Skip to main content
Springer logoLink to Springer
. 2018 Mar 16;2018(1):61. doi: 10.1186/s13660-018-1653-7

Approximation properties of λ-Bernstein operators

Qing-Bo Cai 1, Bo-Yong Lian 2, Guorong Zhou 3,
PMCID: PMC5856904  PMID: 29576718

Abstract

In this paper, we introduce a new type λ-Bernstein operators with parameter λ[1,1], we investigate a Korovkin type approximation theorem, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymptotic formula. Finally, we give some graphs and numerical examples to show the convergence of Bn,λ(f;x) to f(x), and we see that in some cases the errors are smaller than Bn(f) to f.

Keywords: λ-Bernstein operators, Bézier basis functions, Modulus of continuity, Lipschitz continuous functions, Voronovskaja asymptotic formula

Introduction

In 1912, Bernstein [1] proposed the famous polynomials called nowadays Bernstein polynomials to prove the Weierstrass approximation theorem as follows:

Bn(f;x)=k=0nf(kn)bn,k(x), 1

where x[0,1], n=1,2, , and Bernstein basis functions bn,k(x) are defined as:

bn,k(x)=(nk)xk(1x)nk. 2

Based on this, there are many papers about Bernstein type operators [29]. In 2010, Ye et al. [10] defined new Bézier bases with shape parameter λ by

{b˜n,0(λ;x)=bn,0(x)λn+1bn+1,1(x),b˜n,i(λ;x)=bn,i(x)+λ(n2i+1n21bn+1,i(x)n2i1n21bn+1,i+1(x))(1in1),b˜n,n(λ;x)=bn,n(x)λn+1bn+1,n(x), 3

where λ[1,1]. When λ=0, they reduce to (2). It must be pointed out that we have more modeling flexibility when adding the shape parameter λ.

In this paper, we introduce the new λ-Bernstein operators,

Bn,λ(f;x)=k=0nb˜n,k(λ;x)f(kn), 4

where b˜n,k(λ;x) (k=0,1,,n) are defined in (3) and λ[1,1].

This paper is organized as follows: In the following section, we estimate the moments and central moments of these operators (4). In Sect. 3, we investigate a Korovkin approximation theorem, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, and obtain a Voronovskaja-type asymptotic formula. In Sect. 4, we give some graphs and numerical examples to show the convergence of Bn,λ(f;x) to f(x) with different parameters.

Some preliminary results

Lemma 2.1

For λ-Bernstein operators, we have the following equalities:

Bn,λ(1;x)=1; 5
Bn,λ(t;x)=x+12x+xn+1(1x)n+1n(n1)λ; 6
Bn,λ(t2;x)=x2+x(1x)n+λ[2x4x2+2xn+1n(n1)+xn+1+(1x)n+11n2(n1)]; 7
Bn,λ(t3;x)=x3+3x2(1x)n+2x33x2+xn2+λ[6x3+6xn+1n2+3x23xn+1n(n1)Bn,λ(t3;x)=+9x2+9xn+1n2(n1)+4x+4xn+1n3(n1)+(1xn+1(1x)n+1)(n+3)n3(n21)]; 8
Bn,λ(t4;x)=x4+6(x3x4)n+7x218x3+11x4n2+x7x2+12x36x4n3Bn,λ(t4;x)=+[6x22x38x4+4xn+1n2+x232x3+16x4+17xn+1n3+xxn+1n4Bn,λ(t4;x)=+7x27xn+1n2(n1)+x23x2+22xn+1n3(n1)+(1x)n+1+x1n4(n1)]λ. 9

Proof

From (4), it is easy to prove k=0nb˜n,k(λ;x)=1, then we can obtain (5). Next,

Bn,λ(t;x)=k=0nknb˜n,k(λ;x)=k=0n1kn[bn,k(x)+λ(n2k+1n21bn+1,k(x)n2k1n21bn+1,k+1(x))]+bn,n(x)λn+1bn+1,n(x)=k=0nknbn,k(x)+λ(k=0nknn2k+1n21bn+1,k(x)k=1n1knn2k1n21bn+1,k+1(x)),

as is well known, the Bernstein operators (1) preserve linear functions, that is to say, Bn(at+b;x)=ax+b. We denote the latter two parts in the bracket of the last formula by 1(n;x) and 2(n;x), then we have

Bn,λ(t;x)=x+λ(1(n;x)+2(n;x)). 10

Now, we will compute 1(n;x) and 2(n;x),

1(n;x)=k=0nknn2k+1n21bn+1,k(x)=1n1k=0nknbn+1,k(x)2n21k=0nk2nbn+1,k(x)=(n+1)xn(n1)k=0n1bn,k(x)2x2n1k=0n2bn1,k(x)2xn(n1)k=0n1bn,k(x)=(n+1)xn(n1)(1xn)2x2n1(1xn1)2xn(n1)(1xn)=xn2x2n1+xn+1n+2xn+1n(n1), 11

and

2(n;x)=k=1n1knn2k1n21bn+1,k+1(x)=xnk=1n1bn,k(x)+1n(n+1)k=1n1bn+1,k+1(x)+2x2n1k=0n2bn1,k(x)2xn(n1)k=1n1bn,k(x)+2n(n21)k=1n1bn+1,k+1(x)=x[1(1x)nxn]n+[1(1x)n+1(n+1)x(1x)nxn+1]n(n+1)+2x2(1xn1)n12x[1(1x)nxn]n(n1)+2[1(1x)n+1(n+1)x(1x)nxn+1]n(n21)=2x2xxn+1n1+1(1x)n+1xn(n1). 12

Combining (10), (11) and (12), we have

Bn,λ(t;x)=x+12x+xn+1(1x)n+1n(n1)λ.

Hence, (6) is proved. Finally, by (4), we have

Bn,λ(t2;x)=k=0nk2n2b˜n,k(λ;x)=k=0n1k2n2[bn,k(x)+λ(n2k+1n21bn+1,k(x)n2k1n21bn+1,k+1(x))]+bn,n(x)λn+1bn+1,n(x)=k=0nk2n2bn,k(x)+λ(k=0nk2n2n2k+1n21bn+1,k(x)k=1n1k2n2n2k1n21bn+1,k+1(x)),

since Bn(t2;x)=k=0nk2n2bn,k(x)=x2+x(1x)n, and we denote the latter two parts in the bracket of last formula by 3(n;x) and 4(n;x), then we have

Bn,λ(t2;x)=x2+x(1x)n+λ(3(n;x)+4(n;x)). 13

On the one hand,

3(n;x)=k=0nk2n2n2k+1n21bn+1,k(x)=1n1k=0nk2n2bn+1,k(x)2n21k=0nk3n2bn+1,k(x)=(n+1)x2n(n1)k=0n2bn1,k(x)+(n+1)xn2(n1)k=0n1bn,k(x)2x3nk=0n3bn2,k(x)6x2n(n1)k=0n2bn1,k(x)2xn2(n1)k=0n1bn,k(x)=(n+1)x2(1xn1)n(n1)+(n+1)x(1xn)n2(n1)2x3(1xn2)n6x2(1xn1)n(n1)2x(1xn)n2(n1)=2xn+12x3n+x2xn+1n1+x5x2+4xn+1n(n1)+xn+1xn2(n1). 14

On the other hand,

4(n;x)=k=1n1k2n2n2k1n21bn+1,k+1(x)=1n+1k=1n1k2n2bn+1,k+1(x)+2n21k=1n1k3n2bn+1,k+1(x)=x2nk=0n2bn1,k(x)+xn2k=1n1bn,k(x)1n2(n+1)k=1n1bn+1,k+1(x)+2x3nk=0n3bn2,k(x)+2xn2(n1)k=1n1bn,k(x)2n2(n21)k=1n1bn+1,k+1(x)=x2(1xn1)n+x[1(1x)nxn]n21(1x)n+1(n+1)x(1x)nxn+1n2(n+1)+2x3(1xn2)n+2x[1(1x)nxn]n2(n1)2[1(1x)n+1(n+1)x(1x)nxn+1]n2(n21)=(2x1)x2n+xn(n1)+x1+(1x)n+1n2(n1)xn+1n1. 15

Combining (13), (14) and (15), we obtain

Bn,λ(t2;x)=x2+x(1x)n+λ[2x4x2+2xn+1n(n1)+xn+1+(1x)n+11n2(n1)],

therefore, we get (7). Thus, Lemma 2.1 is proved.

Similarly, we can obtain (8) and (9) by some computations, here we omit these. □

Corollary 2.2

For fixed x[0,1] and λ[1,1], using Lemma 2.1 and by some easy computations, we have

Bn,λ(tx;x)=12x+xn+1(1x)n+1n(n1)λ1+2x+xn+1+(1x)n+1n(n1):=ϕn(x); 16
Bn,λ((tx)2;x)=x(1x)n+[2x(1x)n+1+2xn+12xn+2n(n1)+xn+1+(1x)n+11n2(n1)]λx(1x)n+2x(1x)n+1+2xn+1+2xn+2n(n1)+xn+1+(1x)n+1+1n2(n1):=ψn(x); 17
limnnBn,λ(tx;x)=0; 18
limnnBn,λ((tx)2;x)=x(1x),x(0,1); 19
limnn2Bn,λ((tx)4;x)=3x26x3+3x4+6(x2x3)λ,x(0,1). 20

Remark 2.3

For λ[1,1], x[0,1], λ-Bernstein operators possess the endpoint interpolation property, that is,

Bn,λ(f;0)=f(0),Bn,λ(f;1)=f(1). 21

Proof

We can obtain (21) easily by using the definition of λ-Bernstein operators (4) and

b˜n,k(λ;0)={0(k0),1(k=0),b˜n,k(λ;1)={0(kn),1(k=n).

Remark 2.3 is proved. □

Example 2.4

The graphs of b˜3,k(λ;x) with λ=1,0,1 are shown in Fig. 1(left). The corresponding B3,λ(f;x) with f(x)=1cos(4ex) are shown in Fig. 1(right). The graphs show the λ-Bernstein operators’ endpoint interpolation property, which is based on the interpolation property of b˜n,k(λ,x).

Figure 1.

Figure 1

The graphs of b˜3,k(λ;x) with different values of λ (left) and their corresponding B3,λ(f;x) (right)

Convergence properties

As we know, the space C[0,1] of all continuous functions on [0,1] is a Banach space with sup-norm f:=supx[0,1]|f(x)|. Now, we give a Korovkin type approximation theorem for Bn,λ(f;x).

Theorem 3.1

For fC[0,1], λ[1,1], λ-Bernstein operators Bn,λ(f;x) converge uniformly to f on [0,1].

Proof

By the Korovkin theorem it suffices to show that

limnBn,λ(ti;x)xi=0,i=0,1,2.

We can obtain these three conditions easily by (5), (6) and (7) of Lemma 2.1. Thus the proof is completed. □

The Peetre K-functional is defined by K2(f;δ):=infgC2[0,1]{fg+δg}, where δ>0 and C2[0,1]:={gC[0,1]:g,gC[0,1]}. By [11], there exists an absolute constant C>0 such that

K2(f;δ)Cω2(f;δ), 22

where ω2(f;δ):=sup0<hδsupx,x+h,x+2h[0,1]|f(x+2h)2f(x+h)+f(x)| is the second order modulus of smoothness of fC[0,1]. We also denote the usual modulus of continuity of fC[0,1] by ω(f;δ):=sup0<hδsupx,x+h[0,1]|f(x+h)f(x)|.

Next, we give a direct local approximation theorem for the operators Bn,λ(f;x).

Theorem 3.2

For fC[0,1], λ[1,1], we have

|Bn,λ(f;x)f(x)|Cω2(f;ϕn(x)+ψn(x)/2)+ω(f;ϕn(x)), 23

where C is a positive constant, ϕn(x) and ψn(x) are defined in (16) and (17).

Proof

We define the auxiliary operators

B˜n,λ(f;x)=Bn,λ(f;x)f(x+12x+xn+1(1x)n+1n(n1)λ)+f(x). 24

From (5) and (6), we know that the operators B˜n,λ(f;x) are linear and preserve the linear functions:

B˜n,λ(tx;x)=0. 25

Let gC2[0,1], by Taylor’s expansion,

g(t)=g(x)+g(x)(tx)+xt(tu)g(u)du,

and (25), we get

B˜n,λ(g;x)=g(x)+B˜n,λ(xt(tu)g(u)du;x).

Hence, by (24) and (17), we have

|B˜n,λ(g;x)g(x)||xx+12x+xn+1(1x)n+1n(n1)λ(x+12x+xn+1(1x)n+1n(n1)λu)g(u)du|+|Bn,λ(xt(tu)g(u)du;x)|xx+12x+xn+1(1x)n+1n(n1)λ|x+12x+xn+1(1x)n+1n(n1)λu||g(u)|du+Bn,λ(|xt(tu)|g(u)|du|;x)[Bn,λ((tx)2;x)+1+2x+xn+1+(1x)n+1n(n1)]g[ϕn(x)+ψn(x)]g.

On the other hand, by (24), (5) and (4), we have

|B˜n,λ(f;x)||Bn,λ(f;x)|+2ffBn,λ(1;x)+2f3f. 26

Now, (24) and (26) imply

|Bn,λ(f;x)f(x)||B˜n,λ(fg;x)(fg)(x)|+|B˜n,λ(g;x)g(x)|+|f(x+12x+xn+1(1x)n+1n(n1)λ)f(x)|4fg+[ϕn(x)+ψn(x)]g+ω(f;ϕn(x)).

Hence, taking infimum on the right hand side over all gC2[0,1], we get

|Bn,λ(f;x)f(x)|4K2(f;ϕn(x)+ψn(x)4)+ω(f;ϕn(x)).

By (22), we have

|Bn,λ(f;x)f(x)|Cω2(f;ϕn(x)+ψn(x)/2)+ω(f;ϕn(x)),

where ϕn(x) and ψn(x) are defined in (16) and (17). This completes the proof of Theorem 3.2. □

Remark 3.3

For any x[0,1], we have limnϕn(x)=0 and limnψn(x)=0, these give us a rate of pointwise convergence of the operators Bn,λ(f;x) to f(x).

Now, we study the rate of convergence of the operators Bn,λ(f;x) with the help of functions of Lipschitz class LipM(α), where M>0 and 0<α1. A function f belongs to LipM(α) if

|f(y)f(x)|M|yx|α(x,yR). 27

We have the following theorem.

Theorem 3.4

Let fLipM(α), x[0,1] and λ[1,1], then we have

|Bn,λ(f;x)f(x)|M[ψn(x)]α2,

where ψn(x) is defined in (17).

Proof

Since Bn,λ(f;x) are linear positive operators and fLipM(α), we have

|Bn,λ(f;x)f(x)|Bn,λ(|f(t)f(x)|;x)=k=0nb˜n,k(λ;x)|f(kn)f(x)|Mk=0nb˜n,k(λ;x)|knx|αMk=0n[b˜n,k(λ;x)(knx)2]α2[b˜n,k(λ;x)]2α2.

Applying Hölder’s inequality for sums, we obtain

|Bn,λ(f;x)f(x)|M[k=0nb˜n,k(λ;x)(knx)2]α2[k=0nb˜n,k(λ;x)]2α2=M[Bn,λ((tx)2;x)]α2.

Thus, Theorem 3.4 is proved. □

Finally, we give a Voronovskaja asymptotic formula for Bn,λ(f;x).

Theorem 3.5

Let f(x) be bounded on [0,1]. Then, for any x(0,1) at which f(x) exists, λ[1,1], we have

limnn[Bn,λ(f;x)f(x)]=f(x)2[x(1x)]. 28

Proof

Let x[0,1] be fixed. By the Taylor formula, we may write

f(t)=f(x)+f(x)(tx)+12f(x)(tx)2+r(t;x)(tx)2, 29

where r(t;x) is the Peano form of the remainder, r(t;x)C[0,1], using L’Hopital’s rule, we have

limtxr(t;x)=limtxf(t)f(x)f(x)(tx)12f(x)(tx)2(tx)2=limtxf(t)f(x)f(x)(tx)2(tx)=limtxf(t)f(x)2=0.

Applying Bn,λ(f;x) to (29), we obtain

limnn[Bn,λ(f;x)f(x)]=f(x)limnnBn,λ(tx;x)+f(x)2limnnBn,λ((tx)2;x)+limnnBn,λ(r(t;x)(tx)2;x). 30

By the Cauchy–Schwarz inequality, we have

Bn,λ(r(t;x)(tx)2;x)Bn,λ(r2(t;x);x)Bn,λ((tx)4;x), 31

since r2(x;x)=0, then we can obtain

limnnBn,λ(r(t;x)(tx)2;x)=0 32

by (31) and (20). Finally, using (18), (19), (32) and (30), we get

limnn[Bn,λ(f;x)f(x)]=f(x)2[x(1x)].

Theorem 3.5 is proved. □

Graphical and numerical analysis

In this section, we give several graphs and numerical examples to show the convergence of Bn,λ(f;x) to f(x) with different values of λ and n.

Let f(x)=1cos(4ex), the graphs of Bn,1(f;x) and Bn,1(f;x) with different values of n are shown in Figs. 2 and 3. In Table 1, we give the errors of the approximation of Bn,λ(f;x) to f(x). We can see from Table 1 that in some special cases (such as n=10,20 and λ>0), the errors of fBn,λ(f) are smaller than fBn,0(f) (where Bn,0(f;x) are classical Bernstein operators). Figure 4 shows the graphs of Bn,λ(f;x) with n=10 and different values of λ.

Figure 2.

Figure 2

The graphs of Bn,1(f;x) with different values of n

Figure 3.

Figure 3

The graphs of Bn,1(f;x) with different values of n

Table 1.

The errors of the approximation of Bn,λ(f;x) to f(x) with different values of n and λ

λ fBn,λ(f)
n = 10 n = 20 n = 50 n = 100 n = 150
−1 0.437813 0.242921 0.104883 0.054106 0.036478
−0.5 0.430221 0.241337 0.104880 0.054136 0.036496
0 0.422857 0.239850 0.104884 0.054166 0.036513
0.5 0.415719 0.238458 0.104897 0.054196 0.036531
1 0.408808 0.237158 0.104918 0.054229 0.036550

Figure 4.

Figure 4

The graphs of B10,λ(f;x) with different values of λ

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11601266 and 11626201), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J05017) and the Program for New Century Excellent Talents in Fujian Province University. We also thank Fujian Provincial Key Laboratory of Data Intensive Computing and Key Laboratory of Intelligent Computing and Information Processing of Fujian Province University.

Authors’ contributions

QBC, BYL and GZ carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. QBC, BYL and GZ carried out the immunoassays. QBC. BYL and GZ participated in the sequence alignment. QBC, BYL and GZ participated in the design of the study and performed the statistical analysis. QBC, BYL and GZ conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Qing-Bo Cai, Email: qbcai@126.com.

Bo-Yong Lian, Email: lianboyong@163.com.

Guorong Zhou, Email: goonchow@xmut.edu.cn.

References

  • 1.Bernstein S.N. Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Commun. Soc. Math. Charkow Sér. 2 t. 1912;13:1–2. [Google Scholar]
  • 2.Ditzian Z., Ivanov K. Bernstein-type operators and their derivatives. J. Approx. Theory. 1989;56(1):72–90. doi: 10.1016/0021-9045(89)90134-2. [DOI] [Google Scholar]
  • 3.Guo S., Li C., Liu X., Song Z. Pointwise approximation for linear combinations of Bernstein operators. J. Approx. Theory. 2000;107(1):109–120. doi: 10.1006/jath.2000.3504. [DOI] [Google Scholar]
  • 4.Zeng X.-M., Cheng F. On the rates of approximation of Bernstein type operators. J. Approx. Theory. 2001;109(2):242–256. doi: 10.1006/jath.2000.3538. [DOI] [Google Scholar]
  • 5.Phillips G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997;4:511–518. [Google Scholar]
  • 6.Gupta V. Some approximation properties of q-Durrmeyer operators. Appl. Math. Comput. 2008;197:172–178. [Google Scholar]
  • 7.Agrawal P.N., Gupta V., Kumar A.S. On q-analogue of Bernstein–Schurer–Stancu operators. Appl. Math. Comput. 2013;219(14):7754–7764. [Google Scholar]
  • 8.Nowak G. Approximation properties for generalized q-Bernstein polynomials. J. Math. Anal. Appl. 2009;350:50–55. doi: 10.1016/j.jmaa.2008.09.003. [DOI] [Google Scholar]
  • 9.Mursaleen M., Ansari K.J., Khan A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015;266:874–882. [Google Scholar]
  • 10.Ye Z., Long X., Zeng X.-M. International Conference on Computer Science and Education. 2010. Adjustment algorithms for Bézier curve and surface; pp. 1712–1716. [Google Scholar]
  • 11.DeVore R.A., Lorentz G.G. Constructive Approximation. Berlin: Springer; 1993. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES