.28 <0.001 2.58 1.76–3.46 <0.001
Near work distance (cm)
 >30 1 1
 20–30 1.27 1.02–1.54 <0.001 1.12 0.69–1.38 0.23
 10–20 2.46 1.52–4.76 <0.001 1.76 0.49–2.74 0.18
 0–10 1.29 1.08–1.54 0.04 1.21 0.84–1.41 0.32
 Trend test 0.16 0.21
Near work time (h/d) 1.28 1.04–1.86 <0.001 1.42 0.79–2.04 0.16
Outdoor activity time (h/d) 0.67 0.46–0.78 0.03 0.74 0.53–0.92 <0.001
5 min rest after continuous near work time (min)
 0–15 1 1
 15–30 0.94 0.72–1.12 0.24 1.02 0.92–1.08 0.12
 30–45 1.19 1.02–1.31 0.02 1.24 1.14–1.32 <0.001
 45–60 1.36 1.12–1.49 <0.001 1.34 1.28–1.38 0.03
 >60 2.12 1.76–2.72 <0.001 2.48 1.92–3.24 <0.001
 Trend test <0.001 <0.001

∗ indicates a significant statistical significance (P < 0.05).

4. Discussion

The prevalence of myopia around the world has increased recently. Previous studies have shown that 9 to 16 years of age is the fastest growing period for adolescent myopia [21]. Other than genetic factors, environment is also an important contributing factor in the development of myopia [22]. Scholars from all over the world have done a lot of research on the environmental factors, but the specific mechanism and extent of this impact remain controversial.

Consistent with previous studies, we found that the prevalence of myopia in students persistently increased as the age increased. Interestingly, this result is lower than that in urban areas in Guangzhou [23], which is higher than that in rural areas in Yangxi [24]. In addition, low myopia is the main form of myopia, but the properation of high myopia increased as the age increased. We consider that this might be related to the social and economic environment in this region. From another point of view, the importance of environmental factors for myopia is explained.

At present, there is no unified conclusion about the prevalence of myopia among male or female. The current results revealed that girls were no more likely to suffer from myopia than boys. This is consistent with many previous studies [8, 25]. Particularly, in the COMET study, although there is no difference in the prevalence of myopia between boys and girls, boys had a slower progression (by 0.16 D) than girls [26]. They considered that any relationship with sex, if it existed, would occur early in the course of myopia and would not be sustained over time. We think that this explanation may be reasonable. Taking into account the age group of the participants in the study, we believe that this explanation is reasonable.

Previous studies showed that parental myopia, in even only one parent, leads to an increased risk for juvenile myopia. In Australia, in six-year-old children, there was 3.16- and 3.33-fold increased risk of incident myopia than no parental myopia, respectively [25]. One interesting finding of this study was that although one or two parental myopia was a risk factor for myopia in univariate analysis, only two parental myopia was a risk factor after multiple regression analysis. This result may provide us with some valuable information about the relationship between heredity and myopia.

Previous numerous cross-sectional studies had reported that schoolchildren engaged in near work were more likely to have myopia than those who spent less time on near work [27, 28] and whose distance of near work were shorter than 30 cm [29, 30]. However, there were also some studies that have reported lack of association between near work and myopia [31, 32]. Thus, the findings are equivocal. In this study, with the growth of age, students spent significantly more time on near work than before. The near work time increased from 3.32 h/d in the 10-year-old children to 4.62 h/d in the 15-year-old children. However, after multiple regression analysis, we found that near work time and near work distance were not significantly related to myopia. Perhaps, as Lin et al. [16] assumed, there was a special “saturation effect” between them.

Consistent with previous study [33], we found that children whose continuous near work time > 30 min without 5 min rest were more likely to have myopia than those 0–15 min group. Perhaps, we could put forward such a hypothesis that there was a “dose reponse” between myopia and the duration of continuous near work. In other words, as long as near work time reached a certain intensity, it would have an impact on myopia, which meaned that the intensity of near work rather than the total time was an important factor for myopia. However, it should be pointed out that some scholars considered that there was a positive association between a higher education level and myopia [34]. However, we thought that a higher academic level was highly correlated with near work time and it should not be listed separately.

In Singapore, a cross-sectional study was conducted to analyze the effect of outdoor activities on 1249 teenagers aged 11–20 years. They found a significant negative association between myopia and outdoor activities. Adjusting for the confounders, for each hour increase in outdoor activities per day, SE increased by 0.17 D and the axial length decreased by 0.06 mm [35]. Some scholars had also come up with the quantitative standard of outdoor activity time. Jones et al. [36] found that there might be a threshold of around 2-3 hours per day spent outdoors that was needed to prevent myopia. Smith et al. [37] found that high ambient lighting retarded the development of experimental myopia in monkeys. The possible explanations included that high ambient lighting could regulate the release of dopamine from the retina and stimulate the synthesis of vitamin D in the body [38, 39]. In the present study, the outdoor activity time decreased from 2.28 h/d in the 10-year-old children to 1.42 h/d in the 15-year-old children. Similar to previous studies, we found that the more time spent outdoors was associated with a lower prevalence of myopia. Although the specific mechanism remained to be further studied, the increase of outdoor activities as an effective method of preventing myopia was worth recommending.

In addition, it should be particularly pointed out that the questionnaire used in this study was similar to that of ACES. As the latest study on children myopia in China, the Anyang Childhood Eye Study has completed a series of horizontal and longitudinal studies on myopia. Therefore, we made a comparison of the two studies. At age 12 years, our children had similar level of near work time (3.41 versus 3.70 h/d) and outdoor activities time (2.06 versus 2.08 h/d) with the Anyang cohort [4042]. Therefore, we have reason to believe that the data of this survey are worthy of belief. Note that our children at age 12 years had significantly lower myopic prevalence (45.75% versus 67.3%) than theirs. These differences could not be explained by the time in near work and outdoor activities. By comparing with the Sydney Myopia Study, Li et al. [41] found a similar problem. They led to the idea that some behaviors during near work were more likely to play an important role in myopia. We thought that this idea was reasonable. We will make a further comparison of these related parameters between them in the following study.

Although there are several important findings in our study, the results of our analyses were tempered by some limitations. First, the data about near work, outdoor activities, and its related parameters was obtained from questionnaires. Although this method was predominant in previously reported studies, it could be subjected to recall bias. Second, the whole cycloplegic autorefraction data collection process lasted about 2 months, so there might be measurement bias. Third, there are some examples of using tropicamide for cycloplegia, but there are more international research examples of using cyclopentolate in recent years. As we all know, tropicamide is not as strong as cyclopentolate for paralyzing ciliary muscle. We finally chose tropicamide as cycloplegic agent mainly because we found some parents worried about the possible or potential side effects, and they also worry about that mydriasis for three days will affect children's learning. If cyclopentolate is used, majority of parents will refuse to attend the study. Therefore, there may be some errors in the results of cycloplegic autorefraction. Lastly, this was only a cross-sectional survey; thus, we could not draw any conclusion about the incidence and progression for myopia.

In conclusion, the prevalence of myopia in adolescent students increased as the grade increased. Age, two myopic parents, and continuous near work time without 5 min rest were risk factors for myopia. Longer time spent on outdoor activities was significantly associated with a lower risk of myopia. These associations may indicate that low intensity near work and more outdoor activities may be important for future trials of intervention on myopia.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  • 1.Morgan I. G., Ohno-Matsui K., Saw S. M. Myopia. The Lancet. 2012;379(9827):1739–1748. doi: 10.1016/S0140-6736(12)60272-4. [DOI] [PubMed] [Google Scholar]
  • 2.Vitale S., Cotch M. F., Sperduto R., Ellwein L. Costs of refractive correction of distance vision impairment in the United States, 1999–2002. Ophthalmology. 2006;113(12):2163–2170. doi: 10.1016/j.ophtha.2006.06.033. [DOI] [PubMed] [Google Scholar]
  • 3.Xiang F., He M., Morgan I. G. The impact of parental myopia on myopia in Chinese children: population-based evidence. Optometry and Vision Science. 2012;89(10):1487–1496. doi: 10.1097/OPX.0b013e31826912e0. [DOI] [PubMed] [Google Scholar]
  • 4.Lin L. L., Shih Y. F., Hsiao C. K., Chen C. J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Annals of the Academy of Medicine, Singapore. 2004;33(1):27–33. [PubMed] [Google Scholar]
  • 5.Fan D. S., Lam D. S., Lam R. F., et al. Prevalence, incidence, and progression of myopia of school children in Hong Kong. Investigative Ophthalmology & Visual Science. 2004;45(4):1071–1075. doi: 10.1167/iovs.03-1151. [DOI] [PubMed] [Google Scholar]
  • 6.Jung S. K., Lee J. H., Kakizaki H., Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Investigative Ophthalmology & Visual Science. 2012;53(9):5579–5583. doi: 10.1167/iovs.12-10106. [DOI] [PubMed] [Google Scholar]
  • 7.Yokoi T., Moriyama M., Hayashi K., et al. Predictive factors for comorbid psychiatric disorders and their impact on vision-related quality of life in patients with high myopia. International Ophthalmology. 2014;34(2):171–183. doi: 10.1007/s10792-013-9805-8. [DOI] [PubMed] [Google Scholar]
  • 8.French A. N., Morgan I. G., Mitchell P., Rose K. A. Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study. Ophthalmology. 2013;120(10):2100–2108. doi: 10.1016/j.ophtha.2013.02.035. [DOI] [PubMed] [Google Scholar]
  • 9.Saw S. M., Goh P. P., Cheng A., Shankar A., Tan D. T., Ellwein L. B. Ethnicity-specific prevalences of refractive errors vary in Asian children in neighbouring Malaysia and Singapore. British Journal of Ophthalmology. 2006;90(10):1230–1235. doi: 10.1136/bjo.2006.093450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Logan N. S., Shah P., Rudnicka A. R., Gilmartin B., Owen C. G. Childhood ethnic differences in ametropia and ocular biometry: the Aston Eye Study. Ophthalmic & Physiological Optics. 2011;31(5):550–558. doi: 10.1111/j.1475-1313.2011.00862.x. [DOI] [PubMed] [Google Scholar]
  • 11.Matamoros E., Ingrand P., Pelen F., et al. Prevalence of Myopia in France: A Cross-Sectional Analysis. Medicine. 2015;94(45, article e1976) doi: 10.1097/md.0000000000001976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Saw S. M., Hong C. Y., Chia K. S., Stone R. A., Tan D. Near work and myopia in young children. The Lancet. 2001;357(9253):p. 390. doi: 10.1016/S0140-6736(05)71520-8. [DOI] [PubMed] [Google Scholar]
  • 13.Tay M. T., Eong A., Ng C. Y., Lim M. K. Myopia and educational attainment in 421,116 young Singaporean males. Annals of the Academy of Medicine, Singapore. 1992;21:785–791. [PubMed] [Google Scholar]
  • 14.PC W., Tsai C. L., HL W., Yang Y. H., Kuo H. K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120(5):1080–1085. doi: 10.1016/j.ophtha.2012.11.009. [DOI] [PubMed] [Google Scholar]
  • 15.LJ W., You Q. S., Duan J. L., et al. Prevalence and associated factors of myopia in high-school students in Beijing. PLoS One. 2015;10(3, article e0120764) doi: 10.1371/journal.pone.0120764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lin Z., Vasudevan B., Jhanji V., et al. Near work, outdoor activity, and their association with refractive error. Optometry and Vision Science. 2014;91(4):376–382. doi: 10.1097/OPX.0000000000000219. [DOI] [PubMed] [Google Scholar]
  • 17.Low W., Dirani M., Gazzard G., et al. Family history, near work, outdoor activity, and myopia in Singapore Chinese preschool children. British Journal of Ophthalmology. 2010;94(8):1012–1016. doi: 10.1136/bjo.2009.173187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ojaimi E., Rose K. A., Smith W., Morgan I. G., Martin F. J., Mitchell P. Methods for a population-based study of myopia and other eye conditions in school children: the Sydney Myopia Study. Ophthalmic Epidemiology. 2005;12(1):59–69. doi: 10.1080/09286580490921296. [DOI] [PubMed] [Google Scholar]
  • 19.Li S. M., Shi F. R., Guo J. Y., et al. Evaluation of the application of outdoor activity questionnaire in 12-year-old children. Chinese Journal of School Health. 2012;33(1):108–109. [Google Scholar]
  • 20.Liang Y. B., Wong T. Y., Sun L. P., et al. Refractive errors in a rural Chinese adult population the Handan eye study. Ophthalmology. 2009;116(11):2119–2127. doi: 10.1016/j.ophtha.2009.04.040. [DOI] [PubMed] [Google Scholar]
  • 21.Mutti D. O., Hayes J. R., Mitchell G. L., et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investigative Ophthalmology & Visual Science. 2007;48(6):2510–2519. doi: 10.1167/iovs.06-0562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Congdon N. G., Friedman D. S., Lietman T. Important causes of visual impairment in the world today. JAMA. 2003;290(15):2057–2060. doi: 10.1001/jama.290.15.2057. [DOI] [PubMed] [Google Scholar]
  • 23.He M., Zeng J., Liu Y., Xu J., Pokharel G. P., Ellwein L. B. Refractive error and visual impairment in urban children in Southern China. Investigative Ophthalmology & Visual Science. 2004;45(3):793–799. doi: 10.1167/iovs.03-1051. [DOI] [PubMed] [Google Scholar]
  • 24.He M., Huang W., Zheng Y., Huang L., Ellwein L. B. Refractive error and visual impairment in school children in rural southern China. Ophthalmology. 2007;114(2):374–382.e1. doi: 10.1016/j.ophtha.2006.08.020. [DOI] [PubMed] [Google Scholar]
  • 25.French A. N., Morgan I. G., Burlutsky G., Mitchell P., Rose K. A. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. Ophthalmology. 2013;120(7):1482–1491. doi: 10.1016/j.ophtha.2012.12.018. [DOI] [PubMed] [Google Scholar]
  • 26.COMET Group. Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET) Investigative Ophthalmology & Visual Science. 2013;54(13):7871–7884. doi: 10.1167/iovs.13-12403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Saw S. M., Zhang M. Z., Hong R. Z., Fu Z. F., Pang M. H., Tan D. T. Near-work activity, night-lights, and myopia in the Singapore-China study. Archives of Ophthalmology. 2002;120(5):620–627. doi: 10.1001/archopht.120.5.620. [DOI] [PubMed] [Google Scholar]
  • 28.Woodman E. C., Read S. A., Collins M. J., et al. Axial elongation following prolonged near work in myopes and emmetropes. British Journal of Ophthalmology. 2011;95(5):652–656. doi: 10.1136/bjo.2010.180323. [DOI] [PubMed] [Google Scholar]
  • 29.Sherwin J. C., Reacher M. H., Keogh R. H., Khawaja A. P., Mackey D. A., Foster P. J. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology. 2012;119(10):2141–2151. doi: 10.1016/j.ophtha.2012.04.020. [DOI] [PubMed] [Google Scholar]
  • 30.You X., Wang L., Tan H., et al. Near Work Related Behaviors Associated with Myopic Shifts among Primary School Students in the Jiading District of Shanghai: A School-Based One-Year Cohort Study. PLoS One. 2016;11(5, article e0154671) doi: 10.1371/journal.pone.0154671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Saw S. M., Chua W. H., Hong C. Y., et al. Nearwork in early-onset myopia. Investigative Ophthalmology & Visual Science. 2002;43(2):332–339. [PubMed] [Google Scholar]
  • 32.Mutti D. O., Mitchell G. L., Moeschberger M. L., Jones L. A., Zadnik K. Parental myopia, near work, school achievement, and children’s refractive error. Investigative Ophthalmology & Visual Science. 2002;43(12):3633–3640. [PubMed] [Google Scholar]
  • 33.Ip J. M., Saw S. M., Rose K. A., et al. Role of near work in myopia: findings in a sample of Australian school children. Investigative Ophthalmology & Visual Science. 2008;49(7):2903–2910. doi: 10.1167/iovs.07-0804. [DOI] [PubMed] [Google Scholar]
  • 34.Mirshahi A., Ponto K. A., Hoehn R., et al. Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology. 2014;121(10):2047–2052. doi: 10.1016/j.ophtha.2014.04.017. [DOI] [PubMed] [Google Scholar]
  • 35.Dirani M., Tong L., Gazzard G., et al. Outdoor activity and myopia in Singapore teenage children. British Journal of Ophthalmology. 2009;93(8):997–1000. doi: 10.1136/bjo.2008.150979. [DOI] [PubMed] [Google Scholar]
  • 36.Jones L. A., Sinnott L. T., Mutti D. O., Mitchell G. L., Moeschberger M. L., Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Investigative Ophthalmology & Visual Science. 2007;48(8):3524–3532. doi: 10.1167/iovs.06-1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Smith E. L., 3rd, Hung L. F., Huang J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investigative Ophthalmology & Visual Science. 2012;53(1):421–428. doi: 10.1167/iovs.11-8652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Feldkaemper M., Schaeffel F. An updated view on the role of dopamine in myopia. Experimental Eye Research. 2016;114:106–119. doi: 10.1016/j.exer.2013.02.007. [DOI] [PubMed] [Google Scholar]
  • 39.Tideman J. W., Polling J. R., Voortman T., et al. Low serum vitamin D is associated with axial length and risk of myopia in young children. European Journal of Epidemiology. 2016;31(5):491–499. doi: 10.1007/s10654-016-0128-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Li S. M., Liu L. R., Li S. Y., et al. Design, methodology and baseline data of a school-based cohort study in Central China: the Anyang Childhood Eye Study. Ophthalmic Epidemiology. 2013;20(6):348–359. doi: 10.3109/09286586.2013.842596. [DOI] [PubMed] [Google Scholar]
  • 41.Li S. M., Li S. Y., Kang M. T., et al. Near work related parameters and myopia in Chinese children: the Anyang Childhood Eye Study. PLoS One. 2015;10(8, article e0134514) doi: 10.1371/journal.pone.0134514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Li S. M., Li H., Li S. Y., et al. Time outdoors and myopia progression over 2 years in Chinese children: the Anyang Childhood Eye Study. Investigative Ophthalmology & Visual Science. 2015;56(8):4734–4740. doi: 10.1167/iovs.14-15474. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Ophthalmology are provided here courtesy of Wiley

RESOURCES