Skip to main content
Acta Cardiologica Sinica logoLink to Acta Cardiologica Sinica
. 2018 Mar;34(2):175–188. doi: 10.6515/ACS.201803_34(2).20170926A

Bioinformatic Analysis of the Possible Regulative Network of miR-30a/e in Cardiomyocytes 2 Days Post Myocardial Infarction

Yiping Wang 1,2, Yingqiong Huang 3, Min Zhang 4, Xiaoqin Zhang 2, Xuemei Tang 2, Yan Kang 1
PMCID: PMC5863072  PMID: 29643704

Abstract

Background

Both miR-30a and miR-30e are significantly downregulated in cardiomyocytes (CMs) 2 days (d) post myocardial infarction (MI). This study aimed to identify their possible regulative network in CMs 2d post-MI.

Methods

The dysregulated mRNAs in left ventricle tissues 2d post-MI in mice model were retrieved from one previous publication. The verified target genes of miR-30a/e and the predicted targets (upregulated 2d post-MI) were subjected to analysis of the involvement in biological processes according to their enrichment in gene ontology (GO) terms.

Results

The known targets of miR-30a/e can regulate cellular responses to glucose starvation via targeting TP53, BECH1 and HSPA5, and also control cardiac epithelial to mesenchymal transition via targeting ETS-related gene (ERG), SNAI1 and NOTCH1. Bioinformatic prediction further showed that miR-30a might regulate some biological processes related to CM responses to MI via some other potential targets, such as platelet aggregation (possibly via ITGB3 and STXBP1), regulation of intrinsic apoptotic signaling pathway in response to deoxyribonucleic acid damage (possibly via SNAI1) and positive regulation of tyrosine phosphorylation of Stat3 protein (possibly via LYN, SOCS3 and SLCF1).

Conclusions

Considering the importance of these genes in cellular responses to MI, it is meaningful to further investigate the regulative effect of miR-30a/e on their expression, as well as their regulative network in CMs.

Keywords: Bioinformatic analysis, miR-30a, miR-30e, Myocardial infarction

INTRODUCTION

MicroRNAs (miRNAs) are a group of endogenous, conserved and small non-coding RNA which negatively regulates gene expression via binding to the 3’ or 5’ of the untranslated region of target genes.1 Several recent studies show that miRNAs might be key regulators in cardiovascular biology, both in embryonic cardiovascular development and in cardiovascular diseases such as hypertrophy, end-stage heart failure, dilated and ischemic cardiomyopathy, and aortic stenosis.2-5 In addition, the expression of genes, including mRNA, lncRNA and miRNAs is quite dynamic during the pathological development of cardiovascular diseases.6,7 Several recent studies have reported that the expression of miRNAs at different time points post-myocardial infarction (MI) vary significantly,8-10 suggesting that their regulation may be time dependent. Temporal changes (2 days) in miRNA and gene expression in response to MI connect the heart transitions from an acute response to the loss of muscle mass and further to a more compensated, remodeled phenotype.10 Therefore, a clear understanding of the regulative network involving critical miRNAs during this stage is helpful to illustrate the molecular pathology of MI.

The miR-30 family includes miR-30a, miR-30c-2, miR-30b and miR-30d, miR-30e, and miR-30c-1 (http://www.mirbase.org). Several miR-30 family members including miR-30a, miR-30b and miR-30e, may have protective effects on cardiomyocytes (CMs) from ischemia/reperfusion injury, apoptosis and necrotic cell death.11-13 However, one recent study reported that silencing the whole miR-30 family can protect cardiac cells against hypoxic injury by elevating cystathionine-c-lyase (CSE) and hydrogen sulfide (H2S) levels.14 They authors suggested that inhibition of the miR-30 family after MI injury offers potential therapeutic value.14 These findings suggest that there is controversy over the role of the miR-30 family members in MI.

miR-30a and miR-30e have also been reported to be significantly downregulated in CMs 2 days post-MI.8-10 However, their downstream regulative network in this temporal period is not clearly understood. In this study, we tried to identify the possible regulative network of miR-30a/e in cardiomyocytes 2 days post-MI via bioinformatic analysis.

MATERIALS AND METHODS

Bioinformatic analysis of verified targets of miR-30a/e and their involvement in biological processes

Verified targets of miR-30a/e were identified using ClueGO in CytoScape, with data from mirTarBase. validated. miRNAs_15.06.2016. The genes were then subjected to analysis of the involvement in biological processes according to their enrichment in gene ontology (GO) terms. Only pathways with a p value < 0.05 were included.

Bioinformatic analysis of the possible targets of miR-30a/e 2d post-MI

The raw data of upregulated and downregulated genes 2 days post-MI were obtained from a previous study (shown in Supplementary Table 1).10 The possible targets of miR-30a/e were predicted using TargetScan 7.1. The overlapping subsets of the upregulated genes and the predicted targets were identified. The genes were then loaded into ClueGO to predict their involvement in biological processes according to their enrichment in GO terms. Only pathways with a p value < 0.05 were included.

Supplement Table 1. The upregulated and downregulated genes 2d post-MI.

Uniquely up-regulated genes 2 days post-MI Uniquely down-regulated genes 2 days post-MI
A4galt Mmp8 Aadacl1 Meis2
Aacs Mmp9 Aars2 Meox2
Aars Mobkl1a Aarsd1 Mepce
Aatf Mogs Aasdhppt Mett11d1
Abca7 Morc2a Abca1 Mett5d1
Abcc1 Morf4l2 Abca12 Mettl3
Abcc3 Mospd4 Abca2 Mettl4
Abce1 Mpg Abca6 Mff
Abhd2 Mphosph10 Abca8a Mfn1
Abl2 Mphosph6 Abca8b Mfn2
Acaca Mrps18b Abca9 Mfsd11
Acap2 Mrto4 Abcb4 Mfsd6
Acbd3 Ms4a15 Abcb7 Mfsd7c
Acer2 Ms4a4a Abcb8 Mfsd8
Acin1 Ms4a8a Abcc5 Mgat4b
Acly Msr1 Abcc9 Mgea5
Acot10 Mt1 Abcd1 Mgl2
Acot4 Mt2 Abhd10 Mgst3
Acot9 Mtbp Abhd12 Mib2
Acp5 Mthfd1l Abhd14a Mid1ip1
Acr Mthfd2 Abhd3 Mier3
Acsbg1 Mthfr Abhd8 Mill2
Acsl4 Mtmr12 Ablim1 Mitf
Acsl5 Mtmr9 Ablim3 Mkks
Actb Mtpn Abtb1 Mkrn2
Actn1 Muc1 Acaa1a Mlec
Actn4 Mvp Acacb Mlf1
Actr2 Mxd1 Acad11 Mlh1
Actr3 Myadm Acad8 Mlh3
Ada Mybbp1a Acad9 Mll1
Adam12 Myd116 Acadl Mll3
Adam15 Myd88 Acadm Mllt3
Adam8 Myo1c Acads Mllt6
Adam9 Myo1h Acadsb Mmachc
Adamts4 Myo9b Acadvl Mmgt1
Adamts6 Myoz1 Acat1 Mmp15
Adat2 Myst2 Aco2 Mn1
Adc Nacc1 Acot11 Morn2
Adck4 Nadk Acot13 Mosc2
Adcyap1r1 Naip1 Acrbp Mospd1
Adfp Naip2 Acsl1 Mov10l1
Adm Nans Acsl6 Mpa2l
Adnp2 Napsa Acss1 Mpdz
Adora3 Nars Acss2 Mpi
Adpgk Nat10 Actr3b Mpnd
Adrb2 Nav2 Actr6 Mpped2
Adss Ncdn Actr8 Mpv17
Aebp1 Ncf1 Acvr2a Mpv17l2
Aff1 Ncf2 Acy3 Mr1
Agpat4 Ncf4 Acyp1 Mras
Ahctf1 Nckap1 Adal Mreg
Ahi1 Ncl Adam4 Mrp63
Ahnak Ncor2 Adamts10 Mrpl1
Aida Ndrg1 Adamts3 Mrpl11
Aim2 Ndst1 Adamts5 Mrpl12
Ak3l1 Nfam1 Adcy5 Mrpl14
Akap12 Nfe2l2 Adcy6 Mrpl15
Akirin1 Nfil3 Adcy9 Mrpl16
Akna Nfkb2 Add3 Mrpl18
Akr1b8 Nhedc2 Adh1 Mrpl19
Alas2 Nhp2 Adhfe1 Mrpl21
Alcam Ninj1 Adprhl1 Mrpl24
Aldh1a2 Nip7 Adra1a Mrpl27
Aldh3b1 Nkrf Aes Mrpl28
Aldoc Nlrp3 Aga Mrpl3
Alg5 Nob1 Agl Mrpl30
Alg9 Noc3l Agpat1 Mrpl34
Alkbh1 Nol10 Agtr1a Mrpl35
Alkbh2 Nol12 Ahdc1 Mrpl36
Alox15 Nol6 Ahsa2 Mrpl38
Alox5ap Nol9 Ak1 Mrpl39
Aloxe3 Nolc1 Ak3 Mrpl41
Ambra1 Nop14 Akap1 Mrpl44
Amica1 Nop16 Akap6 Mrpl46
Ammecr1 Nop2 Akap7 Mrpl47
Amot Nop56 Akap8l Mrpl48
Amotl1 Nop58 Akr1b3 Mrpl49
Ampd2 Nos2 Akr1c14 Mrpl54
Ampd3 Notch2 Akr1e1 Mrpl55
Angpt2 Notch4 Akt2 Mrps14
Angptl4 Npm1 Aktip Mrps15
Ankib1 Npy Alas1 Mrps17
Ankrd10 Nr2c2ap Aldh2 Mrps18a
Ankrd13a Nras Aldh4a1 Mrps21
Ankrd2 Nrgn Aldh5a1 Mrps23
Ankrd27 Nrm Aldh6a1 Mrps24
Ankrd28 Nsf Aldh7a1 Mrps25
Ankrd37 Nsun2 Alg6 Mrps27
Ankrd52 Nt5c Alox5 Mrps28
Anp32b Nts Alpk2 Mrps30
Ap2b1 Nudcd1 Alpk3 Mrps31
Apbb1ip Nudcd2 Amd1 Mrps36
Apex1 Nufip1 Amigo1 Mrps5
Apln Nup107 Amz2 Mrps6
Apob48r Nup153 Anapc5 Mrs2
Apoc2 Nup205 Angpt1 Msh2
Aprt Nup210l Angptl3 Msh3
Arc Nup43 Ank Msl3
Arf1 Nup50 Ank2 Msrb2
Arf2 Nup54 Ankmy2 Mtap4
Arf3 Nup93 Ankrd12 Mtap7d1
Arfgap1 Nup98 Ankrd29 Mtch2
Arg1 Nupl1 Ankrd32 Mtcp1
Arg2 Nxn Ankrd40 Mterfd1
Arhgap1 Oas3 Anks1 Mterfd3
Arhgap27 Obfc2a Ankzf1 Mtfr1
Arhgap30 Odc1 Ano1 Mtif2
Arhgap9 Olfr161 Ano8 Mtif3
Arhgdia Olfr920 Antxr2 Mto1
Arhgef1 Olr1 Aof1 Mtr
Arhgef5 Orc2l Aox1 Mtrf1
Arid3a Orc6l Ap4m1 Mtrf1l
Arih1 Osbpl10 Ap4s1 Mtss1
Arih2 Osbpl5 Apba3 Mtus1
Arl11 Osgin1 Apbb1 Mus81
Arl8a Ostc Apeh Mut
Armc7 Ostf1 Apex2 Muted
Arpc2 Otub1 Apip Myadml2
Arpc3 Otx1 Aplnr Mybpc2
Arpc4 Oxsr1 Aplp2 Mybpc3
Arpc5 P2ry13 Apoa1bp Myeov2
Arrb1 P4hb Apobec2 Myh11
Arrb2 Pa2g4 Apoe Myh14
Arrdc4 Pabpc1l Apol10b Myh6
Arsg Pafah1b3 Apoo-ps Myh7
Arv1 Pag1 Appl2 Myl1
Ascc2 Pak1 Aqp1 Myl2
Ascc3 Pak1ip1 Aqp11 Myl3
Asns Pak2 Aqp4 Mylip
Asprv1 Pak3 Aqp8 Mylk3
Aspscr1 Pak4 Ar Mylk4
Ass1 Pak6 Araf Myo18a
Atf4 Papss1 Arap2 Myo6
Atic Pard6b Arfrp1 Myoc
Atn1 Parvb Arhgap12 Myom1
Atoh1 Parvg Arhgap20 Myom2
Atp13a3 Pask Arhgap24 Myoz2
Atp1a3 Pcbp3 Arhgap26 Myst1
Atp6v1h Pcdhb17 Arhgef15 Myst4
Atp8b4 Pcna Arhgef17 N6amt2
Atxn10 Pcnxl3 Arhgef19 Naaa
Atxn1l Pctk3 Arhgef6 Nagpa
Atxn2l Pdcd10 Arhgef9 Napa
Atxn7l2 Pdcd11 Arl5b Narf
Atxn7l3 Pdcd6ip Arl6ip6 Narfl
B3gnt3 Pde1a Armc1 Nars2
B3gnt7 Pde1b Armcx3 Nat15
B4galnt1 Pdgfra Armetl1 Nat6
Baiap2 Pdia4 Arpc5l Nat9
Basp1 Pdia5 Arsk Nbas
Bat1a Pdk4 Art1 Nbea
Bax Pdpk1 Art4 Nbeal1
Bcar1 Pdpn As3mt Ncald
Bcat1 Pdzrn3 Asah2 Ncapd3
Bcl10 Pecam1 Asap3 Ncbp2
Bcl2a1a Per2 Asb10 Ncoa1
Bcl2a1b Pes1 Asb11 Ncoa2
Bcl2a1c Pex14 Asb13 Ncrna00153
Bcl2a1d Pf4 Asb14 Ndrg2
Bcr Pfkfb3 Asb2 Ndrg4
Bdkrb2 Pfkfb4 Asb3 Ndufa10
Bet1l Pfn1 Asb5 Ndufa12
Bhlhe40 Pgd Asb8 Ndufa13
Bin1 Pgf Ascc1 Ndufa2
Bin2 Pgk1 Asna1 Ndufa3
Bin3 Pglyrp1 Asnsd1 Ndufa4
Birc1f Pgm3 Asph Ndufa6
Birc3 Pgrmc1 Asrgl1 Ndufa7
Blk Pgs1 Atad1 Ndufa8
Blm Phactr4 Atf7ip Ndufa9
Bmf Phf20 Atg10 Ndufab1
Bmp2 Phlda3 Atg2a Ndufaf1
Bnip3 Pi15 Atg4c Ndufaf2
Bnip3l Pi4k2a Atm Ndufaf3
Bok Pi4k2b Atp11a Ndufb10
Bop1 Pik3c2a Atp1a2 Ndufb11
Bpgm Pik3cd Atp1b2 Ndufb5
Brap Pik3r5 Atp2a2 Ndufb6
Brd2 Pilra Atp2c1 Ndufb7
Brp16 Pion Atp5a1 Ndufb8
Brpf1 Pip5k1a Atp5b Ndufb9
Bsn Pira2 Atp5c1 Ndufc1
Bst1 Pira3 Atp5d Ndufc2
Btbd10 Pitpna Atp5e Ndufs1
Btbd12 Pitpnm1 Atp5g1 Ndufs2
Btg1 Pkm2 Atp5g2 Ndufs3
Btg3 Pkmyt1 Atp5g3 Ndufs4
Bub1b Pkn2 Atp5h Ndufs5
Bxdc1 Pknox1 Atp5j Ndufs6
Bxdc2 Pla2g4a Atp5j2 Ndufs7
Bysl Pla2g7 Atp5k Ndufs8
Bzw1 Plac8 Atp5l Ndufv1
C1qtnf6 Plau Atp5o Ndufv2
C5ar1 Plcxd2 Atp5s Nebl
Cacna1d Plek Atp5sl Nedd1
Cad Plekha1 Atp6v0b Nedd4
Cald1 Plekha2 Atp6v1d Nek1
Calm1 Plekhg1 Atp6v1e1 Neo1
Camsap1l1 Plekhm3 Atp6v1f Nepn
Capn2 Plekho2 Atp6v1g2 Nexn
Car13 Plod3 Atp8a1 Nfatc2
Car9 Plscr3 Atp8a2 Nfia
Cars Plvap Atp9a Nfib
Casp3 Plxna2 Atpaf1 Nfix
Casp8 Pmepa1 Atpaf2 Nfu1
Cast Pnp1 Atpif1 Nfyc
Cbl Pola2 Atxn1 Nhlrc2
Cblb Pold4 Atxn2 Nhsl1
Ccbp2 Pole3 Auh Nicn1
Ccdc109b Polh Auts2 Nipa1
Ccdc134 Polr1b B3galnt2 Nipal3
Ccdc50 Polr2a B3galt2 Nit2
Ccdc6 Polr3e B3gat3 Nkx2-5
Ccdc86 Pols B4galt4 Nlk
Cchcr1 Pom121 Bag1 Nlrp10
Ccl17 Pop1 Bag4 Nme2
Ccl3 Pop4 Bahcc1 Nme3
Ccl6 Por Bak1 Nme5
Ccl9 Ppan Bambi Nme6
Ccnl1 Ppapdc1b Banp Nmnat1
Ccr1 Ppbp Bat5 Nnt
Cct2 Ppfibp1 Baz1b Nod1
Cct3 Pphln1 Bbs2 Nos1ap
Cct4 Ppib Bbs7 Notch3
Cct6a Ppm1j Bbs9 Npepl1
Cct8 Ppme1 Bcam Nphp1
Cd14 Ppp1r14b Bcas3 Npr1
Cd177 Ppp1r15b Bcat2 Npr2
Cd244 Ppp1r2 Bche Nqo2
Cd24a Ppp2cb Bckdha Nr0b2
Cd300a Ppp2r1b Bckdk Nr1d2
Cd300lf Ppp2r2a Bcs1l Nr2f6
Cd37 Ppp4c Bhlhb9 Nrbp2
Cd52 Ppp4r1 Blnk Nrd1
Cd63 Pram1 Bloc1s1 Nrip2
Cd84 Prdm4 Bphl Nrp1
Cd97 Prdx6 Brd7 Nrxn1
Cda Prep Brd9 Nsmaf
Cdc16 Prg4 Bri3bp Nsmce4a
Cdc42 Prkaa1 Brms1l Nsun4
Cdc42bpb Prkab2 Brp44 Nt5c1a
Cdca4 Prkar2b Brp44l Nt5c3
Cdca7l Prkcd Brwd2 Ntf3
Cdgap Prkx Bscl2 Ntn1
Cdh1 Prmt1 Btnl9 Ntn4
Cdk6 Prnp Btrc Ntsr2
Cdk9 Procr Bves Nub1
Cdkn2aipnl Prpf31 C1qtnf7 Nudt12
Cdr2l Prpf40a C1qtnf9 Nudt13
Cdsn Prr3 C1s Nudt14
Cdt1 Prrc1 C2cd3 Nudt19
Cdv3 Psat1 C3 Nudt2
Cebpb Psd4 C7 Nudt22
Cenpc1 Psma3 C87436 Nudt3
Cenpt Psma5 Cab39l Nudt6
Cfl1 Psmc1 Cabc1 Nudt7
Cfl2 Psmc4 Cables1 Nudt8
Cgref1 Psmd11 Cacna1c Numa1
Chaf1b Psmd14 Cacna1g Nxt2
Chd1 Psmd3 Cacna2d1 Oat
Chd7 Psmd8 Cacnb2 Oaz1
Chd9 Psmg3 Calcoco1 Obscn
Chi3l1 Pstpip1 Camk2n1 Obsl1
Chi3l3 Ptbp1 Camta1 Ogdh
Chi3l4 Ptbp2 Cand2 Ogdhl
Chic2 Ptk2 Canx Ogn
Chka Ptk2b Cap2 Opa1
Chmp4b Ptk7 Capn3 Oplah
Chmp4c Ptma Capn7 Optn
Chrnb1 Ptp4a1 Car14 Ormdl1
Chst11 Ptpn22 Card10 Osbp
Chsy1 Ptpn23 Card6 Osbpl1a
Cirh1a Ptpre Carf Osbpl2
Ckap4 Ptrh1 Casd1 Osbpl6
Cks2 Ptx3 Casp1 Osbpl8
Clca1 Purb Casq2 Osgep
Clcf1 Pus1 Cbfa2t3 Osgepl1
Clcn5 Pus7 Cbr1 Ostm1
Cldn15 Pus7l Cbr2 Otud6b
Clec4d Pusl1 Cbr4 Oxa1l
Clec4e Pvr Cbx1 Oxct1
Clec5a Pvrl1 Cbx8 Oxnad1
Clic4 Pwp2 Ccbl1 Oxsm
Clic5 Pxn Ccbl2 P2rx4
Cltb Pycr1 Ccdc117 P2rx6
Cltc Pycr2 Ccdc21 P2ry14
Cmpk1 Pygl Ccdc28a P4htm
Cndp2 Pyhin1 Ccdc44 Pabpc4
Cnih2 Rab11fip5 Ccdc45 Pafah2
Cnksr1 Rab32 Ccdc46 Paics
Cnn2 Rab34 Ccdc47 Paip1
Cog3 Rab35 Ccdc51 Paip2
Col18a1 Rab3gap2 Ccdc52 Palld
Copb1 Rab44 Ccdc56 Palm
Copg Rab4b Ccdc66 Pank4
Coro1a Rabgef1 Ccdc69 Papln
Coro1b Rac2 Ccdc72 Papolg
Coro2a Rad18 Ccdc75 Paqr4
Cotl1 Rad23b Ccdc85a Paqr7
Cox18 Rad54l2 Ccdc91 Paqr9
Cpne1 Ralb Ccl11 Pard3b
Cpne2 Ran Ccl19 Parp1
Cpsf2 Ranbp1 Ccl21a Patz1
Cpsf7 Rapgef1 Ccl8 Pbx1
Cpt1a Raph1 Ccnd2 Pbxip1
Creb3 Rara Ccng1 Pcbd2
Creb3l1 Rarres2 Ccni Pcca
Creb5 Rars Ccnt2 Pccb
Creld2 Rasip1 Ccpg1 Pcdh18
Crk Rasl11b Ccrl2 Pcdh19
Crkrs Rassf1 Cd28 Pcdh7
Crlf2 Rassf4 Cd300lg Pcdhga12
Crmp1 Rassf5 Cd46 Pcmtd1
Crtc2 Rassf7 Cd55 Pcmtd2
Cry1 Rbm19 Cd59b Pcnt
Cryab Rbm34 Cd74 Pcolce2
Csf2rb Rbm47 Cd81 Pcp4l1
Csf2rb2 Rbms1 Cd83 Pcsk6
Csf3r Rbmx2 Cdadc1 Pcyox1
Csgalnact1 Rbmxrt Cdan1 Pdcd4
Csnk1d Rbp7 Cdc123 Pde1c
Csrp1 Rbpj Cdc14b Pde3a
Cstb Rbpms Cdc23 Pde4c
Cstf2 Rcc1 Cdc2l6 Pde4dip
Ctdp1 Rcc2 Cdc37 Pde6d
Ctla2b Rcl1 Cdc37l1 Pde7b
Ctps Rdh10 Cdh23 Pdgfd
Cttn Rdh11 Cdk10 Pdha1
Cul2 Rdh12 Cdk5 Pdhb
Cwf19l1 Rdh9 Cdk5rap1 Pdhx
Cxcl2 Reep3 Cdkal1 Pdk2
Cxcl3 Relb Cdkl5 Pdlim4
Cxcr6 Rell1 Cdkn1c Pds5b
Cyfip1 Relt Ceacam1 Pdss2
Cyp1b1 Retnlg Cecr2 Pdxk
Cyp20a1 Rfc3 Cenpa Pdzd2
Cyp4f18 Rgnef Cenpf Pebp1
Cyr61 Rgs11 Cenpq Pepd
Cytip Rgs12 Cenpv Per3
Dbf4 Rgs16 Cep63 Pet112l
Dck Rgs18 Cep68 Pex1
Dclre1b Rgs19 Cep70 Pex12
Dcpp1 Rhbdd1 Cep97 Pex19
Dctd Rhbdf2 Cgrrf1 Pex26
Dcun1d3 Rhod Chchd10 Pfkfb1
Dda1 Ric8 Chchd2 Pfkfb2
Ddr1 Rin1 Chchd3 Pfkm
Ddx10 Riok1 Chchd8 Pfn2
Ddx19a Riok3 Chd6 Pfn4
Ddx19b Ripk2 Chek2 Pgam2
Ddx21 Ripk3 Chid1 Pgap1
Ddx24 Rlim Chordc1 Pgcp
Ddx27 Rnaseh1 Chpt1 Pgm5
Ddx31 Rnd1 Chrac1 Pgpep1
Ddx39 Rnf103 Chtf8 Phactr2
Ddx50 Rnf125 Ciao1 Phb
Ddx54 Rnf126 Cideb Phf1
Ddx56 Rnf149 Cisd1 Phf17
Defb13 Rnf160 Cish Phf20l1
Degs1 Rnf19a Cited4 Phkb
Dera Rnf19b Ckm Phlpp
Dgkd Rnf39 Ckmt2 Phospho2
Dgkh Rnf4 Clasp1 Phpt1
Dhcr24 Rnf41 Clasp2 Phtf2
Dhrs9 Rnh1 Clcc1 Phyh
Dhx32 Rnmt Clcn4-2 Phyhd1
Dhx37 Rnps1 Clec3b Phyhip
Dhx38 Rnu3b1 Clip1 Pibf1
Dhx8 Ror1 Clip4 Pick1
Dhx9 Rpl12 Clptm1 Pigg
Diap1 Rpl13 Clpx Pigs
Dicer1 Rpl14 Clstn1 Pigy
Dimt1 Rpl17 Clu Pih1d1
Dis3 Rpl23 Clybl Pik3c2b
Dkc1 Rpl27 Cmah Pik3r2
Dlg5 Rpl27a Cmbl Pik3r4
Dlgap4 Rpl30 Cmc1 Pip5k1b
Dll4 Rpl34 Cmya5 Pitpnc1
Dnajb9 Rpl36a Cnnm2 Pja1
Dnajc5 Rpl36al Cnnm3 Pkdcc
Dnm2 Rpl37 Cnot4 Pkig
Dnttip2 Rpl7 Cnot8 Pknox2
Dock2 Rpl7l1 Cntn5 Pla2g16
Dock4 Rpn1 Cog4 Pla2g4e
Dock5 Rps12 Cog5 Pla2g5
Dok1 Rps15a Cog6 Plag1
Dok3 Rps18 Cog7 Plbd1
Dpep2 Rps19 Col14a1 Plcb1
Dpep3 Rps25 Colec11 Plce1
Dph2 Rps27a Colq Pld3
Dph5 Rps6 Commd3 Plekha5
Dpy19l1 Rps6ka1 Commd6 Plekha6
Dtl Rps6ka3 Commd9 Plekhb2
Dusp26 Rps6ka4 Copg2 Plekhh3
Dusp4 Rraga Cops3 Pln
Dusp5 Rras Copz2 Plscr4
E2f3 Rras2 Coq10a Pltp
E2f7 Rrbp1 Coq2 Plxdc1
Eaf1 Rrp15 Coq5 Plxdc2
Ear2 Rrp1b Coq6 Pm20d1
Ece1 Rrp8 Coq9 Pm20d2
Ecm1 Rtn4 Corin Pmpcb
Ecscr Rtn4rl2 Coro6 Pnkd
Edn1 Runx2 Cox10 Pnpla7
Eef1b2 Rusc2 Cox11 Pnpla8
Eef1e1 Ruvbl1 Cox15 Pnrc2
Eef1g Rxfp3 Cox17 Podn
Eef2k S100a10 Cox4i1 Podxl
Efna5 S100a16 Cox5a Pogz
Eftud1 S100a4 Cox5b Polb
Eftud2 S100a6 Cox6a2 Poldip2
Egln3 S100a8 Cox6b1 Polg
Eid3 S100a9 Cox6c Poll
Eif2ak3 S1pr1 Cox7a1 Polr2e
Eif2b3 Saa3 Cox7a2 Polr2j
Eif2c2 Sacs Cox7a2l Polr3gl
Eif2s1 Samsn1 Cox7b Polrmt
Eif2s2 Sap30 Cox8a Pon3
Eif3b Sars Cox8b Pot1a
Eif3d Sat1 Cpa3 Ppa2
Eif4a1 Sav1 Cpe Ppapdc3
Eif4ebp1 Sc4mol Cpne3 Ppara
Eif5 Scn5a Cpped1 Ppargc1a
Eif5a2 Scyl2 Cpt1b Ppfibp2
Eif6 Scyl3 Cpxm2 Ppid
Elavl1 Sdad1 Cradd Ppif
Elk4 Sdc1 Crat Ppil1
Ell Sdcbp Creb1 Ppm1k
Ell2 Sdcbp2 Crebbp Ppm2c
Elmo2 Sdk2 Crebl2 Ppox
Elovl1 Sebox Creld1 Ppp1r14c
Elovl6 Sec23b Crhr2 Ppp1r16a
Emb Sec24a Crip2 Ppp1r3a
Emilin1 Sec24b Crot Ppp1r3c
Eml3 Seh1l Crybg3 Ppp1r9a
Emp2 Sell Cryz Ppp2r5a
Eno1 Selp Cryzl1 Ppp2r5d
Entpd3 Selplg Cs Ppp3cb
Entpd7 Sema3a Csad Ppp3cc
Epb4.1l1 Sema4a Csdc2 Ppp5c
Epha2 Senp5 Csde1 Ppt2
Eps8 Serinc2 Csprs Pptc7
Erbb2ip Serpina3m Cst3 Prcc
Ercc1 Serpinb2 Ctcf Prdm16
Ercc6l Sertad1 Ctdsp1 Prdx2
Erh Sertad2 Ctla4 Prdx3
Erlin1 Sertad3 Ctnna3 Prei4
Ero1l Sesn2 Ctnnal1 Prelp
Esd Set Ctns Prepl
Etf1 Setd1a Ctsa Prex2
Etv4 Setd5 Ctsd Prickle3
Evi1 Sf3b4 Ctsf Prkaca
Evi5 Sfpi1 Ctso Prkag1
Exoc1 Sfrs9 Cugbp2 Prkce
Exoc5 Sft2d1 Cul4a Prkcq
Exosc1 Sfxn1 Cul9 Prkcsh
Exosc2 Sfxn5 Cuta Prkd1
F10 Sgpl1 Cx3cr1 Prkdc
F13a1 Sgtb Cxcl16 Prkra
F5 Sh2b2 Cxx1b Prpf19
F7 Sh2d5 Cxx1c Prps2
Fads3 Sh3bgrl2 Cxxc5 Prpsap1
Fam105b Sh3bgrl3 Cyb5d1 Prpsap2
Fam107b Sh3pxd2b Cyb5rl Psap
Fam117b Shb Cyc1 Psd3
Fam13b Shc1 Cycs Psmb10
Fam160a2 Shcbp1 Cyfip2 Psmb9
Fam160b1 She Cyhr1 Psme1
Fam167a Shisa5 Cyp27a1 Psme2
Fam169b Shkbp1 Cyp2j6 Psme4
Fam20c Shoc2 Cyp2j9 Psmg1
Fam38a Shq1 Cyp39a1 Ptcd1
Fam40a Shroom2 Cyth1 Ptcd2
Fam46b Shroom3 Cytl1 Ptcd3
Fam46c Siah1a D2hgdh Ptdss1
Fam49b Siglec1 Daam1 Ptdss2
Fam57a Siglece Dach1 Pter
Fam60a Sigmar1 Dalrd3 Ptges2
Fam71f2 Sipa1l3 Dapk2 Ptgr2
Farp1 Sirpb1 Dars2 Ptov1
Farsa Skap2 Dbp Ptpn14
Fbl Sla Dbt Ptpn2
Fbxl5 Slc10a3 Dci Ptpn3
Fbxo38 Slc10a7 Dclre1a Ptprd
Fbxw10 Slc11a1 Dcn Ptprm
Fbxw11 Slc12a4 Dcps Ptprs
Fbxw9 Slc15a3 Dctn3 Pwwp2b
Fcgr1 Slc16a3 Dcun1d4 Pxmp3
Fcgr2b Slc19a1 Dcxr Pxmp4
Fcgr4 Slc1a1 Ddb2 Pycrl
Fcrlb Slc1a4 Ddo Pygb
Fem1c Slc22a15 Ddt Pygm
Fen1 Slc23a2 Deb1 Pyroxd1
Fermt2 Slc25a1 Decr1 Qdpr
Fermt3 Slc25a17 Decr2 Qpct
Fes Slc25a37 Def8 Qser1
Fgd3 Slc2a1 Dennd1a R3hdm2
Fgd6 Slc2a3 Dennd5b RP23-195K8.6
Fgf23 Slc30a4 Depdc5 RP23-357I14.1
Fgr Slc30a7 Det1 Rab12
Fhl1 Slc35b1 Dexi Rab1b
Fhl3 Slc35b3 Dgat2 Rab22a
Fhod1 Slc35b4 Dgcr6 Rab28
Fjx1 Slc35d2 Dgka Rab3a
Fkbp10 Slc35e4 Dgkb Rab3d
Fkbp11 Slc36a4 Dguok Rab7
Fkbp14 Slc38a1 Dhodh Rab9
Fkbp1a Slc39a11 Dhrs1 Rabac1
Flna Slc39a13 Dhrs11 Rad1
Flt4 Slc39a14 Dhrs3 Rad23a
Fmn1 Slc39a7 Dhrs7 Rad51l3
Fmnl2 Slc3a2 Dhrs7b Rad9b
Fmr1 Slc43a2 Dhrs7c Raf1
Fnbp4 Slc45a3 Diablo Rai2
Fosb Slc4a1 Diras2 Ralgps2
Fosl1 Slc6a12 Dirc2 Rangrf
Foxn2 Slc6a9 Dis3l Rapgef2
Fpgs Slc7a11 Disp1 Rapgef4
Fpr1 Slc7a2 Dixdc1 Rasgrf2
Fpr3 Slc7a5 Dlat Rasgrp2
Freq Slc9a3r1 Dld Rasgrp3
Frmd4a Slc9a7 Dlg1 Raver2
Fscn1 Slco2a1 Dlst Rbbp9
Fstl3 Slco4a1 Dmpk Rbl2
Ftsj3 Slfn1 Dmxl1 Rbm10
Fubp3 Slfn10 Dnaja2 Rbm20
Furin Slfn4 Dnaja4 Rbm38
Fut4 Slpi Dnajb5 Rbpj
Fxyd5 Smad7 Dnajc15 Rc3h1
G6pd2 Smap1 Dnajc18 Rcan2
G6pdx Smarcb1 Dnajc19 Rcbtb2
Gabarapl2 Smg1 Dnajc24 Rcn2
Gabre Smg7 Dnajc4 Rcor3
Gadd45b Smn1 Dnajc9 Rcsd1
Gak Smpdl3b Dnalc4 Rdh13
Gale Smurf1 Dnmt3a Rdh5
Galk1 Smyd5 Doc2g Rdm1
Galns Snai1 Dock6 Reep1
Galnt6 Snca Dok4 Rfc1
Galntl1 Snhg1 Dpf2 Rfesd
Gan Snora61 Dpf3 Rfk
Gapt Snora62 Dpm1 Rfwd3
Gar1 Snora65 Dpt Rgl3
Gars Snora70 Dpy30 Rgma
Gas2l1 Snora7a Dpyd Rgmb
Gas7 Snord115 Dpysl4 Rgs2
Gatad2a Snord116 Dsc2 Rgs5
Gba Snord34 Dsp Rgs6
Gbe1 Snord49a Dtd1 Rhd
Gclc Snord53 Dtnbp1 Rhob
Gclm Snord96a Dtx3 Rhobtb2
Gcnt1 Snrpa1 Dtx3l Rhobtb3
Gcnt2 Snrpd1 Dtymk Rhot1
Gda Snx1 Dus4l Rhot2
Gdf6 Snx10 Dusp19 Ric8b
Gdi2 Snx18 Dusp28 Rilp
Gemin5 Snx24 Dusp7 Ring1
Gemin6 Snx7 Dym Rmi1
Gfod1 Snx9 Dyrk1b Rmnd5a
Gfpt1 Soat2 Dzip3 Rnaseh2a
Gimap7 Socs3 E2f6 Rnasek
Gins2 Sorbs2 Ebf2 Rnasen
Gipc1 Spata13 Ebf3 Rnaset2a
Gipr Spatc1 Ech1 Rnf10
Gjc1 Spcs3 Echdc1 Rnf114
Glipr2 Spg21 Echdc2 Rnf123
Glis3 Sphk1 Echdc3 Rnf13
Glrx Spint1 Echs1 Rnf135
Glt8d3 Spp1 Ecm2 Rnf14
Glul Spred3 Ecsit Rnf146
Gm1862 Sprr2a Edf1 Rnf150
Gm1964 Spry2 Ednra Rnf166
Gm22 Spryd3 Eepd1 Rnf167
Gm340 Sqle Efcab2 Rnf187
Gm672 Src Efha1 Rnf207
Gm885 Srebf2 Egflam Rnf34
Gmds Srgap1 Ehbp1 Rnf8
Gmeb2 Srgap3 Ehhadh Rnls
Gmfb Srgn Eif1 Rnpep
Gmfg Sri Eif2b4 Robld3
Gmip Srxn1 Eif4e Rogdi
Gna13 Ssb Elf2 Romo1
Gnai3 Ssh1 Elmod2 Rora
Gnb1 Ssr1 Elp4 Rpa1
Gnb2l1 Ssr2 Eml1 Rpa3
Gng12 Ssrp1 Endog Rpap3
Gngt2 Stam Eno3 Rpgr
Gnl3 Star Enox2 Rpl31
Gnpnat1 Stat3 Enpep Rpl3l
Golt1b Steap1 Enpp3 Rpp40
Gorab Steap2 Enpp5 Rprd1a
Gorasp2 Stfa2l1 Entpd2 Rpusd4
Gosr2 Stk3 Entpd4 Rrad
Gpatch4 Stk4 Entpd5 Rragb
Gpd1 Stk40 Epb4.1l3 Rragd
Gpihbp1 Strm Epb4.1l5 Rreb1
Gpn2 Strn Epha7 Rrm2b
Gpr141 Strn4 Ephb3 Rsbn1l
Gpr172b Stt3a Ephx1 Rshl2a
Gpr35 Stx12 Ephx2 Rsl1
Gpr39 Stxbp1 Epm2a Rtf1
Gpr64 Stxbp2 Epn3 Rtn2
Gpr97 Supt6h Eps8l1 Rtn3
Gprc5a Surf4 Erap1 Rtn4ip1
Gpx1 Sv2b Erbb4 Rtp3
Grap Syk Ergic3 Rttn
Grhl1 Syncrip Eri3 Rufy1
Grk6 Synj1 Esco1 Rxra
Grwd1 Taf1d Esrrb Rxrg
Grxcr1 Taf4b Etfa Ryr2
Gsr Taf9 Etfb S100a1
Gss Tal2 Etfdh Samd12
Gsta1 Taldo1 Ethe1 Sars2
Gsta2 Tapt1 Etl4 Sbk2
Gstcd Tardbp Etv1 Scand1
Gtf2f1 Tars Exd2 Scaper
Gtf2f2 Tas2r126 Exoc3 Scarna17
Gtpbp4 Tas2r135 Exoc4 Sccpdh
Gtpbp6 Tas2r143 Exoc8 Schip1
H13 Tatdn2 Extl3 Scin
H2-M10.3 Tbc1d1 Eya3 Sclt1
H2-Q10 Tbc1d10b Ezh1 Scly
H3f3b Tbc1d15 F3 Scmh1
H6pd Tbc1d9 Faf1 Scn7a
Hars Tbcd Fahd1 Sco1
Haus6 Tbk1 Fam110b Scp2
Haus7 Tbl1xr1 Fam114a2 Scrn1
Havcr2 Tbl2 Fam118b Scrn3
Hax1 Tbl3 Fam120b Scube2
Hba-a1 Tbrg1 Fam120c Sdf2
Hba-a2 Tbrg3 Fam126a Sdha
Hbb-b1 Tcerg1 Fam128b Sdhb
Hcls1 Tcfec Fam132a Sdhd
Hdac1 Tdg Fam13a Sdpr
Hdac6 Tead2 Fam149b Sec14l1
Hdc Tead4 Fam160a1 Selenbp1
Heatr1 Tes Fam161b Selk
Hells Tex10 Fam173a Sema6a
Hgs Tfpi2 Fam173b Sema6c
Hipk1 Tgfb1i1 Fam174a Senp7
Hk1 Tgfbi Fam174b Senp8
Hk3 Tgm1 Fam175a Sepp1
Hmg1l1 Thoc4 Fam179a Sepw1
Hmga1 Thumpd3 Fam20b Serac1
Hmgb1 Tiam2 Fam40b Serf1
Hmgb2 Tifa Fam53b Serf2
Hmgcr Tigd2 Fam54b Serinc5
Hmgn1 Tinagl1 Fam55d Serpinb9
Hmha1 Tipin Fam59a Serping1
Hnrnpa0 Tjap1 Fam69b Serpini1
Hnrnpa1 Tjp2 Fam70b Sesn1
Hnrnpa1l2 Tkt Fam73b Sesn3
Hnrnpa3 Tll1 Fam78a Setbp1
Hnrnpk Tln1 Fam81a Setd3
Hp Tlr13 Fam82a1 Setd8
Hps3 Tm4sf19 Fam82a2 Sfrs12ip1
Hpse Tmbim1 Fam82b Sfrs18
Hrct1 Tmed5 Fam92a Sft2d3
Hsd17b11 Tmed9 Fam96a Sfxn4
Hsd3b4 Tmem120a Fam96b Sgca
Hspa13 Tmem128 Fancl Sgcb
Hspb1 Tmem154 Fars2 Sgcd
Hspb2 Tmem165 Fastk Sgce
Htr2a Tmem167 Fastkd1 Sgcg
Htt Tmem168 Fastkd2 Sgol2
Hyou1 Tmem183a Fat4 Sgsm2
Ibtk Tmem184b Fblim1 Sgta
Id2 Tmem189 Fbln1 Sh3bgr
Iffo2 Tmem202 Fbxl20 Sh3glb2
Ifi30 Tmem214 Fbxl22 Siae
Ifitm1 Tmem22 Fbxo18 Sin3b
Ifitm6 Tmem39a Fbxo21 Sipa1l2
Ifrd1 Tmem43 Fbxo22 Sirt1
Igf1r Tmem49 Fbxo25 Sirt2
Igf2bp2 Tmem87b Fbxo3 Sirt3
Igsf2 Tnc Fbxo31 Sirt4
Igsf6 Tnfaip1 Fbxo32 Sirt5
Ikbke Tnfaip3 Fbxo40 Six4
Ikzf1 Tnfaip6 Fbxo44 Six5
Il11 Tnfaip8l2 Fbxo8 Slc16a7
Il17ra Tnfrsf10b Fbxw4 Slc16a9
Il18rap Tnfrsf1b Fbxw5 Slc25a10
Il1f9 Tnfrsf22 Fbxw7 Slc25a11
Il1r2 Tnfrsf23 Fcgrt Slc25a12
Il1rap Tnfrsf26 Fchsd2 Slc25a13
Il20rb Tnfrsf9 Fcrls Slc25a15
Il4ra Tnfsf9 Fdx1 Slc25a17
Il8rb Tnpo2 Fgd4 Slc25a19
Ilk Tomm20 Fgf13 Slc25a23
Impdh1 Tomm70a Fgf14 Slc25a27
Impdh2 Topbp1 Fgf16 Slc25a3
Inhba Tpbg Fgf9 Slc25a33
Inhbb Tpcn2 Fggy Slc25a36
Ino80 Tpd52 Fh1 Slc25a39
Ino80c Tpp2 Fhl2 Slc25a4
Ip6k2 Tpt1 Fhod3 Slc26a10
Ipo4 Tra2b Fig4 Slc27a1
Ipo7 Traf3 Fign Slc28a2
Ippk Traf6 Filip1 Slc29a1
Irak3 Traf7 Filip1l Slc2a12
Irak4 Tram1 Fis1 Slc2a8
Irf8 Tram2 Fitm1 Slc30a9
Irg1 Trappc5 Fkbp3 Slc31a2
Irs2 Trem1 Fktn Slc35a1
Itga2 Treml2 Flot1 Slc36a2
Itga2b Trib3 Flt3l Slc37a1
Itga3 Trim27 Fmc1 Slc37a4
Itga7 Trim41 Fmo1 Slc38a11
Itgal Trip13 Fmo5 Slc38a3
Itgam Trmt6 Fn3krp Slc38a7
Itgb1bp3 Trmt61a Fnbp1 Slc38a9
Itgb2 Trove2 Fndc5 Slc41a1
Itgb3 Trp53 Fnip1 Slc41a3
Itgb7 Trp53i11 Fnta Slc46a1
Itpk1 Trp53i13 Folr2 Slc47a1
Itpkc Trpc6 Foxj2 Slc9a3r2
Itpr3 Trpm2 Foxn3 Slc9a6
Jmjd6 Trpv2 Foxo3 Slc9a9
Jtv1 Tsc22d2 Foxred1 Slco2b1
Jub Tshz1 Frag1 Slco3a1
Kbtbd10 Tsku Frem2 Slfn5
Kcne3 Tspan5 Frmd5 Smarca2
Kcne4 Tsr1 Frs2 Smarcal1
Kcnn4 Tssc4 Fsd2 Smarcd3
Kctd17 Ttc37 Fuca2 Smpd1
Kctd18 Ttc9 Fundc1 Smpd2
Kctd5 Ttll11 Fundc2 Smpdl3a
Kdm3a Tuba1c Fut8 Smtnl2
Kdm5c Tubb1 Fv1 Smyd1
Khdrbs1 Tuft1 Fxyd1 Smyd3
Kif21b Tulp4 Fyco1 Snai2
Kif3b Twist1 Fzd6 Snapc1
Klf10 Twistnb G0s2 Snapc5
Klf16 Txlna G6pc3 Snapin
Klf6 Txn1 Gaa Sned1
Klhdc4 Txndc11 Gab1 Snrnp27
Klhl2 Txndc5 Gabarap Snx16
Klhl6 Txnrd1 Gadd45gip1 Snx21
Klra2 U2af1 Gal3st2 Snx27
Kpnb1 Uba2 Galnt11 Snx32
Kri1 Ubash3b Galt Snx33
Krt19 Ube2e2 Gamt Sobp
Krt8 Ube2j1 Garnl1 Socs2
Krt80 Ube2o Gas6 Sod2
Lamc2 Ube2z Gatc Sorbs1
Larp1 Ubqln1 Gatsl2 Sorcs2
Lasp1 Ubxn4 Gbas Sord
Lass2 Ucp2 Gbp4 Sox6
Lass3 Ufm1 Gbp6 Sp100
Lass6 Ugcgl2 Gca Sp4
Lats1 Ugt1a9 Gcdh Spa17
Lcn2 Uhrf1 Gck Spag7
Lcp2 Uhrf1bp1l Gcom1 Spata1
Ldb2 Unc5b Gdap10 Spc24
Ldlr Urb1 Gdpd1 Spna1
Ldlrap1 Urb2 Gdpd5 Spnb1
Lgals1 Uso1 Gfm1 Spns1
Lig3 Usp1 Gfm2 Sqrdl
Lilrb3 Usp20 Gfra4 Srd5a2l2
Limd1 Usp22 Ggcx Srl
Limk1 Usp31 Ghdc Srpk2
Lin7c Usp39 Ghitm Srpk3
Lipg Usp47 Ghr Srpx
Llph Usp53 Gins4 Srr
Lmbr1l Usp6nl Gja1 Ssbp1
Lmnb1 Usp7 Gja3 Ssbp2
Lonrf3 Uspl1 Gkap1 Sspn
Lox Utp14a Glb1 St3gal3
Loxl4 Utp15 Glcci1 St3gal4
Lpcat3 Utp18 Glo1 St3gal5
Lpcat4 Utp20 Glrx2 St3gal6
Lpxn Uxs1 Glrx5 St5
Lrp10 Vars Glt25d2 St6galnac2
Lrrc32 Vasp Glt8d1 St6galnac6
Lrrc49 Vav1 Gm1614 St7l
Lrrc58 Vcl Gm166 Stard3
Lrrc59 Vmn2r9 Gm239 Stard8
Lrrc8c Vps37b Gm428 Stard9
Lrrc8d Vps4b Gm561 Stat5b
Lrrfip1 Wasf2 Gm572 Stau2
Lsg1 Wdfy1 Gm826 Stc2
Lss Wdhd1 Gmnn Steap3
Ltbr Wdr1 Gmpr Steap4
Ltv1 Wdr12 Gna12 Stk11
Ly6g Wdr26 Gnb5 Stk16
Lyn Wdr3 Gnmt Stk39
Lypd1 Wdr4 Gnpat Stmn1
Magi1 Wdr43 Gnpda1 Stom
Mak16 Wdr45l Gnptab Stradb
Mal Wdr46 Gnptg Strbp
Mall Wdr62 Golga4 Stub1
Malt1 Wdr70 Gorasp1 Stx17
Mamld1 Wdr73 Got1 Stxbp4
Manbal Wdr74 Got2 Stxbp6
Map2k1 Wdr75 Gpam Sucla2
Map2k3 Wdr77 Gpatch8 Suds3
Map2k4 Wdsof1 Gpbp1l1 Suox
Map4k4 Whamm Gpc1 Supv3l1
Map4k5 Whsc1 Gpd1l Surf1
Mapk11 Wipf1 Gpld1 Svil
Mapk6 Wnt9a Gpn3 Svip
Mapk7 Wwc2 Gpr108 Syde2
Mast4 Xbp1 Gpr125 Sympk
Mbc2 Xirp2 Gpr137b Sync
Mbd1 Xpnpep1 Gpr175 Syne1
Mbnl2 Xpo6 Gpr22 Syne2
Mboat2 Xpot Gpr89 Syngr1
Mcm3 Xylt1 Gprasp1 Syngr2
Mcm4 Yars Gprc5c Synj2
Mcm9 Yipf5 Gpsm1 Synpo2
Mctp2 Ykt6 Gpsn2 Tac1
Mdfi Ypel5 Gpt2 Tada2l
Mdn1 Yrdc Gpx4 Taf12
Me2 Ythdf2 Gramd1b Taf4a
Med13l Ywhab Gramd4 Taf6
Med14 Ywhag Grb14 Tars2
Med8 Ywhah Grhpr Taz
Mertk Ywhaz Grinl1a Tbc1d17
Met Zbp1 Grm1 Tbc1d19
Mettl1 Zbtb22 Grsf1 Tbc1d22a
Mettl13 Zc3h12d Gsn Tbc1d4
Mettl9 Zc3h7a Gstk1 Tbc1d7
Mex3d Zcchc9 Gstm1 Tbccd1
Mfsd10 Zdhhc12 Gstm2 Tbx20
Mfsd7b Zdhhc21 Gstm3 Tbx3
Mical1 Zdhhc9 Gstm4 Tbx5
Mical2 Zfp120 Gstm5 Tcap
Micall1 Zfp13 Gstm7 Tcea3
Micall2 Zfp408 Gstp1 Tceal1
Midn Zfp52 Gstp2 Tcf21
Mif Zfp593 Gstt1 Tcfcp2
Mirhg1 Zfp9 Gstz1 Tcfeb
Mki67ip Zfr Gtf2h2 Tcn2
Mkrn1 Zmat3 Gtf2i Tcp11l2
Mlxip Zmiz1 Gtf3c1 Tcta
Mmadhc Zmynd19 Gtpbp8 Tctn3
Mmp12 Znrf2 Gucy1a2 Tec
Mmp19 Zscan4-ps2 Gucy1a3 Tef
Mmp25 Zswim4 Gucy1b3 Tek
Mmp3 Zwilch Gypc Tesc
Zwint Gzmm Tesk2
H2-Eb1 Tex261
H2-Ke6 Tfb2m
H2-T24 Tfpi
H2afv Tgfbr3
Hacl1 Tha1
Hadh Thap4
Hadha Thap6
Hadhb Thoc7
Hagh Thra
Hars2 Tiaf2
Haus1 Tie1
Haus5 Timm17b
Haus8 Timm22
Hbp1 Timm23
Hbs1l Timm44
Hbxip Timm8b
Hccs Timp2
Hcfc1r1 Tlcd1
Hcn2 Tle2
Hcn4 Tln2
Hdac10 Tm7sf3
Hdac2 Tm9sf2
Hdac5 Tmbim4
Hdac8 Tmc7
Hdac9 Tmco1
Hddc3 Tmco3
Hdhd2 Tmed1
Heatr5b Tmem106b
Helz Tmem106c
Hemk1 Tmem109
Herpud1 Tmem116
Hes6 Tmem117
Hexa Tmem126a
Hexim1 Tmem126b
Hfe Tmem129
Hfe2 Tmem135
Hhatl Tmem140
Hibadh Tmem141
Hibch Tmem143
Hif1an Tmem147
Higd2a Tmem175
Hint2 Tmem195
Hint3 Tmem201
Hisppd1 Tmem204
Hist1h1e Tmem205
Hist1h2bc Tmem218
Hist1h4h Tmem223
Hist2h2be Tmem25
Hist3h2a Tmem35
Hlf Tmem42
Hltf Tmem44
Hmbs Tmem47
Hmgb3 Tmem48
Hmgcs2 Tmem50a
Hmgn2 Tmem50b
Hnmt Tmem56
Homer2 Tmem59
Hopx Tmem63b
Hp1bp3 Tmem64
Hpgd Tmem65
Hps4 Tmem69
Hrasls Tmem70
Hrsp12 Tmem77
Hs1bp3 Tmem80
Hs3st5 Tmem82
Hsbp1 Tmem85
Hscb Tmem98
Hsf1 Tmod1
Hspa4l Tmod4
Hspa9 Tmtc1
Hspb3 Tmtc2
Hspbp1 Tnfaip8
Htatip2 Tnip3
Htatsf1 Tnni3
Htra1 Tnni3k
Htra3 Tnrc6b
Htra4 Tnrc6c
Hyal1 Tnxb
Hyls1 Tob2
Iars2 Tom1l1
Ica1 Tom1l2
Ict1 Tomm34
Idh2 Tomm40l
Idh3a Tomm5
Idh3b Tpcn1
Idh3g Tpmt
Ids Tpp1
Ifi203 Tppp
Ifi205 Tppp3
Ifngr2 Tprgl
Ift140 Tra2a
Ift172 Traf3ip1
Ift20 Trak1
Ift80 Trap1
Ift81 Trappc2
Igbp1 Trappc2l
Igdcc4 Trappc9
Igf2 Trib2
Igf2r Trim12
Igfals Trim32
Igfbp4 Trim55
Igfbp5 Trim63
Igfbp6 Trim65
Iigp1 Trim68
Ikzf2 Trim72
Il10rb Trmt2b
Il11ra1 Trmt5
Il15 Trmu
Il15ra Trnt1
Il17rd Trp53inp2
Immp1l Trpc1
Immt Trpc2
Inadl Trpc3
Inca1 Trpm4
Ing4 Trpt1
Inpp4a Tsc1
Inpp5a Tsc2
Inpp5e Tsc22d4
Inpp5j Tsen34
Inpp5k Tsfm
Inppl1 Tsga10ip
Insig2 Tspan12
Ints10 Tspan13
Intu Tspan3
Ip6k3 Tspan7
Ipo8 Tspyl4
Ipp Ttc12
Iqcb1 Ttc19
Iqcc Ttc21b
Iqwd1 Ttc3
Irak1bp1 Ttc30a2
Irf2bp1 Ttc30b
Irgm2 Ttc32
Irs1 Ttc35
Irx3 Ttll1
Irx4 Ttll5
Isca1 Ttn
Isca2 Tubd1
Islr Tubg1
Isoc1 Tufm
Isyna1 Tusc4
Itfg1 Twf2
Itfg2 Twsg1
Itfg3 Txlnb
Itga1 Txn2
Itgb1bp2 Txndc14
Itgb6 Txndc15
Itih5 Txndc16
Itm2a U2af1l4
Itm2b Uba52
Itpa Ube1y1
Itpkb Ube2a
Itpr1 Ube2b
Itsn1 Ube2d1
Ivd Ube2e3
Ivns1abp Ube2l3
Jam2 Ube2r2
Jarid2 Ube2v2
Jmjd8 Ubl4
Jmy Ubl5
Josd1 Ubl7
Jtb Ubr7
Kank2 Ubxn2b
Kank3 Ubxn6
Katnal1 Uckl1
Kbtbd4 Uhrf2
Kbtbd7 Ulk1
Kcna5 Ulk2
Kcna7 Unc84a
Kcnb1 Uqcc
Kcnd3 Uqcr
Kcng2 Uqcrb
Kcnh2 Uqcrc1
Kcnip2 Uqcrc2
Kcnj11 Uqcrfs1
Kcnj12 Uqcrh
Kcnn2 Uqcrq
Kcnq1 Urod
Kcnt2 Use1
Kctd1 Usf2
Kctd2 Ushbp1
Kctd21 Usmg5
Kdelc2 Usp11
Kdm2b Usp13
Kdm5d Usp15
Kdr Usp2
Khdrbs3 Usp21
Kif13a Usp24
Kif13b Usp46
Kif16b Uty
Kif1c V1rd20
Kif21a Vdac1
Kif3c Vdac3
Kif7 Vegfb
Kifap3 Vezt
Kifc2 Vit
Kifc3 Vldlr
Klc2 Vmn2r111
Klc4 Vps13a
Klf12 Vps13c
Klf15 Vps13d
Klf2 Vps25
Klhdc2 Vps28
Klhdc8a Vps52
Klhl13 Vps72
Klhl22 Vrk2
Klhl23 Vtn
Klhl24 Wbp1
Klhl30 Wbscr16
Klhl31 Wbscr17
Klhl32 Wdr18
Klhl7 Wdr21
Klhl8 Wdr23
Krba1 Wdr24
Krt222 Wdr35
Ktn1 Wdr41
Ky Wdr45
L2hgdh Wdr48
Lactb Wdr53
Lage3 Wdr6
Lama2 Wdr67
Lamb2 Wdr7
Lamp2 Wdr92
Lancl1 Wdsub1
Laptm4a Wdyhv1
Laptm4b Wfdc6a
Lars2 Whrn
Lass4 Wipf3
Lcmt1 Wnk1
Ldb3 Wnk2
Ldhb Wnk4
Ldhd Wrap53
Letm1 Wrb
Letm2 Wwp1
Lgi1 Xdh
Lgtn Xpo7
Lifr Xrcc1
Limch1 Xrcc4
Lims1 Xrcc5
Lims2 Xrcc6
Lix1 Ybx1
Lman2l Yif1a
Lmbr1 Yipf2
Lmbrd1 Yipf3
Lmod2 Yipf7
Lmtk2 Ypel3
Lonp1 Zbtb20
Lonp2 Zbtb4
Lonrf2 Zc3h7b
Lpgat1 Zcchc17
Lphn2 Zdhhc1
Lpin1 Zdhhc17
Lpl Zer1
Lrba Zfand1
Lrp4 Zfand6
Lrp6 Zfp106
Lrpprc Zfp110
Lrrc1 Zfp113
Lrrc10 Zfp128
Lrrc2 Zfp148
Lrrc20 Zfp157
Lrrc39 Zfp160
Lrrc48 Zfp161
Lrrc52 Zfp180
Lrrc57 Zfp187
Lrrc68 Zfp189
Lrrcc1 Zfp191
Lrrfip2 Zfp219
Lrrk2 Zfp229
Lsm10 Zfp235
Lsmd1 Zfp251
Ltbp1 Zfp260
Lum Zfp27
Ly96 Zfp30
Lynx1 Zfp319
Lyrm2 Zfp329
Lyrm5 Zfp358
Lyrm7 Zfp366
Lysmd4 Zfp386
Lzic Zfp422-rs1
Lztfl1 Zfp426
Lzts2 Zfp438
M6prbp1 Zfp442
Macrod1 Zfp46
Magi2 Zfp512
Magi3 Zfp521
Magix Zfp563
Mak10 Zfp58
Man2a2 Zfp60
Manba Zfp606
Maob Zfp617
Map1lc3a Zfp62
Map1lc3b Zfp652
Map2k2 Zfp704
Map2k5 Zfp706
Map3k5 Zfp715
Map3k7ip1 Zfp72
Map4k2 Zfp759
Mapk10 Zfp763
Mapk1ip1 Zfp768
Mapkap1 Zfp771
Mapkapk3 Zfp788
Mapksp1 Zfp799
Mapre2 Zfp82
Mapt Zfp825
Marveld1 Zfp826
Mat2b Zfp827
Matn2 Zfp839
Mavs Zfp84
Mb Zfp87
Mcc Zfpm2
Mccc1 Zgpat
Mccc2 Zh2c2
Mcee Zhx2
Mchr1 Zkscan3
Mcoln1 Zmat1
Mcrs1 Zmat5
Mdh1 Zmym3
Mdh2 Zmym6
Me3 Zmynd11
Mecr Zmynd15
Med12l Zranb3
Med16 Zrsr1
Med24 Zswim1
Med31 Zyg11b
Mef2a l7Rn6
Mef2c rp9

RESULTS

Involvement of the known targets of miR-30a and miR-30e in biological processes

Both miR-30a and miR-30e were significantly downregulated in CMs 2 days post-MI.10 Via bioinformatic analysis, we identified the involvement in molecular processes of known targets of miR-30a/e according to their enrichment in GO terms. The results indicated that their targets were involved in several important processes related to post-MI pathology including cellular responses to glucose starvation (via TP53, BECH1 and HSPA5) and cardiac epithelial to mesenchymal transition (EMT) (via ERG, SNAI1 and NOTCH1) (Figure 1).

Figure 1.

Figure 1

The involvement of the known targets of miR-30a and miR-30e in biological processes. ABL1, ABL proto-oncogene 1; AVEN, apoptosis and caspase activation inhibitor; BCL9, B cell CLL/lymphoma 9; BCL11A, B cell CLL/lymphoma 11A; BDNF, brain derived neurotrophic factor; BECN1, Beclin-1; BMI1, B cell-specific Moloney murine leukemia virus integration site 1; CDH1, cadherin-1; DTL, denticleless E3 ubiquitin protein ligase homolog; ERG, ETS-related gene; ESR2, estrogen receptor 2; EYA2, EYA transcriptional coactivator and phosphatase 2; FOXD1, forkhead box D1; HSPA5, heat shock protein family A (Hsp70) member 5; MTTP, microsomal triglyceride transfer protein; MYBL2, MYB proto-oncogene like 2; NEUROD1, neurogenic differentiation 1; NOTCH1, notch homolog 1; PIK3CD, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta; PRDM1, PR domain zinc finger protein 1; RUNX2, runt related transcription factor 2; SMAD1, SMAD family member 1; SEPT7, septin 7; SNAI1, snail family transcriptional repressor 1; TNRC6A, trinucleotide repeat containing 6A; TP53, tumor protein p53; TUBB4B, tubulin beta 4B class IVb; UBE2I, SUMO-conjugating enzyme UBC9; VIM, vimentin.

Bioinformatic analysis of the possible targets of miR-30a/e 2 days post-MI

An miRNA can usually target multiple genes and modulate multiple signaling pathways. To support the future exploration of the functional roles of miR-30a/e, we then tried to predict the possible targets of miR-30a/ e in CMs 2 days post-MI and analyzed their involvement in possible biological processes. One previous study measured the temporal expression of mRNAs in a mouse model of MI and identified the genes dysregulated 2 days post-MI (N = 1682).10 Using TargetScan 7.1, we identified the predicted targets of miR-30a/e, and then determined their overlapping subsets. The results indicated that among 430 predicted targets of miR-30a, 50 genes were significantly upregulated 2 days post-MI (Figure 2), while among 425 predicted targets of miR-30e, 57 genes were significantly upregulated 2 days post-MI (Figure 2).

Figure 2.

Figure 2

Bioinformatic analysis of the possible targets of miR-30a/e 2d post-MI.

Involvement of the possible targets of miR-30a 2d post-MI in biological processes

Bioinformatic analysis showed that the predicted targets of miR-30a that were significantly upregulated 2 days post-MI were significantly enriched in platelet aggregation, positive regulation of neural precursor cell proliferation, regulation of erythrocyte differentiation, cell differentiation involved in embryonic placenta development, cell differentiation involved in embryonic placenta development, trophoblast giant cell differentiation, cell surface receptor signaling pathway involved in heart development, Notch signaling involved in heart development, regulation of intrinsic apoptotic signaling pathway in response to deoxyribonucleic acid (DNA) damage, negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage, heart trabecula morphogenesis, ventricular cardiac muscle tissue morphogenesis, ventricular trabecula myocardium morphogenesis, aorta morphogenesis, regulation of tyrosine phosphorylation of Stat3 protein, positive regulation of tyrosine phosphorylation of Stat3 protein, tolerance induction, tyrosine phosphorylation of Stat3 protein, regulation of tyrosine phosphorylation of STAT protein and positive regulation of tyrosine phosphorylation of STAT protein (Figure 3 and Table 1).

Figure 3.

Figure 3

The involvement of the possible targets of miR-30a 2d post-MI in biological processes. CHD7, chromodomain helicase DNA binding protein 7; CLCF1, cardiotrophin like cytokine factor 1; DLL4, delta like canonical Notch ligand 4; ITGB3, integrin subunit beta 3; LYN, LYN proto-oncogene; SMAP1, small ArfGAP 1; SOCS3, suppressor of cytokine signaling 3; STXBP1, syntaxin binding protein 1; USP47, ubiquitin specific peptidase 47.

Table 1. The involvement in molecular processes of possible targets of miR-30a 2 days post-MI.

GO ID GO term Term p value % Associated genes Nr. genes Associated genes found
GO:0070527 Platelet aggregation 430.0E-6 5.36 3.00 [ITGB3, LYN, STXBP1]
GO:2000179 Positive regulation of neural precursor cell proliferation 6.8E-3 4.26 2.00 [DLL4, LYN]
GO:0045646 Regulation of erythrocyte differentiation 5.7E-3 4.65 2.00 [LYN, SMAP1]
GO:0060706 Cell differentiation involved in embryonic placenta development 2.8E-3 6.67 2.00 [SNAI1, SOCS3]
GO:0060707 Trophoblast giant cell differentiation 610.0E-6 14.29 2.00 [SNAI1, SOCS3]
GO:0061311 Cell surface receptor signaling pathway involved in heart development 2.3E-3 7.41 2.00 [DLL4, SNAI1]
GO:0061314 Notch signaling involved in heart development 240.0E-6 22.22 2.00 [DLL4, SNAI1]
GO:1902229 Regulation of intrinsic apoptotic signaling pathway in response to DNA damage 5.7E-3 4.65 2.00 [SNAI1, USP47]
GO:1902230 Negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage 3.6E-3 5.88 2.00 [SNAI1, USP47]
GO:0061384 Heart trabecula morphogenesis 4.3E-3 5.41 2.00 [CHD7, DLL4]
GO:0055010 Ventricular cardiac muscle tissue morphogenesis 7.4E-3 4.08 2.00 [CHD7, DLL4]
GO:0003222 Ventricular trabecula myocardium morphogenesis 900.0E-6 11.76 2.00 [CHD7, DLL4]
GO:0035909 Aorta morphogenesis 3.0E-3 6.45 2.00 [CHD7, DLL4]
GO:0042516 Regulation of tyrosine phosphorylation of Stat3 protein 6.8E-3 4.26 2.00 [CLCF1, SOCS3]
GO:0042517 Positive regulation of tyrosine phosphorylation of Stat3 protein 4.5E-3 5.26 2.00 [CLCF1, SOCS3]
GO:0002507 Tolerance induction 2.6E-3 6.90 2.00 [CLCF1, LYN]
GO:0042503 Tyrosine phosphorylation of Stat3 protein 7.1E-3 4.17 2.00 [CLCF1, SOCS3]
GO:0042509 Regulation of tyrosine phosphorylation of STAT protein 980.0E-6 4.05 3.00 [CLCF1, LYN, SOCS3]
GO:0042531 Positive regulation of tyrosine phosphorylation of STAT protein 640.0E-6 4.69 3.00 [CLCF1, LYN, SOCS3]

Involvement of the possible targets of miR-30e 2d post-MI in biological processes

Bioinformatic analysis showed that the predicted targets of miR-30e that were significantly upregulated 2 days post-MI were significantly enriched in regulation of alternative mRNA splicing via spliceosome, protein kinase C-activating G-protein coupled receptor signaling pathway, collagen biosynthetic process, regulation of triglyceride metabolic process, negative regulation of transcription regulatory region DNA binding, zinc II ion transport, zinc II ion transmembrane transport, maintenance of apical/basal cell polarity, establishment or maintenance of epithelial cell apical/basal polarity and maintenance of epithelial cell apical/basal polarity (Figure 4 and Table 2).

Figure 4.

Figure 4

The involvement of the possible targets of miR-30e 2d post-MI in biological processes. ANKRD52, ankyrin repeat domain 52; DGKD, diacylglycerol kinase delta; DGKH, diacylglycerol kinase eta; HNRNPA1, heterogeneous nuclear ribonucleoprotein A1; ITGA2, integrin subunit alpha 2; LDLR, low density lipoprotein receptor; LIN7C, lin-7 homolog C; MBNL2, muscleblind like splicing factor 2; SLC30A4, solute carrier family 30 member 4; SLC39A11, solute carrier family 39 member 11; SRI, sorcin; TBL1XR1, transducin beta like 1 X-linked receptor 1; TRAM2, translocation associated membrane protein 2; WDR1, WD repeat domain 1.

Table 2. The involvement in molecular processes of possible targets of miR-30e 2 days post-MI.

GO ID GO term Term p value % Associated genes Nr. genes Associated genes found
GO:0000381 Regulation of alternative mRNA splicing, via spliceosome 5.9E-3 5.26 2.00 [HNRNPA1, MBNL2]
GO:0007205 Protein kinase C-activating G-protein coupled receptor signaling pathway 4.2E-3 6.25 2.00 [DGKD, DGKH]
GO:0032964 Collagen biosynthetic process 6.2E-3 5.13 2.00 [ITGA2, TRAM2]
GO:0090207 Regulation of triglyceride metabolic process 4.5E-3 6.06 2.00 [LDLR, TBL1XR1]
GO:2000678 Negative regulation of transcription regulatory region DNA binding 2.0E-3 9.09 2.00 [ANKRD52, SRI]
GO:0006829 Zinc II ion transport 3.2E-3 7.14 2.00 [SLC30A4, SLC39A11]
GO:0071577 Zinc II ion transmembrane transport 2.6E-3 8.00 2.00 [SLC30A4, SLC39A11]
GO:0035090 Maintenance of apical/basal cell polarity 590.0E-6 16.67 2.00 [LIN7C, WDR1]
GO:0045197 Establishment or maintenance of epithelial cell apical/basal polarity 4.8E-3 5.88 2.00 [LIN7C, WDR1]
GO:0045199 Maintenance of epithelial cell apical/basal polarity 590.0E-6 16.67 2.00 [LIN7C, WDR1]

DISCUSSION

Dysregulated miR-30 family members are closely related to the responses of CMs to MI. The inhibition of miR-30a can augment autophagy of CMs after hypoxia.12 MiR-30b can suppress the translation of cyclophilin D, thereby inhibiting cyclophilin D-mediated necrotic cell death in CMs. Cardiac-specific miR-30b transgenic mice have also been reported to exhibit reduced necrosis and myocardial infarct size upon ischemia/reperfusion (I/R) injury.15 However, one recent study reported that delivery of miR-30b in mice greatly aggravated MI injury. Mechanistically, they showed that miR-30 can directly target CSE, which catalyzes the formation of H2S that is predominantly derived from L-cysteine.14 These findings suggest that the functional role of the miR-30 family members in MI is still controversial. In addition, previous studies have reported that the downregulation of miR-30a and upregulation of miR-30c/d can enhance myocardial hypertrophy,16,17 suggesting that the different members of the miR-30 family may have distinct regulative effects on CMs.

Both miR-30a and miR-30e have been reported to be significantly downregulated in CMs 2 days post-MI.8-10 Maintenance of miR-30a expression in the cardiac area at risk after I/R injury helps to reduce the expression of p53 protein and subsequent Bax expression, thereby limiting mitochondrial membrane impairment and decreasing apoptosis and necrosis.18 MiR-30e mimic-based treatment can suppress the expression of Beclin-1 and protect primary cardiomyocytes against doxorubicin-induced apoptosis.19 In addition, miR-30e was also shown to exhibit a cardiac protective effect on human coronary artery endothelial cells through targeting the 3’UTR of ITGA4 and PLCG1 in an atherosclerosis model.20 These findings suggest that miR-30a and miR-30e may be cardiac protective miRNAs. Therefore, it is meaningful to further investigate their downstream regulation after MI.

Our bioinformatic analysis showed that both miR-30a and miR-30e could regulate cellular responses to glucose starvation via targeting TP53, BECH1 and HSPA5, and also regulate cardiac EMT via targeting ETS-related gene (ERG), SNAI1 and NOTCH1. Our bioinformatic prediction further showed that miR-30a/e may regulate some biological processes related to CM responses to MI via other potential targets. For example, miR-30a might regulate MI-related biological processes such as platelet aggregation (possibly via ITGB3 and STXBP1), regulation of the intrinsic apoptotic signaling pathway in response to DNA damage (possibly via SNAI1), and positive regulation of tyrosine phosphorylation of Stat3 protein (possibly via LYN, SOCS3 and SLCF1). ITGB3 plays a key role in platelet aggregation, and its elevation results in significantly increased thrombus formation and MI after coronary artery bypass graft surgery.21 In a mice model of MI, Snail1 expression in mRNA and protein levels were significantly increased in the infarcted area. Moreover, all Snail1-positive cells were able to express periostin, suggesting that it is involved in de novo cardiac fibrosis after MI.22 The cardiac-specific deletion of SOCS3 has also been reported to prevent the development of left ventricular remodeling and myocardial ischemia reperfusion injury after acute MI by enhancing multiple cardio-protective signaling pathways, including STAT3, AKT, and extracellular signal-regulated kinase (ERK)-1/2.23,24 In comparison, the association between MI and the biological processes regulated by potential targets of miR-30e is far less understood. Only a few studies have reported an association between missense alleles of LDLR and the early-onset of MI,25 and the association between ITGA2 genetic polymorphisms and the risk of acute MI.26,27

One major limitation of this study is the absence of data at the protein level. Although we identified dysregulated genes at the RNA level from previous arrays, it is the protein that exerts the predicted biological regulations. Another limitation is that part of the functional prediction was based on the putative targets of miR-30a/e, which were not verified in this study. Therefore, future studies are necessary to confirm the predicted targets and their in vivo regulative network in MI.

CONCLUSIONS

The currently known targets of miR-30/e can regulate MI-related biological processes such as cellular responses to glucose starvation and cardiac EMT. MiR-30a may regulate other MI-related processes such as platelet aggregation, regulation of intrinsic apoptotic signaling pathway in response to DNA damage and positively regulate tyrosine phosphorylation of the Stat3 protein, although further studies are needed to validate this hypothesis.

CONFLICT OF INTEREST

None of the authors has any potential financial conflict of interest related to this manuscript.

REFERENCES

  • 1.He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–531. doi: 10.1038/nrg1379. [DOI] [PubMed] [Google Scholar]
  • 2.Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010;3:251–255. doi: 10.1007/s12265-010-9169-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Marques FZ, Vizi D, Khammy O, et al. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail. 2016;18:1000–1008. doi: 10.1002/ejhf.517. [DOI] [PubMed] [Google Scholar]
  • 4.Oliveira-Carvalho V, Da Silva MM, Guimaraes GV, et al. MicroRNAs: new players in heart failure. Mol Biol Rep. 2013;40:2663–2670. doi: 10.1007/s11033-012-2352-y. [DOI] [PubMed] [Google Scholar]
  • 5.Huang JB, Mei J, Jiang LY, et al. MiR-196a2 rs11614913 T>C polymorphism is associated with an increased risk of tetralogy of Fallot in a Chinese population. Acta Cardiol Sin. 2015;31:18–23. doi: 10.6515/ACS20140310B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Abdel-Dayem K, Eweda II, El-Sherbiny A, et al. Cutoff value of admission N-terminal pro-brain natriuretic peptide which predicts poor myocardial perfusion after primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction. Acta Cardiol Sin. 2016;32:649–655. doi: 10.6515/ACS20151112B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Liu CW, Liao PC, Chen KC, et al. Baseline hemoglobin levels associated with one-year mortality in ST-segment elevation myocardial infarction patients. Acta Cardiol Sin. 2016;32:656–666. doi: 10.6515/ACS20160106A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bostjancic E, Zidar N, Glavac D. MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers. 2009;27:255–268. doi: 10.3233/DMA-2009-0671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Boštjančič E, Zidar N, Glavač D. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis. BMC Genomics. 2012;13:552. doi: 10.1186/1471-2164-13-552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Port JD, Walker LA, Polk J, et al. Temporal expression of miRNAs and mRNAs in a mouse model of myocardial infarction. Physiol Genomics. 2011;43:1087–1095. doi: 10.1152/physiolgenomics.00074.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wei C, Li L, Gupta S. NF-kappaB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2. Mol Cell Biochem. 2014;387:135–141. doi: 10.1007/s11010-013-1878-1. [DOI] [PubMed] [Google Scholar]
  • 12.Yang Y, Li Y, Chen X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl) 2016;94:711–724. doi: 10.1007/s00109-016-1387-2. [DOI] [PubMed] [Google Scholar]
  • 13.Guo R, Hu N, Kandadi MR, Ren J. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts. Autophagy. 2012;8:593–608. doi: 10.4161/auto.18997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Shen Y, Shen Z, Miao L, et al. miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-gamma-lyase expression. Antioxid Redox Signal. 2015;22:224–240. doi: 10.1089/ars.2014.5909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wang K, An T, Zhou LY, et al. E2F1-regulated miR-30b suppresses Cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death. Cell Death Differ. 2015;22:743–754. doi: 10.1038/cdd.2014.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pan W, Zhong Y, Cheng C, et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One. 2013;8:e53950. doi: 10.1371/journal.pone.0053950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Jentzsch C, Leierseder S, Loyer X, et al. A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol. 2012;52:13–20. doi: 10.1016/j.yjmcc.2011.07.010. [DOI] [PubMed] [Google Scholar]
  • 18.Forini F, Kusmic C, Nicolini G, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. 2014;155:4581–4590. doi: 10.1210/en.2014-1106. [DOI] [PubMed] [Google Scholar]
  • 19.Lai L, Chen J, Wang N, et al. MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci. 2017;169:69–75. doi: 10.1016/j.lfs.2016.09.006. [DOI] [PubMed] [Google Scholar]
  • 20.Ma F, Li T, Zhang H, Wu G. MiR-30s family inhibit the proliferation and apoptosis in human coronary artery endothelial cells through targeting the 3’UTR region of ITGA4 and PLCG1. J Cardiovasc Pharmacol. 2016;68:327–333. doi: 10.1097/FJC.0000000000000419. [DOI] [PubMed] [Google Scholar]
  • 21.Reilly SJ, Li N, Liska J, et al. Coronary artery bypass graft surgery up-regulates genes involved in platelet aggregation. J Thromb Haemost. 2012;10:557–563. doi: 10.1111/j.1538-7836.2012.04660.x. [DOI] [PubMed] [Google Scholar]
  • 22.Biswas H, Longmore GD. Action of SNAIL1 in cardiac myofibroblasts is important for cardiac fibrosis following hypoxic injury. PLoS One. 2016;11:e0162636. doi: 10.1371/journal.pone.0162636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Nagata T, Yasukawa H, Kyogoku S, et al. Cardiac-specific SOCS3 deletion prevents in vivo myocardial ischemia reperfusion injury through sustained activation of cardioprotective signaling molecules. PLoS One. 2015;10:e0127942. doi: 10.1371/journal.pone.0127942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Oba T, Yasukawa H, Hoshijima M, et al. Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2012;59:838–852. doi: 10.1016/j.jacc.2011.10.887. [DOI] [PubMed] [Google Scholar]
  • 25.Thormaehlen AS, Schuberth C, Won HH, et al. Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet. 2015;11:e1004855. doi: 10.1371/journal.pgen.1004855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kaur R, Das R, Ahluwalia J, et al. Genetic polymorphisms, biochemical factors, and conventional risk factors in young and elderly north Indian patients with acute myocardial infarction. Clin Appl Thromb Hemost. 2016;22:178–183. doi: 10.1177/1076029614548058. [DOI] [PubMed] [Google Scholar]
  • 27.Herm J, Hoppe B, Siegerink B, et al. A prothrombotic score based on genetic polymorphisms of the hemostatic system differs in patients with ischemic stroke, myocardial infarction, or peripheral arterial occlusive disease. Front Cardiovasc Med. 2017;4:39. doi: 10.3389/fcvm.2017.00039. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Acta Cardiologica Sinica are provided here courtesy of Taiwan Society of Cardiology

RESOURCES