Skip to main content
. 2016 Jul 28;9(9):8311–8325. doi: 10.18632/oncotarget.10882

Table 5. Prediction performance of genetic risk score and family history for glioma risk.

Datasets No. of subjects AUC(95%CI)a H-L testb P value
Dataset2
fmc 1453 0.535(0.515-0.554) 1.000
cGRS 1643 0.607(0.581-0.644) 0.386
wGRS1 1643 0.610(0.583-0.638) 0.111
wGRS2 1643 0.611(0.584-0.639) 0.049
PRFLR(SNPs) 1453 0.615(0.586-0.644) 0.051
cGRS+fmc 1453 0.620(0.591-0.649) 0.816
wGRS1+fmc 1453 0.623(0.595-0.652) 0.334
wGRS2+fmc 1453 0.621(0.592-0.650) 0.117
PRFLR(SNPs+fmc) 1453 0.625(0.596-0.653) 0.250
Dataset3
fmc 1718 0.526(0.508-0.543) 1.000
cGRS 1921 0.605(0.580-0.629) 0.997
wGRS1 1921 0.607(0.582-0.632) 0.880
wGRS2 1921 0.608(0.583-0.633) 0.113
PRFLR (SNPs) 1718 0.635(0.610-0.660) 0.927
cGRS+fmc 1718 0.611(0.585-0.637) 0.743
wGRS1+fmc 1718 0.611(0.585-0.638) 0.154
wGRS2+fmc 1718 0.609(0.583-0.636) 0.016
PRFLR(SNPs+fmc) 1718 0.646(0.619-0.672) 0.393

AUC: the area under operating characteristic curves; fmc: family history of caner; cGRS: count genetic risk score; wGRS: weighed genetic risk score; PRFLR: predicted risks from logistic regression analysis; a, 2000 bootstrap replicates; b, Hosmer-Lemeshow “goodness-of-fit” test for model calibration.