Skip to main content
Data in Brief logoLink to Data in Brief
. 2017 Dec 14;16:914–928. doi: 10.1016/j.dib.2017.12.005

Data on the key performance indicators for quality of service of GSM networks in Nigeria

Segun I Popoola a,, Aderemi A Atayero a, Nasir Faruk b, Joke A Badejo a
PMCID: PMC5849583  PMID: 29541680

Abstract

In this data article, the Key Performance Indicators (KPIs) for Quality of Service (QoS) of Global System for Mobile Communications (GSM) networks in Nigeria are provided and analyzed. The data provided in this paper contain the Call Setup Success Rate (CSSR), Drop Call Rate (DCR), Stand-alone Dedicated Channel (SDCCH) congestion, and Traffic Channel (TCH) congestion for the four GSM network operators in Nigeria (Airtel, Etisalat, Glo, and MTN). These comprehensive data were obtained from the Nigerian Communications Commission (NCC). Significant differences in each of the KPIs for the four quarters of each year were presented based on Analysis of Variance (ANOVA). The values of the KPIs were plotted against the months of the year for better visualization and understanding of data trends across the four quarters. Multiple comparisons of the mean-quarterly differences of the KPIs were also presented using Tukey's Post Hoc test. Public availability and further interpretation and discussion of these useful information will assist the network providers, Nigerian government, local and international regulatory bodies, policy makers, and other stakeholders in ensuring access of people, machines, and things to high quality telecommunications services.

Keywords: Quality of service, GSM networks, Call setup success rate, Drop call rate, Stand-alone dedicated channel congestion, Traffic channel congestion


Specifications Table

Subject area Telecommunication Engineering
More specific subject area Cellular/Mobile Networks
Type of data Table and figure
How data was acquired Unprocessed secondary data
Data format Filtered and analyzed
Experimental factors Data were obtained from Nigerian Communications Commission (NCC)
Experimental features The KPIs were measured from the Network Operating Centres (NOCs) of Airtel, Etisalat, Glo, and MTN at busy hours at the Base Station Controller (BSC) layer of the GSM networks. Computational analysis of the data are further provided.
Data source location The data covers all the GSM networks deployed by the operators across Nigeria
Data accessibility Data are available within this article
Software MATLAB 2016a

Value of the data

  • The mobile network providers, the Nigerian government, local and international regulatory bodies, telecommunication policy makers, and other stakeholders in the telecommunication industry in Nigeria, Africa, and the world will find the analyses of the data provided in this article to be most useful [1].

  • The importance of the analysis of these data is usually needful for appropriate regulations and quality assurance [2].

  • Researchers in both academia and telecommunication industry can further explore and interpret the data provided in this article to solve QoS-related issues in GSM networks [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

  • The major trends in these data and the statistical analyses will help GSM network subscribers to benchmark the services offered by the mobile network operators [13], [14], [15].

  • Contextual interpretation and discussion of the data will help mobile network operators to gain accurate and deep understanding of the QoS offered across the months and quarters of the year [16].

1. Data

Accurate radio network planning is essential for good Quality of Service (QoS) [16], [17], [18]. The Key Performance Indicators (KPIs) for QoS of Global System for Mobile Communications (GSM) networks in Nigeria presented in this article were collected from Nigerian Communications Commission (NCC). These KPIs include Call Setup Success Rate (CSSR), Drop Call Rate (DCR), Stand-alone Dedicated Channel (SDCCH) congestion, and Traffic Channel (TCH) congestion for the four GSM network operators in Nigeria (Airtel, Etisalat, Glo, and MTN). The raw data were measured during busy hours at the Base Station Controller (BSC) layer and analyzed based on monthly and quarterly mean values to gain useful insights on the QoS provided by each of the mobile network operators. The data covers KPIs that were measured monthly from January, 2014 to December, 2016.

Table 1, Table 2 present the summary of the general descriptive statistics (total number of samples, mean, median. mode, minimum, maximum, mean absolute deviation, standard deviation, first and third quartile, kurtosis, and skewness) of the dataset. In addition, Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12 show the trends of monthly variations in CSSR, DCR, SDCCH congestion, and TCH congestion for Airtel, Etisalat, Glo, and MTN throughout the three-year data coverage.

Table 1.

Measure of central tendency of QoS KPIs of GSM network operators.

QoS Index Mobile network operator Total sample Mean Median Mode Min Max
CSSR Airtel 36 98.024 98.135 98.08 96.720 98.710
Etisalat 36 99.173 99.22 99.18 98.390 99.390
Glo 36 98.187 98.22 98.08 96.890 98.650
MTN 36 98.300 98.55 97.12 96.850 99.080
DCR Airtel 36 0.740 0.740 0.690 0.600 0.860
Etisalat 36 0.547 0.530 0.540 0.270 0.860
Glo 36 0.655 0.550 0.500 0.400 1.430
MTN 36 0.852 0.770 0.720 0.450 1.430
SDCCH congestion Airtel 36 0.251 0.180 0.160 0.090 0.790
Etisalat 36 0.120 0.110 0.090 0.030 0.330
Glo 36 0.947 0.580 0.140 0.130 2.320
MTN 36 0.213 0.140 0.120 0.080 0.730
TCH congestion Airtel 36 0.424 0.325 0.320 0.120 0.990
Etisalat 36 0.229 0.190 0.190 0.080 0.980
Glo 36 1.087 1.020 0.690 0.580 1.740
MTN 36 0.499 0.400 0.250 0.250 1.270

Table 2.

Measure of data dispersion of QoS KPIs of GSM network operators.

Mobile network operator Mean absolute deviation Standard deviation Q1 Q3 Kurtosis Skewness
CSSR Airtel 0.380 0.505 97.895 98.360 3.536 −1.180
Etisalat 0.124 0.181 99.095 99.275 10.831 −2.337
Glo 0.199 0.327 98.090 98.340 9.717 −2.276
MTN 0.636 0.756 97.540 98.955 2.009 −0.741
DCR Airtel 0.054 0.067 0.695 0.790 2.310 −0.085
Etisalat 0.082 0.119 0.470 0.575 4.285 0.911
Glo 0.190 0.232 0.500 0.820 4.913 1.411
MTN 0.242 0.287 0.645 1.175 1.951 0.497
SDCCH congestion Airtel 0.132 0.173 0.150 0.300 4.570 1.578
Etisalat 0.035 0.057 0.090 0.130 8.291 2.184
Glo 0.706 0.753 0.225 1.695 1.427 0.290
MTN 0.121 0.165 0.120 0.225 5.534 1.861
TCH congestion Airtel 0.183 0.240 0.275 0.480 3.281 1.111
Etisalat 0.091 0.157 0.150 0.260 15.805 3.298
Glo 0.324 0.372 0.745 1.480 1.651 0.303
MTN 0.191 0.252 0.310 0.585 4.595 1.481

Fig. 1.

Fig. 1

Monthly mean CSSR for the mobile network operators in 2014.

Fig. 2.

Fig. 2

Monthly mean CSSR for the mobile network operators in 2015.

Fig. 3.

Fig. 3

Monthly mean CSSR for the mobile network operators in 2016.

Fig. 4.

Fig. 4

Monthly mean DCR for the mobile network operators in 2014.

Fig. 5.

Fig. 5

Monthly mean DCR for the mobile network operators in 2015.

Fig. 6.

Fig. 6

Monthly mean DCR for the mobile network operators in 2016.

Fig. 7.

Fig. 7

Monthly mean SDCCH congestion for the mobile network operators in 2014.

Fig. 8.

Fig. 8

Monthly mean SDCCH congestion for the mobile network operators in 2015.

Fig. 9.

Fig. 9

Monthly mean SDCCH congestion for the mobile network operators in 2016.

Fig. 10.

Fig. 10

Monthly mean TCH congestion for the mobile network operators in 2014.

Fig. 11.

Fig. 11

Monthly mean TCH congestion for the mobile network operators in 2015.

Fig. 12.

Fig. 12

Monthly mean TCH congestion for the mobile network operators in 2016.

2. Materials and methods

The relationships between CSSR, DCR, SDCCH congestion, and TCH congestion of Airtel, Etisalat, Glo, and MTN were estimated using linear correlation. The correlation matrices are presented in Table 3, Table 4, Table 5, Table 6. ANOVA tests were also performed for all the QoS KPIs presented in this data article to identify the differences among the quarterly-means for each of the mobile network operators. Table 7, Table 8, Table 9, Table 10 presents the ANOVA test results for CSSR, DCR, SDCCH congestion, and TCH congestion respectively. The significant differences in the quarterly-means of the QoS KPIs were further investigated based on multiple comparison using Tukey's Post Hoc test at 95% Confidence Interval. The results of the comparisons are presented in Table 11, Table 12, Table 13. The data analyzed in this article are made available in Table 14, Table 15, Table 16, Table 17, Table 18.

Table 3.

Correlation matrix for CSSR.

Mobile network operator Airtel Etisalat Glo MTN
Airtel 1
Etisalat 0.071152119 1
Glo 0.195841509 −0.067886319 1
MTN 0.234379201 0.362204336 0.418815939 1

Table 4.

Correlation matrix for DCR.

Mobile network operator Airtel Etisalat Glo MTN
Airtel 1
Etisalat 0.279793691 1
Glo 0.144183419 0.409243609 1
MTN 0.199628489 0.29964156 0.651951552 1

Table 5.

Correlation matrix for SDCCH congestion.

Mobile network operator Airtel Etisalat Glo MTN
Airtel 1
Etisalat 0.524717639 1
Glo −0.036816239 0.093673675 1
MTN 0.565437362 0.752745819 0.025714345 1

Table 6.

Correlation matrix for TCH congestion.

Mobile network operator Airtel Etisalat Glo MTN
Airtel 1
Etisalat 0.14980923 1
Glo 0.143774356 −0.066326113 1
MTN 0.556604454 0.024529584 0.146238976 1

Table 7.

ANOVA for CSSR.

Source of variation Sum of squares Degree of freedom Mean squares F statistic P-value
Airtel Quarters 3.080164 3 1.026721 5.623495 0.003264
Error 5.842467 32 0.182577
Total 8.922631 35
Etisalat Quarters 0.059275 3 0.019758 0.584086 0.629807
Error 1.082489 32 0.033828
Total 1.141764 35
Glo Quarters 0.421 3 0.140333 1.349765 0.275728
Error 3.327 32 0.103969
Total 3.748 35
MTN Quarters 2.207208 3 0.735736 1.321611 0.284484
Error 17.81429 32 0.556697
Total 20.0215 35

Table 8.

ANOVA for DCR.

Source of variation Sum of squares Degree of freedom Mean squares F statistic P-value
Airtel Quarters 0.031631 3 0.010544 2.646908 0.065774
Error 0.127467 32 0.003983
Total 0.159097 35
Etisalat Quarters 0.021978 3 0.007326 0.491032 0.690992
Error 0.477422 32 0.014919
Total 0.4994 35
Glo Quarters 0.047808 3 0.015936 0.277619 0.841112
Error 1.836889 32 0.057403
Total 1.884697 35
MTN Quarters 0.117533 3 0.039178 0.452483 0.717324
Error 2.770689 32 0.086584
Total 2.888222 35

Table 9.

ANOVA for SDCCH congestion.

Source of variation Sum of squares Degree of freedom Mean squares F statistic P-value
Airtel Quarters 0.1965 3 0.0655 2.468528 0.079868
Error 0.849089 32 0.026534
Total 1.045589 35
Etisalat Quarters 0.016942 3 0.005647 1.856197 0.156919
Error 0.097356 32 0.003042
Total 0.114297 35
Glo Quarters 0.523389 3 0.174463 0.289155 0.83288
Error 19.30733 32 0.603354
Total 19.83072 35
MTN Quarters 0.103631 3 0.034544 1.299782 0.291458
Error 0.850444 32 0.026576
Total 0.954075 35

Table 10.

ANOVA for TCH congestion.

Source of variation Sum of squares Degree of freedom Mean squares F statistic P-value
Airtel Quarters 0.610178 3 0.203393 4.641974 0.008351
Error 1.402111 32 0.043816
Total 2.012289 35
Etisalat Quarters 0.141878 3 0.047293 2.084203 0.121863
Error 0.726111 32 0.022691
Total 0.867989 35
Glo Quarters 0.056511 3 0.018837 0.126161 0.943923
Error 4.777889 32 0.149309
Total 4.8344 35
MTN Quarters 0.093267 3 0.031089 0.467 0.707347
Error 2.130289 32 0.066572
Total 2.223556 35

Table 11.

Tukey's multiple comparison post hoc test for CSSR.

Mobile network operator Quarter Quarter Mean difference Lower limit (95% confidence intervals) Upper limit (95% confidence intervals) P-value
Airtel 1 2 −0.6249 −0.2911 0.0427 0.1029
1 3 −0.9271 −0.5933 −0.2596 0.0003
1 4 −1.0993 −0.7656 −0.4318 0.0000
2 3 −0.6360 −0.3022 0.0316 0.0858
2 4 −0.8082 −0.4744 −0.1407 0.0034
3 4 −0.5060 −0.1722 0.1616 0.4976
Etisalat 1 2 −0.1237 0.0867 0.2970 0.6711
1 3 −0.2259 −0.0156 0.1948 0.9969
1 4 −0.1604 0.0500 0.2604 0.9125
2 3 −0.3126 −0.1022 0.1081 0.5472
2 4 −0.2470 −0.0367 0.1737 0.9626
3 4 −0.1448 0.0656 0.2759 0.8253
Glo 1 2 −0.4507 −0.0689 0.3129 0.9588
1 3 −0.6741 −0.2922 0.0896 0.1782
1 4 −0.5141 −0.1322 0.2496 0.7756
2 3 −0.6052 −0.2233 0.1585 0.3903
2 4 −0.4452 −0.0633 0.3185 0.9675
3 4 −0.2218 0.1600 0.5418 0.6594
MTN 1 2 −0.3759 −0.0756 0.2248 0.8984
1 3 −0.5104 −0.2100 0.0904 0.2431
1 4 −0.9404 −0.6400 −0.3396 0.0000
2 3 −0.4348 −0.1344 0.1659 0.6116
2 4 −0.8648 −0.5644 −0.2641 0.0001
3 4 −0.7304 −0.4300 −0.1296 0.0031

Table 12.

Tukey's multiple comparison post hoc test for DCR.

Mobile network operator Quarter Quarter Mean difference Lower limit (95% confidence intervals) Upper limit (95% confidence intervals) P-value
Airtel 1 2 −0.0642 0.0000 0.0642 1.0000
1 3 −0.1197 −0.0556 0.0086 0.1066
1 4 −0.0386 0.0256 0.0897 0.6939
2 3 −0.1197 −0.0556 0.0086 0.1066
2 4 −0.0386 0.0256 0.0897 0.6939
3 4 0.0169 0.0811 0.1453 0.0096
Etisalat 1 2 −0.1442 −0.0522 0.0397 0.4154
1 3 −0.1386 −0.0467 0.0453 0.5113
1 4 −0.1575 −0.0656 0.0264 0.2281
2 3 −0.0864 0.0056 0.0975 0.9983
2 4 −0.1053 −0.0133 0.0786 0.9778
3 4 −0.1108 −0.0189 0.0730 0.9410
Glo 1 2 −0.1703 0.0156 0.2014 0.9955
1 3 −0.0925 0.0933 0.2792 0.5203
1 4 −0.1292 0.0567 0.2425 0.8344
2 3 −0.1081 0.0778 0.2637 0.6604
2 4 −0.1448 0.0411 0.2270 0.9279
3 4 −0.2225 −0.0367 0.1492 0.9472
MTN 1 2 −0.1742 −0.0078 0.1587 0.9992
1 3 −0.1498 0.0167 0.1831 0.9924
1 4 −0.0331 0.1333 0.2998 0.1492
2 3 −0.1420 0.0244 0.1909 0.9770
2 4 −0.0253 0.1411 0.3076 0.1172
3 4 −0.0498 0.1167 0.2831 0.2411

Table 13.

Tukey's multiple comparison post hoc test for SDCCH congestion.

Mobile network operator Quarter Quarter Mean difference Lower limit (95% confidence intervals) Upper limit (95% confidence intervals) P-value
Airtel 1 2 −0.0466 0.0567 0.1600 0.4454
1 3 0.0667 0.1700 0.2733 0.0007
1 4 0.0678 0.1711 0.2744 0.0007
2 3 0.0100 0.1133 0.2166 0.0278
2 4 0.0112 0.1144 0.2177 0.0260
3 4 −0.1022 0.0011 0.1044 1.0000
Etisalat 1 2 −0.1068 −0.0489 0.0091 0.1198
1 3 −0.0546 0.0033 0.0613 0.9985
1 4 −0.0580 0.0000 0.0580 1.0000
2 3 −0.0057 0.0522 0.1102 0.0879
2 4 −0.0091 0.0489 0.1068 0.1198
3 4 −0.0613 −0.0033 0.0546 0.9985
Glo 1 2 −0.7016 −0.2344 0.2327 0.5208
1 3 −0.4483 0.0189 0.4860 0.9995
1 4 −0.3827 0.0844 0.5516 0.9586
2 3 −0.2138 0.2533 0.7205 0.4554
2 4 −0.1483 0.3189 0.7860 0.2616
3 4 −0.4016 0.0656 0.5327 0.9798
MTN 1 2 −0.2492 −0.0556 0.1381 0.8576
1 3 −0.0992 0.0944 0.2881 0.5442
1 4 −0.1847 0.0089 0.2025 0.9993
2 3 −0.0436 0.1500 0.3436 0.1702
2 4 −0.1292 0.0644 0.2581 0.7955
3 4 −0.2792 −0.0856 0.1081 0.6213

Table 14.

Tukey's multiple comparison post hoc test for TCH congestion.

Mobile network operator Quarter Quarter Mean difference Lower limit (95% confidence intervals) Upper limit (95% confidence intervals) P-value
Airtel 1 2 0.0165 0.1533 0.2902 0.0241
1 3 0.1587 0.2956 0.4324 0.0000
1 4 0.1920 0.3289 0.4657 0.0000
2 3 0.0054 0.1422 0.2791 0.0396
2 4 0.0387 0.1756 0.3124 0.0085
3 4 −0.1035 0.0333 0.1702 0.9067
Etisalat 1 2 −0.1790 0.0233 0.2257 0.9886
1 3 −0.0679 0.1344 0.3368 0.2830
1 4 −0.0645 0.1378 0.3401 0.2635
2 3 −0.0912 0.1111 0.3134 0.4445
2 4 −0.0879 0.1144 0.3168 0.4191
3 4 −0.1990 0.0033 0.2057 1.0000
Glo 1 2 −0.2833 0.0256 0.3345 0.9957
1 3 −0.2133 0.0956 0.4045 0.8284
1 4 −0.2256 0.0833 0.3922 0.8782
2 3 −0.2389 0.0700 0.3789 0.9230
2 4 −0.2511 0.0578 0.3667 0.9545
3 4 −0.3211 −0.0122 0.2967 0.9995
MTN 1 2 −0.2638 −0.0244 0.2149 0.9920
1 3 −0.2226 0.0167 0.2560 0.9974
1 4 −0.1293 0.1100 0.3493 0.5913
2 3 −0.1982 0.0411 0.2804 0.9641
2 4 −0.1049 0.1344 0.3738 0.4250
3 4 −0.1460 0.0933 0.3326 0.7072

Table 15.

CSSR data for months and quarters of year 2014–2016.

Year Month Quarter Airtel Etisalat Glo MTN
2014 Jan 1 96.99 99.2 96.89 96.85
Feb 1 98.09 99.26 98.04 96.94
Mar 1 98.29 98.97 98.33 97.19
Apr 2 97.87 99.03 97.23 97.11
May 2 98.04 98.39 98.28 97.01
Jun 2 98.08 99.23 98.08 97.12
Jul 3 98.08 99.33 98.21 97.12
Aug 3 98.33 99.07 98.15 97.42
Sep 3 98.27 99.28 98.42 97.52
Oct 4 98.64 99.04 98.17 97.56
Nov 4 98.71 99.1 98.25 98.73
Dec 4 98.45 99.09 98.35 98.78
2015 Jan 1 96.8 98.94 98.26 98.25
Feb 1 96.72 99.22 98.3 98.43
Mar 1 97.23 99.19 98.56 98.28
Apr 2 97.34 99.13 98.4 98.59
May 2 97.41 99.18 98.47 98.14
Jun 2 97.39 99.12 98.22 98.24
Jul 3 98.06 99.27 98.22 98.37
Aug 3 97.92 99.28 98.28 98.51
Sep 3 98.03 99.26 98.14 98.45
Oct 4 97.95 99.24 98.13 98.86
Nov 4 98.13 99.3 98.08 98.83
Dec 4 98.36 99.2 98.09 98.72
2016 Jan 1 98.23 99.34 98 98.88
Feb 1 97.8 99.38 98.2 98.82
Mar 1 98.35 99.33 97.99 98.98
Apr 2 98.42 99.39 98.03 99.05
May 2 98.14 99.22 98.09 99.02
Jun 2 98.43 99.36 98.39 99.02
Jul 3 98.53 99.27 98.59 99.06
Aug 3 98.34 98.98 98.65 99.08
Sep 3 98.28 99.23 98.54 98.98
Oct 4 98.37 98.99 98.33 98.95
Nov 4 98.42 99.24 98.25 98.99
Dec 4 98.36 99.18 98.11 98.96

Table 16.

DCR data for months and quarters of year 2014–2016.

Year Month Quarter Airtel Etisalat Glo MTN
2014 Jan 1 0.84 0.55 1.19 1.21
Feb 1 0.71 0.54 0.85 1.29
Mar 1 0.6 0.57 0.83 1.19
Apr 2 0.67 0.54 1.43 1.43
May 2 0.74 0.68 0.78 1.33
Jun 2 0.8 0.55 0.85 1.3
Jul 3 0.82 0.59 0.81 1.23
Aug 3 0.85 0.6 0.78 1.22
Sep 3 0.82 0.58 0.81 1.16
Oct 4 0.79 0.86 0.91 1.23
Nov 4 0.75 0.84 0.96 0.78
Dec 4 0.73 0.8 0.86 0.72
2015 Jan 1 0.82 0.53 0.5 1.02
Feb 1 0.84 0.51 0.46 0.9
Mar 1 0.79 0.53 0.87 0.5
Apr 2 0.69 0.52 0.48 0.85
May 2 0.72 0.53 0.53 0.93
Jun 2 0.75 0.54 0.4 0.72
Jul 3 0.74 0.5 0.41 0.72
Aug 3 0.71 0.5 0.55 0.76
Sep 3 0.75 0.54 0.53 0.78
Oct 4 0.7 0.54 0.46 0.72
Nov 4 0.62 0.48 0.41 0.82
Dec 4 0.63 0.44 0.6 0.82
2016 Jan 1 0.65 0.46 0.5 0.67
Feb 1 0.69 0.43 0.5 0.71
Mar 1 0.65 0.43 0.57 0.5
Apr 2 0.69 0.72 0.54 0.45
May 2 0.76 0.47 0.57 0.5
Jun 2 0.77 0.47 0.55 0.55
Jul 3 0.76 0.46 0.55 0.68
Aug 3 0.86 0.7 0.49 0.64
Sep 3 0.78 0.5 0.5 0.65
Oct 4 0.73 0.27 0.54 0.63
Nov 4 0.71 0.47 0.5 0.49
Dec 4 0.7 0.44 0.52 0.58

Table 17.

SDCCH congestion data for months and quarters of year 2014–2016.

Year Month Quarter Airtel Etisalat Glo MTN
2014 Jan 1 0.4 0.1 0.58 0.17
Feb 1 0.14 0.07 0.24 0.17
Mar 1 0.09 0.08 0.28 0.1
Apr 2 0.2 0.23 1.51 0.68
May 2 0.16 0.09 0.24 0.12
Jun 2 0.12 0.09 0.22 0.12
Jul 3 0.11 0.08 0.17 0.1
Aug 3 0.16 0.13 0.23 0.09
Sep 3 0.11 0.09 0.16 0.08
Oct 4 0.09 0.07 0.17 0.13
Nov 4 0.12 0.09 0.15 0.1
Dec 4 0.12 0.11 0.16 0.12


 

 

 

 

 

 


2015 Jan 1 0.64 0.16 0.14 0.53
Feb 1 0.79 0.11 0.13 0.48
Mar 1 0.49 0.14 0.41 0.16
Apr 2 0.5 0.29 0.14 0.39
May 2 0.6 0.33 1.38 0.73
Jun 2 0.51 0.13 1.55 0.13
Jul 3 0.26 0.12 1.7 0.12
Aug 3 0.34 0.11 1.49 0.14
Sep 3 0.14 0.13 1.52 0.14
Oct 4 0.36 0.13 1.78 0.11
Nov 4 0.19 0.12 1.79 0.34
Dec 4 0.2 0.14 1.86 0.42
2016 Jan 1 0.19 0.12 2.19 0.15
Feb 1 0.2 0.11 1.94 0.15
Mar 1 0.21 0.09 2.32 0.11
Apr 2 0.17 0.03 1.86 0.1
May 2 0.18 0.13 1.75 0.12
Jun 2 0.2 0.1 1.69 0.13
Jul 3 0.16 0.12 1.54 0.17
Aug 3 0.18 0.07 0.71 0.14
Sep 3 0.16 0.1 0.54 0.19
Oct 4 0.18 0.13 0.5 0.27
Nov 4 0.17 0.09 0.48 0.25
Dec 4 0.18 0.1 0.58 0.2

Table 18.

TCH congestion data for months and quarters of year 2014–2016.

Year Month Quarter Airtel Etisalat Glo MTN
2014 Jan 1 0.79 0.27 0.79 0.55
Feb 1 0.32 0.29 0.69 0.57
Mar 1 0.32 0.55 1.05 0.42
Apr 2 0.45 0.18 1.67 1.27
May 2 0.29 0.98 0.58 0.43
Jun 2 0.28 0.09 0.99 0.37
Jul 3 0.32 0.12 0.94 0.31
Aug 3 0.23 0.24 1.06 0.3
Sep 3 0.25 0.14 0.69 0.29
Oct 4 0.12 0.08 0.72 0.34
Nov 4 0.15 0.09 0.64 0.36
Dec 4 0.14 0.12 0.73 0.31
2015 Jan 1 0.91 0.39 1.29 0.6
Feb 1 0.89 0.19 1.06 0.64
Mar 1 0.99 0.19 0.6 1.09
Apr 2 0.99 0.26 0.93 0.56
May 2 0.64 0.27 0.7 0.77
Jun 2 0.73 0.26 1.25 0.75
Jul 3 0.43 0.18 1.44 0.63
Aug 3 0.47 0.2 1.5 0.88
Sep 3 0.52 0.19 1.58 1.06
Oct 4 0.46 0.17 1.53 0.49
Nov 4 0.41 0.19 1.52 0.4
Dec 4 0.4 0.26 1.69 0.4
2016 Jan 1 0.48 0.33 1.74 0.28
Feb 1 0.48 0.28 1.46 0.3
Mar 1 0.39 0.24 1.56 0.27
Apr 2 0.27 0.1 1.54 0.25
May 2 0.3 0.19 1.28 0.25
Jun 2 0.24 0.19 1.07 0.29
Jul 3 0.19 0.15 0.78 0.39
Aug 3 0.19 0.15 0.63 0.34
Sep 3 0.31 0.15 0.76 0.37
Oct 4 0.29 0.17 0.83 0.38
Nov 4 0.31 0.18 0.86 0.5
Dec 4 0.33 0.23 0.97 0.55

Acknowledgement

This work is carried out under the IoT-Enabled Smart and Connected Communities (SmartCU​) and Covenant University Data Analytics Center (CUDAC) Research Clusters. This research is fully sponsored by Covenant University Centre for Research, Innovation and Development (CUCRID), Covenant University, Ota, Nigeria. We also acknowledge the Nigerian Communications Commission (NCC) for the online free access to the primary QoS data.

Footnotes

Transparency document

Transparency data associated with this article can be found in the online version at doi:10.1016/j.dib.2017.12.005.

Appendix A

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.dib.2017.12.005.

Transparency document. Supporting information

Supplementary material

mmc1.docx (17.7KB, docx)

.

Appendix A. Supplementary material

Supplementary material

mmc2.xlsx (22KB, xlsx)

.

References

  • 1.NCC, A Report on the Network Quality of Service and Performance of the GSM Networks in Nigeria, in: Guardian Newspaper of Nigeria (Ed.), 2005.
  • 2.NCC . Policy Competition and Economic Analysis Department; 2014. Year End Subscriber/Network Data Report for Telecommunications Operating Companies in Nigeria. [Google Scholar]
  • 3.O. Oyetunji, Improving call setup success rate in GSM service area using RF optimisation, in: Proceedings of the 11th International Conference on Electronics, Computer and Computation (ICECCO 2014), 2014, pp. 1–4.
  • 4.Ozovehe A., Usman A. Performance analysis of GSM networks in Minna Metropolis of Nigeria. Niger. J. Technol. 2015;34:359–367. [Google Scholar]
  • 5.Lawal B., Ukhurebor K., Adekoya M., Aigbe E. Quality of service and performance analysis of a GSM Network in Eagle Square, Abuja and its Environs, Nigeria. Int. J. Sci. Eng. Res. 2016;7(8):1992–1999. [Google Scholar]
  • 6.M.A. Salman, S.I. Popoola, N. Faruk, N.T. Surajudeen-Bakinde, A.A. Oloyede, L.A. Olawoyin, Adaptive Neuro-Fuzzy model for path loss prediction in the VHF band, in: Proceedings of the 2017 International Conference on Computing Networking and Informatics (ICCNI), Lagos, Nigeria, 2017, pp. 1–6. 〈http://dx.doi.org/10.1109/ICCNI.2017.8123768〉.
  • 7.A. Ozovehe, O.U. Okereke, E. Anene, A.U. Usman, Traffic congestion analysis in mobile macrocells, in: Proceedings of the International Conference on Information and Communication Technology and Its Applications (ICTA 2016) Federal University of Technology, Minna, Nigeria, 28–30 November 2016, pp. 243–249.
  • 8.Oseni O.F., Popoola S.I., Enumah H., Gordian A. Radio frequency optimization of mobile networks in Abeokuta, Nigeria for improved quality of service. Int. J. Res. Eng. Technol. 2014;3(08):174–180. [Google Scholar]
  • 9.I.A. Sikiru, N. Faruk, S.I. Popoola, Y. Imam-Fulani, A.A. Oloyede, L.A. Olawoyin, N.T. Surajudeen-Bakinde, Effects of detection threshold and frame size on duty cycle in GSM bands, in: Proceedings of the 3rd International Conference on Electro-Technology for National Development, Federal University of Technology (FUTO), Owerri, Imo State, Nigeria, 7–10 November 2017, pp. 343–346.
  • 10.Basha S.I., Shaik I. Reducing handover failure rate by RF optimization. Int. J. Eng. Innov. Technol. 2013;2(11):29–33. [Google Scholar]
  • 11.Laiho J., Wacker A., Novosad T. John Wiley & Sons, Hoboken, New Jersey, United States; 2006. Radio Network Planning and Optimisation for UMTS. [Google Scholar]
  • 12.Mojisola D.F., Gbolahan K. Participatory analysis of cellular network quality of service. Int. J. Comput. ICT Res. 2015;9(1):25–40. [Google Scholar]
  • 13.Gerpott T.J., Rams W., Schindler A. Customer retention, loyalty, and satisfaction in the German mobile cellular telecommunications market. Telecommun. Policy. 2001;25:249–269. [Google Scholar]
  • 14.Khan M.A. An empirical assessment of service quality of cellular mobile telephone operators in Pakistan. Asian Soc. Sci. 2010;6:164. [Google Scholar]
  • 15.Paulrajan R., Rajkumar H. Service quality and customers preference of cellular mobile service providers. J. Technol. Manag. Innov. 2011;6:38–45. [Google Scholar]
  • 16.S.I. Popoola, J.A. Badejo, S.O. Ojewande, A.A. Atayero, Statistical evaluation of quality of service offered by GSM network operators in Nigeria, in: Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2017, San Francisco, USA, 25–27 October 2017, pp. 69–73.
  • 17.S.I. Popoola, A.A. Atayero, N. Faruk, C.T. Calafate, L.A. Olawoyin, V.O. Matthews, Standard propagation model tuning for path loss predictions in built-up environments, in: Proceedings of the International Conference on Computational Science and its Applications, 2017, pp. 363–375.
  • 18.S.I. Popoola, A.A. Atayero, N. Faruk, C.T. Calafate, E. Adetiba, V.O. Matthews, Calibrating the standard path loss model for urban environments using field measurements and geospatial data, in: Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2017, London, U.K., 5–7 July 2017, pp. 513–518.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.docx (17.7KB, docx)

Supplementary material

mmc2.xlsx (22KB, xlsx)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES