Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2018 Mar 1;6(9):e00125-18. doi: 10.1128/genomeA.00125-18

Complete Genome Sequence of a Ciprofloxacin-Resistant Salmonella enterica subsp. enterica Serovar Kentucky Sequence Type 198 Strain, PU131, Isolated from a Human Patient in Washington State

Devendra H Shah a,, Narayan C Paul a, Jean Guard b
PMCID: PMC5834327  PMID: 29496839

ABSTRACT

Strains of the ciprofloxacin-resistant (Cipr) Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 (ST198) have rapidly and extensively disseminated globally to become a major food safety and public health concern. Here, we report the complete genome sequence of a Cipr S. Kentucky ST198 strain, PU131, isolated from a human patient in Washington State (USA).

GENOME ANNOUNCEMENT

The ciprofloxacin-resistant (Cipr) Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 (ST198) has emerged as a global human pathogen. Human illnesses caused by this pathogen in North America and Europe are associated with history of travel to Africa, Southeast Asia, and the Middle East, where this pathogen is established in poultry (17). Cipr S. Kentucky ST198 is also established in poultry in France, Poland, and other European countries and represents a significant risk to the public health and food safety (1, 2). Recently, a genetically distinct lineage of S. Kentucky ST198 susceptible to ciprofloxacin was reported in dairy cattle in the United States (8). Here, we report the first complete genome sequence of Cipr S. Kentucky ST198 strain PU131, isolated in 2013 from a human patient in Washington State. An individual colony of S. Kentucky strain PU131 was grown overnight at 37°C in LB broth (Difco). DNA was extracted using a Qiagen DNeasy kit (Qiagen). The PacBio library was constructed following the manufacturer's protocol and size selected using BluePippin, with an average fragment size of 19 kb (range, 12.3 to 35 kb). Sequencing was performed using single-molecule real-time (SMRT) cells in an RS II sequencer (Molecular Biology and Genomics Core, Washington State University, Pullman, WA). A total of 89,926 reads (179.4× coverage), with mean read size of 12,595 bp and N50 value of 17,462 bp, were assembled using the Hierarchical Genome Assembly Process 2 (HGAP 2) workflow to obtain a 4,900,326-bp circularized consensus sequence, with 52.2% GC content. The serovar designation and multilocus sequence type (MLST) were confirmed in silico using EnteroBase (https://enterobase.warwick.ac.uk/species/index/senterica) and SISTR (9), respectively. The NCBI Prokaryotic Genome Annotation Pipeline (https://www.ncbi.nlm.nih.gov/genome/annotation_prok) predicted 4,995 genes, including 4,873 coding sequences (CDSs), 22 rRNAs (10), 85 tRNAs (11), 14 noncoding RNAs (ncRNAs) (12), and 1 transfer-messenger RNA (tmRNA) (13). Additionally, 7 riboswitches (14), 2 clustered regularly interspaced short palindromic repeat (CRISPR) arrays (15) and 198 pseudogenes were identified. No plasmids were detected using PlasmidFinder version 1.3 (16). S. Kentucky strain PU131 was resistant to ampicillin, amoxicillin-clavulanic acid, chloramphenicol, tetracycline, sulfamethoxazole-trimethoprim, streptomycin, kanamycin, nalidixic acid, and ciprofloxacin. Quinolone resistance-determining regions (QRDRs) of the target genes gyrA, gyrB, parC, and parE showed 2 mutations in gyrA (Ser83Phe and Asp87Gly) and 3 mutations in parC (Ser80Ile, Thr57Ser, and Thr255Ser). The two gyrA mutations together with one parC mutation (Ser80Ile) suggest high-level fluoroquinolone resistance (17). Corresponding resistance genes [blaTEM1-B, cmlA1, tet(A), sul1, sul3, dfrA12, aadA1, aadA2, aph(3ʹ)-la, and mph(A)] were identified through ResFinder version 3.0 (18). PHAST analysis showed the presence of 3 intact, 3 incomplete, and 2 questionable prophage elements (19). S. Kentucky strain PU131 carries a 25.9-kb Salmonella genomic island-1 (SGI-1) inserted at the trmE-yidY locus with 23 open reading frames (C1D15_24950 to C1D15_24845). Comparison with SGI-1K (GenBank accession number AY463797) using progressiveMAUVE (20) and multigene BLAST (21) revealed that an ∼24-kb region corresponding to SGI-1K ORFs resG-S044 is deleted from strain PU131, with multiple insertions elsewhere in the genome. This complete genome sequence will aid in developing improved detection/subtyping methods for epidemiological source tracing and to achieve a better understanding of the pathogenicity and antimicrobial resistance of this emerging pathogen.

Accession number(s).

The genome sequence is deposited in NCBI GenBank (BioProject number PRJNA428776, accession number CP026327). The version described is the first version.

ACKNOWLEDGMENT

This research was funded by the Safe Food Initiative and Agricultural Animal Health Program at the Washington State University, Pullman, WA.

Footnotes

Citation Shah DH, Paul NC, Guard J. 2018. Complete genome sequence of a ciprofloxacin-resistant Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 strain, PU131, isolated from a human patient in Washington State. Genome Announc 6:e00125-18. https://doi.org/10.1128/genomeA.00125-18.

REFERENCES

  • 1.Le Hello S, Bekhit A, Granier S, Barua H, Beutlich J, Zając M, Münch S, Sintchenko V, Bouchrif B, Fashae K, Pinsard J-L, Sontag L, Fabre L, Garnier M, Guibert V, Howard P, Hendriksen R, Christensen J, Biswas P, Cloeckaert A, Rabsch W, Wasyl D, Doublet B, Weill F-X. 2013. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain. Front Microbiol 4:395. doi: 10.3389/fmicb.2013.00395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM, Whichard JM, Bouchrif B, Fashae K, Granier SA, Silva NJD, Cloeckaert A, Threlfall EJ, Angulo FJ, Aarestrup FM, Wain J, Weill FX. 2011. International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J Infect Dis 204:675–684. doi: 10.1093/infdis/jir409. [DOI] [PubMed] [Google Scholar]
  • 3.Mulvey MR, Boyd DA, Finley R, Fakharuddin K, Langner S, Allen V, Ang L, Bekal S, El Bailey S, Haldane D, Hoang L, Horsman G, Louis M, Robberts L, Wylie J. 2013. Ciprofloxacin-resistant Salmonella enterica serovar Kentucky in Canada. Emerg Infect Dis 19:999–1001. doi: 10.3201/eid1906.121351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Raufu IA, Fashae K, Ameh JA, Ambali A, Ogunsola FT, Coker AO, Hendriksen RS. 2014. Persistence of fluoroquinolone-resistant Salmonella enterica serovar Kentucky from poultry and poultry sources in Nigeria. J Infect Dev Ctries 8:384–388. doi: 10.3855/jidc.3495. [DOI] [PubMed] [Google Scholar]
  • 5.Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. 2017. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult Sci 96:687–702. doi: 10.3382/ps/pew342. [DOI] [PubMed] [Google Scholar]
  • 6.Westrell T, Monnet DL, Gossner C, Heuer O, Takkinen J. 2014. Drug-resistant Salmonella enterica serotype Kentucky in Europe. Lancet Infect Dis 14:270–271. doi: 10.1016/S1473-3099(14)70703-0. [DOI] [PubMed] [Google Scholar]
  • 7.Rickert-Hartman R, Folster JP. 2014. Ciprofloxacin-resistant Salmonella enterica serotype Kentucky sequence type 198. Emerg Infect Dis 20:910–911. doi: 10.3201/eid2005.131575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Haley BJ, Kim SW, Pettengill J, Luo Y, Karns JS, Van Kessel JAS. 2016. Genomic and evolutionary analysis of two Salmonella enterica serovar Kentucky sequence types isolated from bovine and poultry sources in North America. PLoS One 11:e0161225. doi: 10.1371/journal.pone.0161225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ, Nash JHE, Taboada EN. 2016. The Salmonella In Silico Typing Resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One 11:e0147101. doi: 10.1371/journal.pone.0147101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin ZD, Lee P, Yang LY, Poles M, Brown SM, Sotero S, DeSantis T, Brodie E, Nelson K, Pei ZH. 2010. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76:5333–3897. doi: 10.1128/AEM.01365-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Raina M, Ibba M. 2014. tRNAs as regulators of biological processes. Front Genet 5:171. doi: 10.3389/fgene.2014.00171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Repoila F, Darfeuille F. 2009. Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell 101:117–131. doi: 10.1042/BC20070137. [DOI] [PubMed] [Google Scholar]
  • 13.Himeno H, Kurita D, Muto A. 2014. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell. Front Genet 5:66. doi: 10.3389/fgene.2014.00066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Edwards AL, Batey RT. 2010. Riboswitches: a common RNA regulatory element. Nat Educ 3:9. [Google Scholar]
  • 15.Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. doi: 10.1093/nar/gkm360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi: 10.1128/AAC.02412-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Baucheron S, Le Hello S, Doublet B, Giraud E, Weil FX, Cloeckaert A. 2013. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Front Microbiol 4:213. doi: 10.3389/fmicb.2013.00213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi: 10.1093/jac/dks261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. doi: 10.1093/nar/gkr485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. doi: 10.1371/journal.pone.0011147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Medema MH, Takano E, Breitling R. 2013. Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 30:1218–1223. doi: 10.1093/molbev/mst025. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES