Skip to main content
International Journal of Systematic and Evolutionary Microbiology logoLink to International Journal of Systematic and Evolutionary Microbiology
. 2017 Oct 16;67(12):5296–5311. doi: 10.1099/ijsem.0.002255

Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp.

Stephen L W On 1,*, William G Miller 2, Kurt Houf 3,4, James G Fox 5, Peter Vandamme 4
PMCID: PMC5845751  PMID: 29034857

Abstract

Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.

Keywords: minimal standards, species descriptions, polyphasic taxonomy, Campylobacteraceae, Helicobacteraceae, Arcobacter, Wolinella, Epsilonproteobacteria

Introduction

The class Epsilonproteobacteria is a phylogenetically-distinct lineage within the Proteobacteria [1] and currently contains 16 genera (Tables S1 and S2, available with the online version of this article). The genus Campylobacter was the first of these established [2], and the realisation that certain species were important human and animal pathogens prompted many further studies investigating the wider ecology and distribution of similar organisms. Bacteria found in cases of human gastritis and initially classified as Campylobacter spp. were later reclassified into a separate but related genus, Helicobacter [3]. Improvements in isolation, detection and taxonomic characterization methods, together with continued interest in the significance and distribution of such bacteria have resulted in the present status of the Epsilonproteobacteria – a highly diverse group of organisms containing over 100 taxa.

Within the class, phylogenetic subgroups can be identified. Of these, most taxa in the families Campylobacteraceae (namely Campylobacter, Arcobacter and Sulfurospirillum) and Helicobacteraceae (namely Helicobacter and Wolinella) appear more closely related to each other than to free-living Epsilonproteobacteria such as the Nautiliaceae [4]. Their known or potential significance as pathogens, and advances in cultivation, make Campylobacter and Helicobacter the most populous genera, with many taxa sharing the same ecological niche. Their close phenotypic similarity to each other is illustrated by many Arcobacter, Sulfurospirillum and Helicobacter spp. having originally been described as ‘Campylobacter species (reviewed in [5]).

In every year since 1988, at least one novel species belonging to at least one of these genera has been described. On occasion, descriptions have been controversial [6–9], and on several occasions the ICSP Subcommittee on the Taxonomy of Campylobacter and Related Bacteria have remarked on the sometimes questionable quality of particular species descriptions that were observed [10–12]. Furthermore, taxonomic methods have undergone a ‘sea change’ with whole-genome sequencing offering a new and more detailed perspective on organismal relationships.

This paper accounts for these substantive changes and expands and updates previously-published minimal standards for describing new species of Campylobacteraceae [13] and Helicobacter [14]. Table S1 lists the current, validly-described species names in the genera covered by this proposal with their type strains and accompanying 16S rRNA gene sequence accession number. Members of the genus Sulfurospirillum are exclusively free-living and, from an ecological perspective, have more in common with, for example, members of the Nautilaceae (cf. Table S2), for which minimal standards will be proposed in due course. Intriguingly, phylogenetic analyses based on both 16S rRNA gene sequences (Fig. 1), and concatenated protein sequences derived from a subset of 289 conserved single-copy-number genes reveal a close relationship between Sulfurospirillum and Campylobacter [15], despite these taxa inhabiting radically different ecological niches. Such observations highlight the complexities of the Epsilonproteobacteria group as a whole, and support the need for a polyphasic taxonomic approach for accurate classification.

Fig. 1.

Fig. 1.

Phylogenetic relationships between 16S rRNA genes of type strains of the taxa encompassed in this study inferred by neighbor-joining tree using the Kimura 2-parameter distance estimation method, with bootstrapping based on 500 replicates.

General features of Campylobacteraceae

Gram-negative, curved, spiral or occasionally straight rod-shaped cells, 0.2–5 µm long. Cells may become more spherical after time or with exposure to environmental stress. Non-spore forming. Most species are motile by use of one to two unsheathed polar flagella, but a few species are aflagellate. Optimum growth temperatures range from 25 °C (notably Arcobacter spp.) to 42 °C (some Campylobacter spp.). All Campylobacter spp. can be cultured at 37 °C under appropriate conditions. The optimal growth atmosphere for Campylobacteraceae is microaerobic – traditionally, such atmospheres are described as comprising 3–8 % O2, with commonly available Gaspak systems providing the balance with 10 % CO2 and the remainder as N2. However, some species require H2 for growth and studies have demonstrated all Campylobacter spp. can grow in an atmosphere of 3 % O2, 7 % H2, 10 % CO2 and 80% N2. Most Arcobacter spp. demonstrate the ability to grow under aerobic conditions (A. anaerophilus is an exception as an obligate anaerobe) [16], but all arcobacters to date can grow at 20–30 °C. Most species produce oxidase (undetected in C. gracilis and in some strains of C. showae [17]) and, in conventional laboratory testing for oxidation and/or fermentation of glucose, (e.g. [18]), do not demonstrate the ability to ferment or oxidise carbohydrates. Campylobacter and some Arcobacter spp. may be associated with the oral environment and/or the enteric or reproductive tracts of host animals; some Arcobacter spp. are free-living [4, 5, 16].

General features of Helicobacteraceae

Gram-negative, spiral, helical, curved, or fusiform rods of width 0.3–0.6 µm and length 1–5 µm. Cells may become more spherical after time or with exposure to environmental stress. Non-spore forming. Most species are motile by means of single or multiple flagella. In most species the flagella are sheathed. Optimum temperatures of growth range from 37 to 42 °C and all known species can be cultured at 37 °C. They are usually microaerophilic and best cultured in atmospheres containing H2. Oxidase producing with most strains producing catalase. Gastric Helicobacter spp. described to date predominantly produce copious amounts of urease. Using common laboratory methods (e.g. [18]), Helicobacteraceae do not demonstrate the ability to ferment or oxidise carbohydrates. Helicobacter and Wolinella species described thus far have been associated with gastric, enteric, reproductive and/or hepatic environments of a variety of host animal species [1, 3, 7, 14, 19, 20]; none are known to be free-living.

General comments

The description of new species belonging to Campylobacteraceae or Helicobacteraceae should be based on characteristics necessary for assigning the new taxon to the genus, and on characteristics serving to differentiate the new taxon from existing taxa of the genus. In practice, this will require a polyphasic taxonomic approach utilizing both genotypic and phenotypic methods, especially since there is no single phenotypic characteristic that readily enables the assignation of strains to the genera Campylobacter, Arcobacter, Helicobacter or Wolinella. Furthermore, species such as C. coli and H. pullorum may be found in the same environments (presently chickens and humans) and share many phenotypic characters, rendering them difficult to discriminate using conventional phenotyping [5]. Thus, a phylogenetic assignation based on, at least, comparative analysis of 16S rRNA gene sequences is mandatory to appropriately assign strains to genus level [5, 21]. Corresponding sequences from type strains of relevant, validly-named Epsilonproteobacterial taxa should be included in sequence comparisons to appropriately designate phylogeny and thus genus placement. Additional gene sequence comparisons, such as atpA [22], rpoB [23] or groEL (Hsp60) [24], may provide useful information for strain classification and a finer resolution of taxonomic identity.

The description should ideally be based on not fewer than five isolates from different sources, or five distinct genotypes (i.e. representing distinguishable, individual strains) from the same or similar sources. The most useful taxonomic descriptions involve studies where species heterogeneity can be adequately assessed.

For critical comparisons with other species, controls consisting of type or reference strains of the appropriate taxa must be tested. For all phenotypic test procedures, the inoculum size, composition of the gaseous atmosphere, temperature and period of incubation, and composition of the basal growth medium should be stated. The use of standardized, well-described tests and methods is recommended to facilitate comparison [25–29]. For descriptions at the species level, the use of advanced phenotypic methods, such as and including MALDI-TOF MS analysis, should be regarded as supportive data but not the primary means by which species are delineated at the phenotypic level. Present studies, although limited to relatively few taxa, indicate this approach has promise [30–33] with some caveats [34].

Putative new species of uncultured organisms for which molecular sequence data (such as 16S rRNA sequence) is available may qualify for assignment to the provisional taxonomic status Candidatus [35] in accordance with the proposals of Murray and Stackebrandt [36], as exemplified by the initial description of C. hominis prior to its culture [37].

Cell morphology

The reaction of cells in the Gram-staining procedure must be stated. The shape, size, and spiral wavelength (where appropriate) of bacterial cells should be reported. The tendency to undergo transformation to coccoid forms on exposure to air or in older cultures should be noted and the time taken for cells to change their appearance provided. The number and arrangement of flagella should be determined by electron microscopy, as well as the presence or absence of flagellar sheaths and periplasmic fibers.

Motility

Cells should be observed by microscopic examination of wet mounts or hanging drop preparations of young cultures in buffered saline or broth.

Growth conditions

Factors affecting growth should be tested under conditions that are near optimal unless stated otherwise.

  1. Colony morphology. The size, shape, and colour of colonies should be described for optimal growth conditions on solid media. The type of nutrient agar base medium used (brain-heart infusion [BHI], Mueller-Hinton etc.) and the manufacturer from which it was obtained should be stated. The presence of swarming on solid media should be noted. When cultured on blood-containing agar media, the percentage and species of blood (e.g. horse, sheep, cattle) should be stated and any haemolytic activity described.

  2. Temperature range. The time of incubation and ability to grow in specified broth or agar media from standardized inocula at various temperatures should be reported. The following temperatures should be used: 25, 37 and 42 °C.

  3. Gaseous requirements. The ability of the strains to grow under aerobic, microaerobic and anaerobic conditions should be reported. The oxygen and hydrogen content must be specified for microaerobic conditions. The means by which such conditions were produced (e.g., gas replacement method, commercial gas-generating sachet [state manufacturer], incubator) must be given.

Biochemical properties

Results for the following tests are required: (i) oxidase activity, by use of any conventional method [28]; (ii) catalase activity, with percentage of reagent solution and time of observation given; (iii) nitrate reduction, preferably by the plate method of Cook [38]; (iv) indoxyl acetate hydrolysis, preferably using a disc method [28] with percentage of reagent solution, volume of impregnation and time of observation given; (v) urease activity, using a rapid method [39]; (vi) alkaline phosphatase activity [40], with time of observation given; (vii) hippurate hydrolysis [41]; and (viii) selenite reduction [28]. Growth on media containing the following compounds using standardized methods [26, 27] should be determined: 2.0 % NaCl, 1 % glycine and 0.04 % triphenyl tetrazolium chloride (TTC): the ability of strains to reduce the latter should also be recorded when growth is observed.

Other tests

Test results for the following are desirable: γ-glutamyl transpeptidase [25]; growth on media containing 3.5 % NaCl, 0.032 % methyl orange, and 0.1 % sodium fluoride [26, 27, 29]; and anaerobic growth on 0.1 % trimethylamine N-oxide (TMAO) [27].

Resistance to antimicrobial agents

Susceptibility to nalidixic acid (30 µg) and cephalothin (30 µg), should be determined either by disc-diffusion or plate MIC tests. For diffusion assays, the absence of a clear zone of inhibition should be recorded as resistance; for susceptible strains, the inhibition zone sizes should be stated. The type of base medium used should be stated. Mueller-Hinton agar with added 10 % horse – or sheep – blood is recommended. Standardised procedures should be employed [26, 27, 42]. Brucella Agar and other media with bisulfite have been shown to inhibit the growth of H. pylori and therefore should be avoided [43].

Summary Tables for recommended phenotypic tests for Arcobacter, Campylobacter, Helicobacter and Wolinella spp. are provided (Tables 1, 2 and 3).

Table 1. Summary phenotypic data for extant Arcobacter spp.

Data are derived from original species descriptions [16, 50, 74–88] (cf. Table S1) and/or On et al. [17].

1 2 3 4 5 6 7 8 9 10
Growth temperature range (°C) 18–37 18–37 18–37 18–37 18–37 18–37 18–25,[37, 42] 18–37,42∗ 18–30 18–37, 42†±
Atmospheric requirements ANO2 O2, mO2, ANO2† O2, mO2, ANO2 O2, mO2, ANO2 [O2], mO2, ANO2* O2, mO2 O2, mO2, [ANO2] O2, mO2, ANO2† O2,mO2 O2, mO2, ANO2±
Oxidase + + + + + + + + +
Catalase + + V V + + ± +
Nitrate reduction + + + + V + +
Indoxyl acetate hydrolysis + + + + + + + + + +
Urease + + V
Alkaline phosphatase U U U U U U U
Hippuricase U U U U U U U
Selenite reduction U U U U U U U
Growth on: 2 % NaCl + + + M + M + + +
1 % glycine +
0.04 % TTC + V + M
TTC reduction + U M
Resistance to: Nalidixic acid (30 mg) U U U F V U U U U
Cephalothin (30 mg) U U U + + U + U U U
Desirable features:
g-glutamyl transpeptidase U U U U U U U U U U
Growth on:
3.5 % NaCl + U + V + U + U
0.032 % methyl orange U U U + + U + U U U
0.1 % sodium fluoride U U U + V U + U U U
Anaerobic growth on 0.1 % TMAO U U U + ± U F U U U
11 12 13 14 15 16 17 18 19 20 21
Growth temperature range (°C) 18–37 25–37 10–40 18–37,42± 18–37,42± 18–25 18–37,[42] 18–30 18–30 18–30 18–37
Atmospheric requirements O2, mO2, ANO2 O2,mO2 O2,mO2 O2, mO2, ANO2± O2, mO2, ANO2† O2, mO2, ANO2 O2, mO2, ANO2 O2, mO2 O2, mO2 O2, mO2 O2, mO2
Oxidase + + + + + + + + + + 1
Catalase + + + + + + + + 1
Nitrate reduction + + + + + + + + + 1
Indoxyl acetate hydrolysis + + + + + + + + 1
Urease U + 1
Alkaline phosphatase U + U U U
Hippuricase U U U U
Selenite reduction U U U U V F U + U
Growth on: 2 % NaCl + U + + + + + M V 1
1 % glycine + + + +
0.04 % TTC U + V
TTC reduction + + + V
Resistance to: Nalidixic acid (30 mg) U U U U V U U
Cephalothin (30 mg) U U U U + U + + U
Desirable features:
g-glutamyl transpeptidase U U U U U U U U U U
Growth on:
3.5 % NaCl + U + + + + + V V +
0.032 % methyl orange U U U U + + U + U U
0.1 % sodium fluoride U U U U + + U + U U
Anaerobic growth on 0.1 % TMAO U U U U U + U V U U

1, A. anaerophilus; 2, A. aquimarinus; 3, A. bivalviorum; 4, A. butzleri; 5, A. cibarius; 6, A. cloacae; 7, A. cryaerophilus; 8, A. defluvii; 9, A. ebronensis; 10, A. ellisii; 11, A. halophilus; 12, A. lanthieri; 13, A. marinus; 14, A. molluscorum; 15, A. mytili; 16, A. nitrofigilis; 17, A. skirrowii; 18, A. suis; 19, A. thereius; 20, A. trophiarum; 21, A. venerupis. +=all strains examined give a positive result. -=all strains examined give a negative result. O2, aerobic conditions; mO2, microaerobic conditions; ANO2, anaerobic conditions. ()=variable (31–58 %) number of strains grow at this temperature; []=few (11–25 %) strains grow in these conditions; V, 33–67 % strains positive; ±, weak activity; †=O2 only; †, at 30 °C only; F, 22–25 % strains positive; M, 84–95 % strains positive. U, unknown at this time.

Table 2. Summary phenotypic data for extant Campylobacter spp.

Data are derived from original species descriptions [6, 31, 60, 67–69, 87–120] (cf. Table S1) and/or On et al. [17].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Growth temperature range (°C) 37–42 37–42 30–42 (30), 37, (42) 25–42 37, (42) 30, 37, (42) (18–22), 25–37, (42) 25–37, (42) <18–22>, (25), 37 (30), 37,(42) 37–42 [30], 37–42 37 [18–25], 30–42 30–42
Atmospheric requirements mO2 mO2, ANO2 mO2 HmO2, ANO2 ANO2, mO2∗ mO2 ANO2, [HmO2] mO2, [ANO2] mO2, ANO2 mO2, (ANO2) ANO2, [HmO2] mO2 mO2 ANO2, [HmO2] Mo2 mO2, ANO2
Oxidase + + + V + + + + + + + + + + +
Catalase + V + + + + + + V + + +
Nitrate reduction + V + F M + + + + M M V + V + +
Indoxyl acetate hydrolysis + + V + V M + +
Urease V +
Alkaline phosphatase U M + V U F
Hippuricase + F M
Selenite reduction U U + F U M U F U + +
Growth on: 2 % NaCl U F + V U V _ F U
1 % glycine + V M F + + + + F + + V + + V
0.04 % TTC U U + V + + + F
TTC reduction U U + V V + U F
Resistance to: Nalidixic acid (30 mg) V M + V + + U V V +/i V + +
Cephalothin (30 mg) + + M U M F
Desirable features:
 g-glutamyl transpeptidase + U U U U U U U U U U U U U
Growth on:
 3.5 % NaCl U U U
 0.032 % methyl orange U U + M U U V + U M V U V U + +
 0.1 % sodium fluoride U U + M U U M U M M U + V
 Anaerobic growth on 0.1 % TMAO U U M U U + F U F + U + M M
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Growth temperature range (°C) 18–37 37 37 (30), 37-42 37–42 37–42 30–42 30–42 37–42 37–42 37 37 <30>, 37, <42> 30–37,[42] (30), 37, [42] 37–42 30–37,[42] 30–37,[42] 37–42
Atmospheric requirements mO2,ANO2∗ mO2 mO2 mO2 mO2, ANO2∗ mO2 mO2 mO2,ANO2 mO2,ANO2 mO2 mO2,ANO2 mO2,ANO2 ANO2, [HmO2] ANO2, [HmO2] mO2,ANO2 mO2,ANO2 mO2 ANO2, [HmO2] mO2, ANO2∗
Oxidase + + + + + + + + + + + + V + + + + +
Catalase + + M + + + + + + + F V V† + F +
Nitrate reduction + + + + + + F V U + + + + M + + + +
Indoxyl acetate hydrolysis + M U F U + V + F
Urease + U V‡ +
Alkaline phosphatase U U + U M U U U
Hippuricase + M
Selenite reduction U + M U U V F U U U U V + +
Growth on: 2 % NaCl U U + M M U M U U V + + + +
1 % glycine + + F M + + V + + + V + M + +
0.04 % TTC U + V M U U M U U U U U V
TTC reduction U + V M U U M F U U U U V
Resistance to: Nalidixic acid (30 mg) + + + V M U M M M + +
Cephalothin (30 mg) + M + + + F U F F +
Desirable features:
 g-glutamyl transpeptidase + U U U U U U U U U U U U U U U U U U
Growth on:
 3.5 % NaCl U U U U U U V +
 0.032 % methyl orange U + + U U + + U U U U + U + + +
 0.1 % sodium fluoride U F + U U + U U U U + M + + +
 Anaerobic growth on 0.1 % TMAO U V U U + + U U U U + V M + + U

1, Campylobacter avium; 2, 3, Campylobactercoli; 4, Campylobacterconcisus; 5, Campylobactercorcagiensis; 6, Campylobactercuniculorum; 7, Campylobactercurvus; 8, Campylobacterfetussubsp.fetus; 9, Campylobacterfetussubsp.testudinum; 10, Campylobacterfetussubsp.venerealis; 11, Campylobactergracilis; 12, Campylobacterhepaticus; 13, Campylobacterhelveticus; 14, Campylobacterhominis; 15, Campylobacterhyointestinalissubsp.hyointestinalis; 16, Campylobacterhyointestinalissubsp.lawsonii; 17, Campylobacteriguaniorum; 18, Campylobacterinsulaenigrae; 19, Campylobacterjejunisubsp.doylei; 20, Campylobacterjejunisubsp.jejuni; 21, Campylobacterlanienae; 22, Campylobacterlarisubsp.concheus; 23, Campylobacterlarisubsp.lari; 24, Campylobactermucosalis; 25, Campylobacterornithocola, 26, Campylobacterpeloridis; 27, Campylobacterpinnipediorumsubsp.pinnipediorum; 28, Campylobacterpinnipediorumsubsp.caledonicus; 29, Campylobacterrectus; 30, Campylobactershowae; 31, Campylobactersputorum; 32, Campylobactersubantarcticus; 33, Campylobacterupsaliensis; 34, Campylobacterureolyticus; 35, Campylobactervolucris. +=all strains examined give a positive result. -=all strains examined give a negative result.<>=20–30 % strains grow at this temperature; []=50–60 % strains grow at this temperature; ()=76–93 % grow at these conditions; O2, aerobic conditions; mO2, microaerobic conditions; ANO2, anaerobic conditions; HmO2=microaerobic atmosphere enhanced with H2; F=7–27 % strains positive; V=29–57 % strains positive; M=70–95 % strains positive; ∗Weak growth.; †Biovar fecalis strains produce catalase; ‡Biovar paraureolyticus strains produce urease; §Urease-Positive Thermophilic Campylobacter (UPTC) variants.

Table 3. Summary phenotypic data for extant Helicobacter and Wolinella spp.

Data are derived from original species descriptions [3, 19, 42, 44, 46, 57, 58, 62, 87, 121–154] (cf. Table S1) and/or On et al. [17].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Growth temperature range (°C) (30), 37, <42> 37–42 37–42 37 37 37–42 37–42 37–42 <30>, 37–42 37–42 37–42 37–42 37–42 37 37 [30], 37, (42) 37 37
Atmospheric requirements mO2 mO2 mO2 mO2, CO2, ANO2∗ mO2 mO2 mO2 mO2 mO2 mO2 mO2, ANO2 mO2 mO2, ANO2 mO2 mO2 mO2 ANO2 mO2, ANO2∗
Oxidase + + + + + + + + + + + + + + + + + +
Catalase + + + + + + + + + + M + + + M F +
Nitrate reduction + + + V + + + + + + +
Indoxyl acetate hydrolysis + + + + + + F + +
Urease + + + + + + + + +
Alkaline phosphatase + + U + + U F + + + V
Hippuricase U U U U U U +
Selenite reduction U U U U U U U U U U U
Growth on: 2 % NaCl U U U
1 % glycine + + + U +
0.04 % TTC U U U + U V U U + U U + + U
TTC reduction U U +† U + U V U U + U + + +
Resistance to: Nalidixic acid (30 mg) + I + + V V I I + U
Cephalothin (30 mg) + + + + + + F + + + + + + U
Desirable features:
 g-glutamyl transpeptidase U + + U + U + U U U U +
Growth on:
 3.5 % NaCl U U U U U U
 0.032 % methyl orange F U U U U U + U U + U U V M U
 0.1 % sodium fluoride mO2 U U U U U + U U U U V + U
 Anaerobic growth on 0.1 % TMAO U U U U U + U U U U + U
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Growth temperature range (°C) 37 30–42 37–42 37–42 37–42 37–42 37–42 37–42 37 37, (42) 37–42 37–42 (30), 37,<42> 37, [42] 37–42 37 37 37–42 37–42 37–42 37–42
Atmospheric requirements mO2, ANO2 HmO2, ANO2 mO2 mO2 Mo2 mO2 mO2 mO2 mO2 mO2, (ANO2) mO2, ANO2∗ mO2, ANO2 mO2 mO2, ANO2 mO2 mO2, (ANO2) mO2, ANO2∗ mO2 mO2 mO2 ANO2
Oxidase + + + + + + + U + + + + + + + + + + + + +
Catalase + + + + + + + + + + + M + + + + + + + + +
Nitrate reduction + + + + + + + + + +
Indoxyl acetate hydrolysis + + + U + F F U
Urease + + + + + + M + + + V
Alkaline phosphatase U + + + + + + V + F
Hippuricase U U U U U U
Selenite reduction U U U U U U U U + U + U U U U U U +
Growth on: 2 % NaCl U U U U U U U U U -a -a U +
1 % glycine + + + + + + + + + +
0.04 % TTC + U U U U U U + U V V U U U U U U
TTC reduction U U U U U U + U V V U U + U U
Resistance to: Nalidixic acid (30 mg) + + + + + + M + + U + V
Cephalothin (30 mg) + + + + + + + + + + F + + V U + + +
Desirable features:
g-glutamyl transpeptidase U + U U U U U + + + + U
Growth on:
3.5 % NaCl U U U U U U U U U -a -a -a U
0.032 % methyl orange U U U U U U U U U + U U U U U +
0.1 % sodium fluoride U U U U U U U U + U + U U V U U U +
Anaerobic growth on 0.1 % TMAO + U U U U U U U U F U U V U U U +

1, Helicobacter acinonychis; 2, Helicobacter anseris; 3, Helicobacter aurati; 4, Helicobacter baculiformis; 5, Helicobacter bilis; 6, Helicobacter bizzozeronii; 7, Helicobacter brantae; 8, Helicobacter Canadensis; 9, Helicobacter canis; 10, Helicobacter cetorum; 11, Helicobacter cholecystus; 12, Helicobacter cinaedi; 13, Helicobacter cynogastricus; 14, Helicobacter equorum; 15, Helicobacter felis; 16, Helicobacter fennelliae; 17, Helicobacter ganmani; 18, Helicobacter heilmannii; 19, Helicobacter hepaticus; 20, Helicobacter himalayensis; 21, Helicobacter jaachi; 22, Helicobacter japonicus; 23, Helicobacter macacae; 24, Helicobacter marmotae; 25, Helicobacter mastomyrinus; 26, Helicobacter mesocricetorum; 27, Helicobacter muridarum; 28, Helicobacter mustelae; 29, Helicobacter pametensis; 30, Helicobacter pullorum; 31, Helicobacter pylori; 32, Helicobacter rodentium; 33, Helicobacter saguini; 34, Helicobacter salomonis; 35, Helicobacter suis; 36, Helicobacter trogontum; 37, Helicobacter typhlonius; 38, Helicobacter valdiviensis; 39, Wolinella succinogenes. +=all strains examined give a positive result. -=all strains examined give a negative result. O2, aerobic conditions; mO2, microaerobic conditions; ANO2, anaerobic conditions. <>=18–27 % strains positive; ()=33–67 strains positive; []=77–92 % strains positive; F=6–29 % strains positive; V=33–58 % strains positive; M=83–93 % strains positive; ∗, Weak growth; † , when API method used; I, intermediate resistance; a, assumed; no growth on 1.5 % NaCl media.

Phylogenetic analyses

The essentially complete (greater than 1450 bases) 16S rRNA sequence must be determined for the type strain, and ideally at least four additional independent isolates of the putative new species or subspecies. Specific methods for sequencing 16S rRNA from Helicobacter species, including intervening sequences (IVS), have been described [44]. Intervening sequences in the 16S rRNA gene should be fully sequenced and the 16S rRNA gene sequence, including any IVS, deposited in nucleic acid databases as a single sequence. Deposition of a complete genome sequence accomplishes this goal de facto. The phylogenetic position of representative strains of the putative new taxon must be determined by comparative sequence analysis of the 16S rRNA macromolecule [21]. Phylogenetic tree construction should demonstrate that the novel sequence clusters with those of all validly-named taxa of the appropriate genus within the Campylobacteraceae or Helicobacteraceae. A full description of alignment and treeing methods, including software, algorithms, treatment of gap penalties, and treatment of IVS sequences should be included. An exemplar tree is presented in Fig. 1.

The 16S rRNA gene is the most widely used phylogenetic marker but there are known problems with the accurate phylogenetic placement of certain species within the Campylobacteraceae or Helicobacteraceae [7, 45–47]. The use of additional phylogenetic markers such as atpA [22], rpoB [23] or groEL [24], may provide useful data to support the phylogenetic position of the new taxon. Multi-Locus Sequence Analysis [48] or rMLST [49] may provide a more robust description of the taxonomic position of a given strain. Taxonomic studies of Campylobacteraceae or Helicobacteraceae species using MLSA and rMLST are as yet uncommon, although MLSA has been applied to Arcobacter species [32, 50]. Ultimately, these approaches can be expected to be replaced by whole genome sequence based phylogenomic analyses (e.g. [15, 51, 52]). As with 16S rRNA gene sequence comparisons, representatives of all extant validly-published named taxa in the genus in which the proposed novel organism is placed must be included.

Genomic analyses

A complete genome sequence of the proposed type strain of a novel species or subspecies is a definitive means to determine the guanosine-plus-cytosine (% G+C) content of the DNA; however, classical methods (melting temperature or enzymatic) may also be used [53]. Reference DNA such as Escherichia coli ATCC 11775T (G+C, 51 mol%) or H. pylori ATCC 700392 (G+C, 39 mol%) should be analysed at the same time and its estimated G+C content (moles percent) expressed relative to the reference DNA should be reported.

The current taxonomic definition of a species requires determination of the whole-genomic similarity, whereby at or around 70 % DNA–DNA relatedness indicates strains are sufficiently related to be assigned to the same species [54–56]. Methodological caveats notwithstanding (discussed below), novel species should demonstrate genomic relatedness to extant species at values discernibly lower than this level. The proposed type strain for any new taxon must be used in these comparisons.

Whole-genome relatedness can be tested in several ways. Classical DNA–DNA hybridization experiments have been used for many years (e.g. [57–60]). It is recognized that experiments on Epsilonproteobacteria can be difficult and that different methods can result in differing estimates of the degree of relatedness between strains [61, 62]. Numerical comparison of whole-cell protein profiles [5, 6, 60], and high-resolution amplified fragment length polymorphism (AFLP)-based fingerprints has also been shown to be effective in accurately determining genetic relationships between strains [63, 64]. It is essential that analyses are performed against a database of strain profiles of sufficient number and quality that represent all taxa with validly described species names, for results to be meaningful.

Where whole-genome sequences of proposed new species are available, in silico analyses that mimic conventional DNA–DNA hybridisations can be used in comparisons with type strain genomes of validly-published extant species, with which a close phylogenetic relationship has been indicated, to determine interspecific genomic relatedness. Computational approaches described include Average Nucleotide Identity (ANI: [65]) and Genome Blast Distance Phylogeny (GBDP: [66]). Each algorithm is available online (presently http://enve-omics.ce.gatech.edu/ani/ for ANI: and http://ggdc.dsmz.de for GBDP). For new species proposals, we recommend both these analyses be presented where whole-genome sequences are used as the source of the genomic data. Complete or draft sequences of appropriate comparator type strains should be used as the basis for comparison. Table 4 lists comparisons between selected complete genomes of well-characterised members of the families Campylobacteraceae and Helicobacteraceae, using the default parameters suggested online for ANI and GBDP algorithms as exemplar output. These data identify some discordance between certain comparator taxa among almost all outputs and presently-accepted classifications; Formula 3 used for GBDP analysis performed optimally on this data set (Table 4). Nonetheless, a continued validation of Formula 3 for GBDP analysis is prudent.

Table 4. Exemplar results of whole-genome comparisons for well-characterized strains of Campylobacter, Arcobacter and Helicobacter using Average Nucleotide Identity (ANI) [65] and Genome Blast Distance Phylogeny (GBDP) [66].

Genomes were accessed from public databases and ANI and GBDP values calculated using online tools (http://enve-omics.ce.gatech.edu/ani/ and http://ggdc.dsmz.de respectively) during December 2016. For ANI, values ≥95 were proposed to mimic conventional DDH results of ≥70 % [65]. For GBDP, values are proposed equivalent to conventional DDH [66]. Genome designations are GenBank reference numbers. The identity of non-type strain genomes was further verified by determining the phylogenetic relationship of their 16S rRNA gene sequences with those derived from type strains (Fig. 1 and Table S1). For C. jejuni subspecies, C. coli, C. fetus and C. hyointestinalis, MLST [155–157] was also undertaken. ANI, Average Nucleotide Identity; GBDP, Genome Blast Distance Phylogeny; SD, standard deviation; NCTC, National Collection of Type Cultures, England; CVM, Center for Veterinary Medicine, Maryland, USA; LMG, Laboratorie Microbiologie Ghent, Belgium; RM, Robert Mandrell collection, US Department of Agriculture; ATCC, American Type Culture Collection. T, type strain.

Comparator ANI Outputs* GBDP outputs*
Reference taxon/strain/genome Taxon Strain no. Genome Two way ANI SD No. of fragments Formula 1 Formula 2 Formula 3
Campylobacterjejunisubsp.jejuni NCTC 11168/AL111168.1 C. jejunisubsp. jejuni 81116 NC_009839.1 97.83 1.81 6804 89.3 79.9 90.5
C. jejunisubsp.jejuni 81-176 NC_008787.1 98.08 2.09 7029 93.9 81.6 94.3
C. jejunisubsp.doylei L269.97 NC_009707.1 95.97 2.3 6387 75.2 67 76.3
C. coli 15-537360 NC_022660.1 85.18 6.84 4191 73.1* 27.9 58.7
C. coli CVM N29710 NC_022347.1 84.92 6.65 4142 75.5* 27.5 59.9
C. coli/15-537360/NC_022660.1 C. coli CVM N29710 NC_022347.1 99.05 2.38 7593 97.6 89.1 97.9
C. fetussubsp.venerealis/84-112/NZ_HG004426.1 C. fetussubsp.testudinum 03-427T NC_022759.1 91.32 2.97 7293 86.6 46.6* 79.7
C. fetussubsp.fetus 82-40 NC_008599.1 99.8 1.03 8390 94.5 97.3 96.6
C. fetussubsp. venerealis bv. Intermedius cfvi03/293 CP006999.2 99.87 1.28 8908 98.8 97.4 99.3
C. hyointestinalissubsp.hyointestinalis LMG 9260 NZ_CP015575.1 82.26 6.82 2223 34.4 22.1 30.1
C. hyointestinalissubsp.lawsonii LMG 15993 NZ_CP015576.1 80.77 6.22 2013 28.9 21.6 26.2
C. hyointestinalissubsp.hyointestinalis/LMG 9260 / NZ_CP015575.1 C. hyointestinalissubsp.lawsonii LMG 15993 NZ_CP015576.1 94.65* 3.16 5862 70 57.6 69.5
Arcobacter nitrofigilis / DSM 7299T/CP001999.1 A. butzleri RM4018 NC_009850.1 78.09 4.7 1555 17.5 19.7 17.2
H. pylori / 26695 / NC_000915.1 H. pylori Shi470 NC_010698.2 94.38* 2.59 6303 91.5 56.4* 87.3
H. pylori India7 NC_017372.1 94.85* 2.36 6580 91.4 59.4* 88.1
H. pylori SouthAfrica7 NC_017361.1 90.52* 3.16 5815 85.5 42.6* 77
H. pylori J99 NC_000921.1 93.65* 2.44 6360 92.1 54* 87.1
H. mustelae NCTC 12198T NC_013949.1 Insufficient hits 48 12.7 28.5 13.1
H. hepaticus ATCC 51449 NC_004917.1 Insufficient hits 27 12.7 19.8 13.1
H. felis ATCC 49179T NC_014810.2 76.97 8.29 69 12.8 19.7 13.2
H. cinaedi CCUG 18818T NC_020555.1 Insufficient hits 39 12.6 28.6 13
H. cinaedi / CCUG 18818T / NC_020555.1 H. canis NCTC 12740 NZ_KI669458 83.78 8.63 285 14 26.2 14.3
H. hepaticus ATCC 51449 NC_004917.1 77.94 4.84 1126 17.7 19.8 17.4

*Denotes results that are discordant with current classifications.

Description of subspecies

There is precedent for the description of genetically- defined subspecies among the Campylobacteraceae in particular (notably for C. jejuni, C. lari, C. fetus and C. hyointestinalis) [31, 67–69]. Most of these subspecies (apart from C. fetussubsp.fetus and C. fetussubsp.venerealis, where the definition is historically based on differing disease aetiologies) [5, 31] are characterized by a high level of infraspecific similarity and distinctive phenotype and often ecotype. This definition aligns with the concept described by Wayne et al. [54], whereby ‘subspecies designations can be used for genetically-close organisms that diverge in phenotype’. Subspecies should therefore exhibit DNA–DNA relatedness to the type strain of the species approximating or exceeding 70 %, with strains belonging to a given subspecies demonstrating a higher degree of genomic similarity, and clear differential characteristics in genotype, phenotype and/or ecotype between differing subspecies, as with the examples listed above.

Ecology

The natural habitat(s) of the proposed species should be detailed as much as possible, to include location(s), host species (if applicable), site of isolation, pathogenicity and clinical features (if appropriate).

Closing remarks

Minimal standards for describing new prokaryotic species aim to provide clear guidelines to the scientific community to assist in the delineation of novel taxa in a robust and unambiguous manner. This can only help the community at large who may be required to rapidly recognize emerging threats (or benefits) to public, plant, animal or environmental health. The standards described herein consider (i) previous recommendations for these taxa [8, 13, 14]; (ii) current, and indeed previous recommendations for characterisation of prokaryotes for taxonomic purposes [54–56], and (iii) the emerging discipline of genomic taxonomy, which is in a relative state of infancy and indeed flux [70–73]. At present, the continued need for a polyphasic taxonomic approach to achieve stable and robust classifications remains critical. These standards support that need.

Funding information

The authors received no specific grant from any funding agency.

Acknowledgements

The authors would like to thank all of the members of the International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria for their comments on this manuscript. This document owes much to this committee’s previous publication of Minimal Standards for describing new species of the family Campylobacteraceae [13] and Helicobacter spp. [14]. Alyssa Terestre Pappa (MIT) is thanked for the updates to the Tables in the revised manuscript.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Supplementary Data

Supplementary File 1

Footnotes

Abbreviations: ANI, average nucleotide identity; GBDP, Genome Blast Distance Phylogeny; TMAO, trimethylamine N-oxide.

Two supplementary tables are available with the online version of this article.

References

  • 1.Garrity GM, Bell JA, Lilburn . Family II. Helicobacteraceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey's Manual of Systematic Bacteriology. 2 ed. vol. 2. New York, USA: Springer; 2005. p. 1168. (editors) (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) [Google Scholar]
  • 2.Sebald M, Véron M. Teneur en bases de L'ADN et classification des vibrions. Annales de l'Institut Pasteur. 1963;105:897–910. [PubMed] [Google Scholar]
  • 3.Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD, et al. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Bacteriol. 1989;39:397–405. doi: 10.1099/00207713-39-4-397. [DOI] [Google Scholar]
  • 4.Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ϵ-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4:458–468. doi: 10.1038/nrmicro1414. [DOI] [PubMed] [Google Scholar]
  • 5.On SLW. Taxonomy, phylogeny, and methods for the identification of Campylobacter species. In: Ketley JM, Konkel ME, editors. Campylobacter: Molecular and Cellular Biology. Wymondham, UK: Horizon Bioscience; 2005. pp. 13–42. (editors) [Google Scholar]
  • 6.Vandamme P, van Doorn LJ, Al Rashid ST, Quint WG, van der Plas J, et al. Campylobacter hyoilei Alderton et al. 1995 and Campylobacter coli Véron and Chatelain 1973 are subjective synonyms. Int J Syst Bacteriol. 1997;47:1055–1060. doi: 10.1099/00207713-47-4-1055. [DOI] [PubMed] [Google Scholar]
  • 7.Vandamme P, Harrington CS, Jalava K, On SLW. Misidentifying helicobacters: the Helicobacter cinaedi example. J Clin Microbiol. 2000;38:2261–2266. doi: 10.1128/jcm.38.6.2261-2266.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Vandamme P, On SLW. Recommendations of the subcommittee on the taxonomy of Campylobacter and related Bacteria. Int J Syst Evol Microbiol. 2001;51:719–721. doi: 10.1099/00207713-51-2-719. [DOI] [PubMed] [Google Scholar]
  • 9.Suerbaum S, Kraft C, Dewhirst FE, Fox JG. Helicobacter nemestrinae ATCC 49396T is a strain of Helicobacter pylori (Marshall et al. 1985) Goodwin et al. 1989, and Helicobacter nemestrinae Bronsdon et al. 1991 is therefore a junior heterotypic synonym of Helicobacter pylori. Int J Syst Evol Microbiol. 2002;52:437–439. doi: 10.1099/00207713-52-2-437. [DOI] [PubMed] [Google Scholar]
  • 10.Miller WG, On SLW. International committee on systematics of prokaryotes. subcommittee on the taxonomy of campylobacter and related bacteria: minutes of the closed meeting, 2 September 2009, Niigata, Japan. Int J Syst Evol Microbiol. 2011;61:2559–2560. doi: 10.1099/ijs.0.037143-0. [DOI] [PubMed] [Google Scholar]
  • 11.On SLW International Committee on Systematic Bacteriology Subcommittee on the taxonomy of Campylobacter and related Bacteria: minutes of the meeting 31st July 2002, Paris, Fance. Int J Syst Evol Microbiol. 2004:291–292. doi: 10.1099/00207713-50-3-1399. [DOI] [PubMed] [Google Scholar]
  • 12.On SLW, Owen RJ. International committee on systematics of prokaryotes; subcommittee on the taxonomy of campylobacter and related bacteria: minutes of the meetings, 3 and 4 September 2007, Rotterdam, Holland. Int J Syst Evol Microbiol. 2009:197–199. [Google Scholar]
  • 13.Ursing JB, Lior H, Owen RJ. Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int J Syst Bacteriol. 1994;44:842–845. doi: 10.1099/00207713-44-4-842. [DOI] [PubMed] [Google Scholar]
  • 14.Dewhirst FE, Fox JG, On SLW. Recommended minimal standards for describing new species of the genus Helicobacter. Int J Syst Evol Microbiol. 2000;50:2231–2237. doi: 10.1099/00207713-50-6-2231. [DOI] [PubMed] [Google Scholar]
  • 15.Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110. doi: 10.3389/fmicb.2014.00110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Sasi Jyothsna TS, Rahul K, Ramaprasad EV, Sasikala C, Ramana C. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int J Syst Evol Microbiol. 2013;63:4619–4625. doi: 10.1099/ijs.0.054155-0. [DOI] [PubMed] [Google Scholar]
  • 17.On SLW, Holmes B, Sackin MJ. A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol. 1996;81:425–432. doi: 10.1111/j.1365-2672.1996.tb03529.x. [DOI] [PubMed] [Google Scholar]
  • 18.Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953;66:24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Dewhirst FE, Seymour C, Fraser GJ, Paster BJ, Fox JG. Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov. Int J Syst Bacteriol. 1994;44:553–560. doi: 10.1099/00207713-44-3-553. [DOI] [PubMed] [Google Scholar]
  • 20.Gill J, Haydon TG, Rawdon TG, Mcfadden AM, Ha HJ, et al. Helicobacter bilis and Helicobacter trogontum: infectious causes of abortion in sheep. J Vet Diagn Invest. 2016;28:225–234. doi: 10.1177/1040638716638704. [DOI] [PubMed] [Google Scholar]
  • 21.Paster BJ, Dewhirst FE. Phylogeny of Campylobacters, Wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int J Syst Bacteriol. 1988;38:56–62. doi: 10.1099/00207713-38-1-56. [DOI] [Google Scholar]
  • 22.Miller WG, Yee E, Jolley KA, Chapman MH. Use of an improved atpA amplification and sequencing method to identify members of the Campylobacteraceae and Helicobacteraceae. Lett Appl Microbiol. 2014;58:582–590. doi: 10.1111/lam.12228. [DOI] [PubMed] [Google Scholar]
  • 23.Korczak BM, Stieber R, Emler S, Burnens AP, Frey J, et al. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int J Syst Evol Microbiol. 2006;56:937–945. doi: 10.1099/ijs.0.64109-0. [DOI] [PubMed] [Google Scholar]
  • 24.Kärenlampi RI, Tolvanen TP, Hänninen ML. Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J Clin Microbiol. 2004;42:5731–5738. doi: 10.1128/JCM.42.12.5731-5738.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Megraud F, Bonnet F, Garnier M, Lamouliatte H. Characterization of "Campylobacter pyloridis" by culture, enzymatic profile, and protein content. J Clin Microbiol. 1985;22:1007–1010. doi: 10.1128/jcm.22.6.1007-1010.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.On SLW, Holmes B. Effect of inoculum size on the phenotypic characterisation of Campylobacter spp. J Clin Micro. 1991a;29:923–926. doi: 10.1128/jcm.29.5.923-926.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.On SLW, Holmes B. Reproducibility of tolerance tests that are useful in the identification of campylobacteria. J Clin Microbiol. 1991;29:1785–1788. doi: 10.1128/jcm.29.9.1785-1788.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.On SLW, Holmes B. Assessment of enzyme detection tests useful in identification of campylobacteria. J Clin Microbiol. 1992;30:746–749. doi: 10.1128/jcm.30.3.746-749.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.On SLW, Holmes B. Classification and identification of campylobacters, helicobacters and allied taxa by numerical analysis of phenotypic characters. System Appl Microbiol. 1995;18:374–390. [Google Scholar]
  • 30.Alispahic M, Hummel K, Jandreski-Cvetkovic D, Nöbauer K, Razzazi-Fazeli E, et al. Species-specific identification and differentiation of Arcobacter, helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J Med Microbiol. 2010;59:295–301. doi: 10.1099/jmm.0.016576-0. [DOI] [PubMed] [Google Scholar]
  • 31.Fitzgerald C, Tu ZC, Patrick M, Stiles T, Lawson AJ, et al. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles. Int J Syst Evol Microbiol. 2014;64:2944–2948. doi: 10.1099/ijs.0.057778-0. [DOI] [PubMed] [Google Scholar]
  • 32.Levican A, Rubio-Arcos S, Martinez-Murcia A, Collado L, Figueras MJ. Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Syst Appl Microbiol. 2015;38:30–35. doi: 10.1016/j.syapm.2014.10.011. [DOI] [PubMed] [Google Scholar]
  • 33.Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, et al. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2005;71:6292–6307. doi: 10.1128/AEM.71.10.6292-6307.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Bessède E, Solecki O, Sifré E, Labadi L, Mégraud F. Identification of Campylobacter species and related organisms by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Clin Microbiol Infect. 2011;17:1735–1739. doi: 10.1111/j.1469-0691.2011.03468.x. [DOI] [PubMed] [Google Scholar]
  • 35.Murray RG, Schleifer KH. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol. 1994;44:174–176. doi: 10.1099/00207713-44-1-174. [DOI] [PubMed] [Google Scholar]
  • 36.Murray RG, Stackebrandt E. Taxonomic note: implementation of the provisional status candidatus for incompletely described procaryotes. Int J Syst Bacteriol. 1995;45:186–187. doi: 10.1099/00207713-45-1-186. [DOI] [PubMed] [Google Scholar]
  • 37.Lawson AJ, Linton D, Stanley J. 16s rRNA gene sequences of 'Candidatus Campylobacter hominis', a novel uncultivated species, are found in the gastrointestinal tract of healthy humans. Microbiology. 1998;144:2063–2071. doi: 10.1099/00221287-144-8-2063. [DOI] [PubMed] [Google Scholar]
  • 38.Cook GT. A plate test for Nitrate Reduction. J Clin Pathol. 1950;3:359–362. doi: 10.1136/jcp.3.4.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Owen RJ, Martin SR, Borman P. Rapid urea hydrolysis by gastric campylobacters. Lancet. 1985;1:111. doi: 10.1016/S0140-6736(85)92004-5. [DOI] [PubMed] [Google Scholar]
  • 40.Itoh T, Yanagawa Y, Shingaki M, Takahashi M, Kai A, et al. Isolation of Campylobacter pyloridis from human gastric mucosa and characterization of the isolates. Microbiol Immunol. 1987;31:603–614. doi: 10.1111/j.1348-0421.1987.tb03121.x. [DOI] [PubMed] [Google Scholar]
  • 41.Skirrow MB, Benjamin J. Differentiation of enteropathogenic campylobacter. J Clin Pathol. 1980;33:1122. doi: 10.1136/jcp.33.11.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.van den Bulck K, Decostere A, Baele M, Vandamme P, Mast J, et al. Helicobacter cynogastricus sp. nov., isolated from the canine gastric mucosa. Int J Syst Evol Microbiol. 2006;56:1559–1564. doi: 10.1099/ijs.0.63860-0. [DOI] [PubMed] [Google Scholar]
  • 43.Hawrylik SJ, Wasilko DJ, Haskell SL, Gootz TD, Lee SE. Bisulfite or sulfite inhibits growth of Helicobacter pylori. J Clin Microbiol. 1994;32:790–792. doi: 10.1128/jcm.32.3.790-792.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Fox JG, Yan LL, Dewhirst FE, Paster BJ, Shames B, et al. Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J Clin Microbiol. 1995;33:445–454. doi: 10.1128/jcm.33.2.445-454.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Harrington CS, On SLW. Extensive 16S rRNA gene sequence diversity in Campylobacter hyointestinalis strains: taxonomic and applied implications. Int J Syst Bacteriol. 1999;49:1171–1175. doi: 10.1099/00207713-49-3-1171. [DOI] [PubMed] [Google Scholar]
  • 46.Hänninen ML, Kärenlampi RI, Koort JM, Mikkonen T, Björkroth KJ. Extension of the species Helicobacter bilis to include the reference strains of Helicobacter sp. flexispira taxa 2, 3 and 8 and finnish canine and feline flexispira strains. Int J Syst Evol Microbiol. 2005;55:891–898. doi: 10.1099/ijs.0.63245-0. [DOI] [PubMed] [Google Scholar]
  • 47.Hänninen ML, Utriainen M, Happonen I, Dewhirst FE. Helicobacter sp. flexispira 16S rDNA taxa 1, 4 and 5 and finnish porcine Helicobacter isolates are members of the species Helicobacter trogontum (taxon 6) Int J Syst Evol Microbiol. 2003;53:425–433. doi: 10.1099/ijs.0.02389-0. [DOI] [PubMed] [Google Scholar]
  • 48.Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol. 2015;38:237–245. doi: 10.1016/j.syapm.2015.03.007. [DOI] [PubMed] [Google Scholar]
  • 49.Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, et al. Ribosomal multilocus sequence typing: universal characterization of Bacteria from domain to strain. Microbiology. 2012;158:1005–1015. doi: 10.1099/mic.0.055459-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Levican A, Collado L, Figueras MJ. Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov., two new species isolated from food and sewage. Syst Appl Microbiol. 2013;36:22–27. doi: 10.1016/j.syapm.2012.11.003. [DOI] [PubMed] [Google Scholar]
  • 51.Ankenbrand MJ, Keller A, Chain F. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome. 2016;59:783–791. doi: 10.1139/gen-2015-0175. [DOI] [PubMed] [Google Scholar]
  • 52.Zhang Y, Qiu S. Phylogenomic analysis of the genus Ralstonia based on 686 single-copy genes. Antonie van Leeuwenhoek. 2016;109:71–82. doi: 10.1007/s10482-015-0610-4. [DOI] [PubMed] [Google Scholar]
  • 53.de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem. 1970;12:133–142. doi: 10.1111/j.1432-1033.1970.tb00830.x. [DOI] [PubMed] [Google Scholar]
  • 54.Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37:463–464. doi: 10.1099/00207713-37-4-463. [DOI] [Google Scholar]
  • 55.Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol. 2002;52:1043–1047. doi: 10.1099/00207713-52-3-1043. [DOI] [PubMed] [Google Scholar]
  • 56.Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–266. doi: 10.1099/ijs.0.016949-0. [DOI] [PubMed] [Google Scholar]
  • 57.Fox JG, Taylor NS, Edmonds P, Brenner DJ. Campylobacter pylori subsp. mustelae subsp. nov. isolated from the gastric mucosa of ferrets (Mustela putorius furo), and an emended description of Campylobacter pylori. Int J Syst Bacteriol. 1988;38:367–370. doi: 10.1099/00207713-38-4-367. [DOI] [Google Scholar]
  • 58.Hänninen M-L, Happonen I, Saari S, Jalava K. Culture and characteristics of Helicobacter bizzozeronii, a new canine gastric Helicobacter sp. Int J Syst Bacteriol 46, 160-166. Int J Syst Bacteriol. 1996;46:839. doi: 10.1099/00207713-46-1-160. Erratum in: [DOI] [PubMed] [Google Scholar]
  • 59.Owen RJ, Pitcher D. Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. In: Goodfellow M, Minnikin DE, editors. Chemical Methods in Bacterial Systematics. London, UK: Academic Press; 1985. pp. 67–93. (editors) [Google Scholar]
  • 60.Stanley J, Burnens AP, Linton D, On SL, Costas M, et al. Campylobacter helveticus sp. nov., a new thermophilic species from domestic animals: characterization, and cloning of a species-specific DNA probe. J Gen Microbiol. 1992;138:2293–2303. doi: 10.1099/00221287-138-11-2293. [DOI] [PubMed] [Google Scholar]
  • 61.Ezaki T, Takeuchi N, Liu SL, Kai A, Yamamoto H, et al. Small-scale DNA preparation for rapid genetic identification of Campylobacter species without radioisotope. Microbiol Immunol. 1988;32:141–150. doi: 10.1111/j.1348-0421.1988.tb01373.x. [DOI] [PubMed] [Google Scholar]
  • 62.Fox JG, Chilvers T, Goodwin CS, Taylor NS, Edmonds P, et al. Campylobacter mustelae, a new species resulting from the elevation of Campylobacter pylori subsp. mustelae to Species Status. Int J Syst Bacteriol. 1989;39:301–303. doi: 10.1099/00207713-39-3-301. [DOI] [Google Scholar]
  • 63.On SLW, Harrington CS. Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol Lett. 2000;193:161–169. doi: 10.1111/j.1574-6968.2000.tb09419.x. [DOI] [PubMed] [Google Scholar]
  • 64.On SLW, Harrington CS, Atabay HI. Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and Turkey faeces. J Appl Microbiol. 2003;95:1096–1105. doi: 10.1046/j.1365-2672.2003.02100.x. [DOI] [PubMed] [Google Scholar]
  • 65.Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91. doi: 10.1099/ijs.0.64483-0. [DOI] [PubMed] [Google Scholar]
  • 66.Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60. doi: 10.1186/1471-2105-14-60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Steele TW, Owen RJ. NOTES: Campylobacter jejuni subsp. doylei subsp. nov., a subspecies of nitrate-negative campylobacters isolated from human clinical specimens. Int J Syst Bacteriol. 1988;38:316–318. doi: 10.1099/00207713-38-3-316. [DOI] [Google Scholar]
  • 68.Debruyne L, On SLW, de Brandt E, Vandamme P. Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. Int J Syst Evol Microbiol. 2009;59:1126–1132. doi: 10.1099/ijs.0.000851-0. [DOI] [PubMed] [Google Scholar]
  • 69.On SLW, Bloch B, Holmes B, Hoste B, Vandamme P. Campylobacter hyointestinalis subsp. lawsonii subsp. nov., isolated from the porcine stomach, and an emended description of Campylobacter hyointestinalis. Int J Syst Bacteriol. 1995;45:767–774. doi: 10.1099/00207713-45-4-767. [DOI] [PubMed] [Google Scholar]
  • 70.Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, et al. Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3:733–739. doi: 10.1038/nrmicro1236. [DOI] [PubMed] [Google Scholar]
  • 71.Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, et al. Microbial genomic taxonomy. BMC Genomics. 2013;14:913. doi: 10.1186/1471-2164-14-913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol. 2014;64:316–324. doi: 10.1099/ijs.0.054171-0. [DOI] [PubMed] [Google Scholar]
  • 73.Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol. 2015;38:209–216. doi: 10.1016/j.syapm.2015.02.001. [DOI] [PubMed] [Google Scholar]
  • 74.Collado L, Cleenwerck I, van Trappen S, de Vos P, Figueras MJ. Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol. 2009;59:1391–1396. doi: 10.1099/ijs.0.003749-0. [DOI] [PubMed] [Google Scholar]
  • 75.de Smet S, Vandamme P, De Zutter L, On SLW, Douidah L, et al. Arcobacter trophiarum sp. nov., isolated from fattening pigs. Int J Syst Evol Microbiol. 2011;61:356–361. doi: 10.1099/ijs.0.022665-0. [DOI] [PubMed] [Google Scholar]
  • 76.Donachie SP, Bowman JP, On SL, Alam M. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol. 2005;55:1271–1277. doi: 10.1099/ijs.0.63581-0. [DOI] [PubMed] [Google Scholar]
  • 77.Figueras MJ, Levican A, Collado L, Inza MI, Yustes C. Arcobacter ellisii sp. nov., isolated from mussels. Syst Appl Microbiol. 2011;34:414–418. doi: 10.1016/j.syapm.2011.04.004. [DOI] [PubMed] [Google Scholar]
  • 78.Figueras MJ, Collado L, Levican A, Perez J, Solsona MJ, et al. Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Syst Appl Microbiol. 2011;34:105–109. doi: 10.1016/j.syapm.2010.10.001. [DOI] [PubMed] [Google Scholar]
  • 79.Houf K, On SLW, Coenye T, Debruyne L, de Smet S, et al. Arcobacter thereius sp. nov., isolated from pigs and ducks. Int J Syst Evol Microbiol. 2009;59:2599–2604. doi: 10.1099/ijs.0.006650-0. [DOI] [PubMed] [Google Scholar]
  • 80.Houf K, On SLW, Coenye T, Mast J, van Hoof J, et al. Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int J Syst Evol Microbiol. 2005;55:713–717. doi: 10.1099/ijs.0.63103-0. [DOI] [PubMed] [Google Scholar]
  • 81.Kiehlbauch JA, Brenner DJ, Nicholson MA, Baker CN, Patton CM, et al. Campylobacter butzleri sp. nov. isolated from humans and animals with diarrheal illness. J Clin Microbiol. 1991;29:376–385. doi: 10.1128/jcm.29.2.376-385.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Kim HM, Hwang CY, Cho BC. Arcobacter marinus sp. nov. Int J Syst Evol Microbiol. 2010;60:531–536. doi: 10.1099/ijs.0.007740-0. [DOI] [PubMed] [Google Scholar]
  • 83.Levican A, Collado L, Aguilar C, Yustes C, Diéguez AL, et al. Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Syst Appl Microbiol. 2012;35:133–138. doi: 10.1016/j.syapm.2012.01.002. [DOI] [PubMed] [Google Scholar]
  • 84.Neill SD, Campbell JN, O'Brien JJ, Weatherup STC, Ellis WA. Taxonomic position of Campylobacter cryaerophila sp. nov. Int J Syst Bacteriol. 1985;35:342–356. doi: 10.1099/00207713-35-3-342. [DOI] [Google Scholar]
  • 85.Mcclung CR, Patriquin DG, Davis RE. Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int J Syst Bacteriol. 1983;33:605–612. doi: 10.1099/00207713-33-3-605. [DOI] [Google Scholar]
  • 86.Vandamme P, Vancanneyt M, Pot B, Mels L, Hoste B, et al. Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int J Syst Bacteriol. 1992;42:344–356. doi: 10.1099/00207713-42-3-344. [DOI] [PubMed] [Google Scholar]
  • 87.Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, et al. Revision of Campylobacter, helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol. 1991;41:88–103. doi: 10.1099/00207713-41-1-88. [DOI] [PubMed] [Google Scholar]
  • 88.Whiteduck-Léveillée K, Whiteduck-Léveillée J, Cloutier M, Tambong JT, Xu R, et al. Arcobacter lanthieri sp. nov., isolated from pig and dairy cattle manure. Int J Syst Evol Microbiol. 2015;65:2709–2716. doi: 10.1099/ijs.0.000318. [DOI] [PubMed] [Google Scholar]
  • 89.Benjamin J, Leaper S, Owen RJ, Skirrow MB. Description of Campylobacter laridis, a new species comprising the nalidixic acid resistant thermophilic Campylobacter (NARTC) group. Curr Microbiol. 1983;8:231–238. doi: 10.1007/BF01579552. [DOI] [Google Scholar]
  • 90.Cáceres A, Muñoz I, Iraola G, Díaz-Viraqué F, Collado L. Campylobacter ornithocola sp. nov., a novel member of the Campylobacter lari group isolated from wild bird faecal samples. Int J Syst Evol Microbiol. 2017;67:1643–1649. doi: 10.1099/ijsem.0.001822. [DOI] [PubMed] [Google Scholar]
  • 91.Debruyne L, Broman T, Bergström S, Olsen B, On SLW, et al. Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region. Int J Syst Evol Microbiol. 2010;60:815–819. doi: 10.1099/ijs.0.011056-0. [DOI] [PubMed] [Google Scholar]
  • 92.Debruyne L, Broman T, Bergström S, Olsen B, On SL, et al. Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus) Int J Syst Evol Microbiol. 2010;60:1870–1875. doi: 10.1099/ijs.0.013748-0. [DOI] [PubMed] [Google Scholar]
  • 93.Doyle LP. The etiology of swine dysentery. Am J Vet Res. 1948;9:50–51. [Google Scholar]
  • 94.Florent A. Les deux vibrioses génitales: la vibriose due á V. fetus venerealis et la vibriose d’ origine intestinale due á V. fetus intestinalis. Meded Veeartsenijsch Rijksuniv Gent. 1959;3:1–60. [Google Scholar]
  • 95.Foster G, Holmes B, Steigerwalt AG, Lawson PA, Thorne P, et al. Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int J Syst Evol Microbiol 2004; 54:2369–2373. Int J Syst Evol Microbiol. 2005;55:981. doi: 10.1099/ijs.0.63147-0. Erratum in. [DOI] [PubMed] [Google Scholar]
  • 96.Gebhart CJ, Edmonds P, Ward GE, Kurtz HJ, Brenner DJ. "Campylobacter hyointestinalis" sp. nov.: a new species of Campylobacter found in the intestines of pigs and other animals. J Clin Microbiol. 1985;21:715–720. doi: 10.1128/jcm.21.5.715-720.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Gilbert MJ, Kik M, Miller WG, Duim B, Wagenaar JA. Campylobacter iguaniorum sp. nov., isolated from reptiles. Int J Syst Evol Microbiol. 2015;65:975–982. doi: 10.1099/ijs.0.000048. [DOI] [PubMed] [Google Scholar]
  • 98.Gilbert MJ, Miller WG, Leger JS, Chapman MH, Timmerman AJ, et al. Campylobacter pinnipediorum sp. nov., isolated from pinnipeds, comprising Campylobacter pinnipediorum subsp. pinnipediorum subsp. nov. and Campylobacter pinnipediorum subsp. caledonicus subsp. nov. Int J Syst Evol Microbiol. 2017;67:1961–1968. doi: 10.1099/ijsem.0.001894. [DOI] [PubMed] [Google Scholar]
  • 99.Inglis GD, Hoar BM, Whiteside DP, Morck DW. Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int J Syst Evol Microbiol. 2007;57:2636–2644. doi: 10.1099/ijs.0.65061-0. [DOI] [PubMed] [Google Scholar]
  • 100.Jackson FL, Goodman YE. Bacteroides ureolyticus, a new species to accommodate strains previously identified as "Bacteroides corrodens, Anaerobic". Int J Syst Bacteriol. 1978;28:197–200. doi: 10.1099/00207713-28-2-197. [DOI] [Google Scholar]
  • 101.Jones FS, Orcutt M, Little RB. Vibrios (Vibrio jejuni, n. sp.) associated with intestinal disorders of cows and calves. J Exp Med. 1931;53:853–863. doi: 10.1084/jem.53.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Koziel M, O'Doherty P, Vandamme P, Corcoran GD, Sleator RD, et al. Campylobacter corcagiensis sp. nov., isolated from faeces of captive lion-tailed macaques (Macaca silenus) Int J Syst Evol Microbiol. 2014;64:2878–2883. doi: 10.1099/ijs.0.063867-0. [DOI] [PubMed] [Google Scholar]
  • 103.Lawson AJ, On SLW, Logan JM, Stanley J. Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int J Syst Evol Microbiol. 2001;51:651–660. doi: 10.1099/00207713-51-2-651. [DOI] [PubMed] [Google Scholar]
  • 104.Lawson GH, Rowland AC. Intestinal adenomatosis in the pig: a bacteriological study. Res Vet Sci. 1974;17:331–336. [PubMed] [Google Scholar]
  • 105.Lawson GHK, Leaver JL, Pettigrew GW, Rowland AC. Some features of Campylobacter sputorum subsp. mucosalis subsp. nov., nom. rev. and their taxonomic significance. Int J Syst Bacteriol. 1981;31:385–391. doi: 10.1099/00207713-31-4-385. [DOI] [Google Scholar]
  • 106.Logan JM, Burnens A, Linton D, Lawson AJ, Stanley J. Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir. Int J Syst Evol Microbiol. 2000;50:865–872. doi: 10.1099/00207713-50-2-865. [DOI] [PubMed] [Google Scholar]
  • 107.On SLW, Atabay HI, Corry JE, Harrington CS, Vandamme P. Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. Int J Syst Bacteriol. 1998;48:195–206. doi: 10.1099/00207713-48-1-195. [DOI] [PubMed] [Google Scholar]
  • 108.Prévot AR. Études de systématique bactérienne. V. Essai de classification des vibrions anaérobies. Ann Inst Pasteur. 1940;64:117–125. [Google Scholar]
  • 109.Roop RM, Smibert RM, Johnson JL, Krieg NR. Campylobacter mucosalis (Lawson, Leaver, Pettigrew, and Rowland 1981) comb. nov.: emended description. Int J Syst Bacteriol. 1985;35:189–192. doi: 10.1099/00207713-35-2-189. [DOI] [Google Scholar]
  • 110.Rossi M, Debruyne L, Zanoni RG, Manfreda G, Revez J, et al. Campylobacter avium sp. nov., a hippurate-positive species isolated from poultry. Int J Syst Evol Microbiol. 2009;59:2364–2369. doi: 10.1099/ijs.0.007419-0. [DOI] [PubMed] [Google Scholar]
  • 111.Sandstedt K, Ursing J. Description of Campylobacter upsaliensis sp. nov. previously known as the CNW Group. Syst Appl Microbiol. 1991;14:39–45. doi: 10.1016/S0723-2020(11)80359-0. [DOI] [Google Scholar]
  • 112.Smith T, Taylor MS. Some morphological and biological characters of the spirilla (Vibrio fetus, N. sp.) associated with disease of the fetal membranes in cattle. J Exp Med. 1919;30:299–311. doi: 10.1084/jem.30.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Vandamme P, Debruyne L, de Brandt E, Falsen E. Reclassification of Bacteroides ureolyticus as Campylobacter ureolyticus comb. nov., and emended description of the genus Campylobacter. Int J Syst Evol Microbiol. 2010;60:2016–2022. doi: 10.1099/ijs.0.017152-0. [DOI] [PubMed] [Google Scholar]
  • 114.Vandamme P, Daneshvar MI, Dewhirst FE, Paster BJ, Kersters K, et al. Chemotaxonomic analyses of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int J Syst Bacteriol. 1995;45:145–152. doi: 10.1099/00207713-45-1-145. [DOI] [PubMed] [Google Scholar]
  • 115.Veron M, Chatelain R. Taxonomic study of the genus Campylobacter sebald and Veron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor) Sebald and Veron. Int J Syst Bacteriol. 1973;23:122–134. doi: 10.1099/00207713-23-2-122. [DOI] [Google Scholar]
  • 116.van TT, Elshagmani E, Gor MC, Scott PC, Moore RJ. Campylobacter hepaticus sp. nov., isolated from chickens with spotty liver disease. Int J Syst Evol Microbiol. 2016;66:4518–4524. doi: 10.1099/ijsem.0.001383. [DOI] [PubMed] [Google Scholar]
  • 117.von Graevenitz A. Revised nomenclature of Campylobacter laridis, Enterobacter intermedium, and "Flavobacterium branchiophila". Int J Syst Bacteriol. 1990;40:211. doi: 10.1099/00207713-40-2-211. [DOI] [PubMed] [Google Scholar]
  • 118.Tanner ACR, Badger S, Lai C-H, Listgarten MA, Visconti RA, et al. Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int J Syst Bacteriol. 1981;31:432–445. doi: 10.1099/00207713-31-4-432. [DOI] [Google Scholar]
  • 119.Tanner ACR, Listgarten MA, Ebersole JL. Wolinella curva sp. nov.: "Vibrio succinogenes" of human origin. Int J Syst Bacteriol. 1984;34:275–282. doi: 10.1099/00207713-34-3-275. [DOI] [Google Scholar]
  • 120.Zanoni RG, Debruyne L, Rossi M, Revez J, Vandamme P. Campylobacter cuniculorum sp. nov., from rabbits. Int J Syst Evol Microbiol. 2009;59:1666–1671. doi: 10.1099/ijs.0.007286-0. [DOI] [PubMed] [Google Scholar]
  • 121.Baele M, Decostere A, Vandamme P, Ceelen L, Hellemans A, et al. Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs. Int J Syst Evol Microbiol. 2008;58:1350–1358. doi: 10.1099/ijs.0.65133-0. [DOI] [PubMed] [Google Scholar]
  • 122.Baele M, Decostere A, Vandamme P, van den Bulck K, Gruntar I, et al. Helicobacter baculiformis sp. nov., isolated from feline stomach mucosa. Int J Syst Evol Microbiol. 2008;58:357–364. doi: 10.1099/ijs.0.65152-0. [DOI] [PubMed] [Google Scholar]
  • 123.Eaton KA, Dewhirst FE, Radin MJ, Fox JG, Paster BJ, et al. Helicobacter acinonyx sp. nov., isolated from cheetahs with gastritis. Int J Syst Bacteriol. 1993;43:99–106. doi: 10.1099/00207713-43-1-99. [DOI] [PubMed] [Google Scholar]
  • 124.Fox JG, Boutin SR, Handt LK, Taylor NS, Xu S, et al. Isolation and characterization of a novel Helicobacter species, "Helicobacter macacae," from rhesus monkeys with and without chronic idiopathic colitis. J Clin Microbiol. 2007;45:4061–4063. doi: 10.1128/JCM.01100-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Fox JG, Chien CC, Dewhirst FE, Paster BJ, Shen Z, et al. Helicobacter canadensis sp. nov. isolated from humans with diarrhea as an example of an emerging pathogen. J Clin Microbiol. 2000;38:2546–2549. doi: 10.1128/jcm.38.7.2546-2549.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Fox JG, Dewhirst FE, Tully JG, Paster BJ, Yan L, et al. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol. 1994;32:1238–1245. doi: 10.1128/jcm.32.5.1238-1245.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Fox JG, Shen Z, Xu S, Feng Y, Dangler CA, et al. Helicobacter marmotae sp. nov. isolated from livers of woodchucks and intestines of cats. J Clin Microbiol. 2002;40:2513–2519. doi: 10.1128/JCM.40.7.2513-2519.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Fox JG, Taylor NS, Howe S, Tidd M, Xu S, et al. Helicobacter anseris sp. nov. and Helicobacter brantae sp. nov., isolated from feces of resident Canada geese in the greater Boston area. Appl Environ Microbiol. 2006;72:4633–4637. doi: 10.1128/AEM.02876-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Franklin CL, Beckwith CS, Livingston RS, Riley LK, Gibson SV, et al. Isolation of a novel Helicobacter species, Helicobacter cholecystus sp. nov., from the gallbladders of Syrian hamsters with cholangiofibrosis and centrilobular pancreatitis. J Clin Microbiol. 1996;34:2952–2958. doi: 10.1128/jcm.34.12.2952-2958.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Franklin CL, Gorelick PL, Riley LK, Dewhirst FE, Livingston RS, et al. Helicobacter typhlonius sp. nov., a novel murine urease-negative Helicobacter species. J Clin Microbiol. 2001;39:3920–3926. doi: 10.1128/JCM.39.11.3920-3926.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Harper CG, Feng Y, Xu S, Taylor NS, Kinsel M, et al. Helicobacter cetorum sp. nov., a urease-positive Helicobacter species isolated from dolphins and whales. J Clin Microbiol. 2002;40:4536–4543. doi: 10.1128/JCM.40.12.4536-4543.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Hu S, Jin D, Lu S, Liu S, Zhang J, et al. Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. Int J Syst Evol Microbiol. 2015;65:1719–1725. doi: 10.1099/ijs.0.000163. [DOI] [PubMed] [Google Scholar]
  • 133.Jalava K, Kaartinen M, Utriainen M, Happonen I, Hänninen ML. Helicobacter salomonis sp. nov., a canine gastric Helicobacter sp. related to Helicobacter felis and Helicobacter bizzozeronii. Int J Syst Bacteriol. 1997;47:975–982. doi: 10.1099/00207713-47-4-975. [DOI] [PubMed] [Google Scholar]
  • 134.Jalava K, On SLW, Vandamme PA, Happonen I, Sukura A, et al. Isolation and identification of Helicobacter spp. from canine and feline gastric mucosa. Appl Environ Microbiol. 1998;64:3998–4006. doi: 10.1128/aem.64.10.3998-4006.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Lee A, Phillips MW, O'Rourke JL, Paster BJ, Dewhirst FE, et al. Helicobacter muridarum sp. nov., a microaerophilic helical bacterium with a novel ultrastructure isolated from the intestinal mucosa of rodents. Int J Syst Bacteriol. 1992;42:27–36. doi: 10.1099/00207713-42-1-27. [DOI] [PubMed] [Google Scholar]
  • 136.Marshall BJ, Royce H, Annear DI, Goodwin CS, Pearman JW, et al. Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Letters. 1984;25:83–88. [Google Scholar]
  • 137.Marshall BJ, Goodwin CS. Notes: revised nomenclature of Campylobacter pyloridis. Int J Syst Bacteriol. 1987;37:68. doi: 10.1099/00207713-37-1-68. [DOI] [Google Scholar]
  • 138.Mendes EN, Queiroz DM, Dewhirst FE, Paster BJ, Moura SB, et al. Helicobacter trogontum sp. nov., isolated from the rat intestine. Int J Syst Bacteriol. 1996;46:916–921. doi: 10.1099/00207713-46-4-916. [DOI] [PubMed] [Google Scholar]
  • 139.Moyaert H, Decostere A, Vandamme P, Debruyne L, Mast J, et al. Helicobacter equorum sp. nov., a urease-negative Helicobacter species isolated from horse faeces. Int J Syst Evol Microbiol. 2007;57:213–218. doi: 10.1099/ijs.0.64279-0. [DOI] [PubMed] [Google Scholar]
  • 140.Paster BJ, Lee A, Fox JG, Dewhirst FE, Tordoff LA, et al. Phylogeny of Helicobacter felis sp. nov., Helicobacter mustelae, and related bacteria. Int J Syst Bacteriol. 1991;41:31–38. doi: 10.1099/00207713-41-1-31. [DOI] [PubMed] [Google Scholar]
  • 141.Patterson MM, Schrenzel MD, Feng Y, Xu S, Dewhirst FE, et al. Helicobacter aurati sp. nov., a urease-positive Helicobacter species cultured from gastrointestinal tissues of syrian hamsters. J Clin Microbiol. 2000;38:3722–3728. doi: 10.1128/jcm.38.10.3722-3728.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Robertson BR, O'Rourke JL, Vandamme P, On SLW, Lee A. Helicobacter ganmani sp. nov., a urease-negative anaerobe isolated from the intestines of laboratory mice. Int J Syst Evol Microbiol. 2001;51:1881–1889. doi: 10.1099/00207713-51-5-1881. [DOI] [PubMed] [Google Scholar]
  • 143.Shen Z, Fox JG, Dewhirst FE, Paster BJ, Foltz CJ, et al. Helicobacter rodentium sp. nov., a urease-negative Helicobacter species isolated from laboratory mice. Int J Syst Bacteriol. 1997;47:627–634. doi: 10.1099/00207713-47-3-627. [DOI] [PubMed] [Google Scholar]
  • 144.Shen Z, Xu S, Dewhirst FE, Paster BJ, Pena JA, et al. A novel enterohepatic Helicobacter species 'Helicobacter mastomyrinus' isolated from the liver and intestine of rodents. Helicobacter. 2005;10:59–70. doi: 10.1111/j.1523-5378.2005.00292.x. [DOI] [PubMed] [Google Scholar]
  • 145.Shen Z, Feng Y, Sheh A, Everitt J, Bertram F, et al. Isolation and characterization of a novel Helicobacter species, Helicobacter jaachi sp. nov., from common marmosets (Callithrix jaachus) J Med Microbiol. 2015;64:1063–1073. doi: 10.1099/jmm.0.000113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Shen Z, Feng Y, Muthupalani S, Sheh A, Cheaney LE, et al. Novel Helicobacter species H.japonicum isolated from laboratory mice from Japan induces typhlocolitis and lower bowel carcinoma in C57BL/129 IL10−/−mice. Carcinogenesis. 2016;37:1190–1198. doi: 10.1093/carcin/bgw101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Shen Z, Mannion A, Whary MT, Muthupalani S, Sheh A, et al. Helicobacter saguini, a Novel Helicobacter isolated from cotton-top tamarins with ulcerative colitis, has proinflammatory properties and induces typhlocolitis and dysplasia in Gnotobiotic IL-10−/− Mice. Infect Immun. 2016;84:2307–2316. doi: 10.1128/IAI.00235-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Simmons JH, Riley LK, Besch-Williford CL, Franklin CL. Helicobacter mesocricetorum sp. nov., a novel Helicobacter isolated from the feces of Syrian hamsters. J Clin Microbiol. 2000;38:1811–1817. doi: 10.1128/jcm.38.5.1811-1817.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Smet A, Flahou B, D'Herde K, Vandamme P, Cleenwerck I, et al. Helicobacter heilmannii sp. nov., isolated from feline gastric mucosa. Int J Syst Evol Microbiol 2012; 62:299– 306. Int J Syst Evol Microbiol. 2012;62:1016. doi: 10.1099/ijs.0.029207-0. Erratum in. [DOI] [PubMed] [Google Scholar]
  • 150.Stanley J, Linton D, Burnens AP, Dewhirst FE, On SL, et al. Helicobacter pullorum sp. nov.-genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. Microbiology. 1994;140:3441–3449. doi: 10.1099/13500872-140-12-3441. [DOI] [PubMed] [Google Scholar]
  • 151.Stanley J, Linton D, Burnens AP, Dewhirst FE, Owen RJ, et al. Helicobacter canis sp. nov., a new species from dogs: an integrated study of phenotype and genotype. J Gen Microbiol. 1993;139:2495–2504. doi: 10.1099/00221287-139-10-2495. [DOI] [PubMed] [Google Scholar]
  • 152.Totten PA, Fennell CL, Tenover FC, Wezenberg JM, Perine PL, et al. Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J Infect Dis. 1985;151:131–139. doi: 10.1093/infdis/151.1.131. [DOI] [PubMed] [Google Scholar]
  • 153.Truper HG, De'clari L. Taxonomic note: necessary correction of specific epithets formed as substantives (Nouns) "in Apposition". Int J Syst Bacteriol. 1997;47:908–909. doi: 10.1099/00207713-47-3-908. [DOI] [Google Scholar]
  • 154.Wolin MJ, Wolin EA, Jacobs NJ. Cytochrome-producing anaerobic vibrio,Vibrio succinogenes, sp. nov. J Bacteriol. 1961;81:911–917. doi: 10.1128/jb.81.6.911-917.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Miller WG, Chapman MH, Yee E, On SLW, Mcnulty DK, et al. Multilocus sequence typing methods for the emerging Campylobacter species C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus. Front Cell Infect Microbiol. 2012;2:45. doi: 10.3389/fcimb.2012.00045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Miller WG, On SLW, Wang G, Fontanoz S, Lastovica AJ, et al. Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. J Clin Microbiol. 2005;43:2315–2329. doi: 10.1128/JCM.43.5.2315-2329.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.van Bergen MA, Dingle KE, Maiden MC, Newell DG, van der Graaf-van Bloois L, et al. Clonal nature of Campylobacter fetus as defined by multilocus sequence typing. J Clin Microbiol. 2005;43:5888–5898. doi: 10.1128/JCM.43.12.5888-5898.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary File 1

Articles from International Journal of Systematic and Evolutionary Microbiology are provided here courtesy of Society for General Microbiology and the International Union of Microbiological Societies

RESOURCES