Skip to main content
Zoological Research logoLink to Zoological Research
. 2018 Mar 7;39(2):58–71. doi: 10.24272/j.issn.2095-8137.2017.012

In vivo genome editing thrives with diversified CRISPR technologies

Xun Ma 1, Avery Sum-Yu Wong 1, Hei-Yin Tam 1, Samuel Yung-Kin Tsui 1, Dittman Lai-Shun Chung 1, Bo Feng 1,2,3,*
PMCID: PMC5885384  PMID: 29515088

Abstract

Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site-specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research.

Keywords: CRISPR/Cas9, Genome editing, Animal models

INTRODUCTION

Genome editing by manipulating functional DNA sequences in the host genome is a fundamental strategy for biomedical research. Starting from the discovery of the basic principles of DNA structure and genome organization, scientists have investigated various strategies for many decades to improve genome editing technology for different research and application purposes.

In the 1980s, gene targeting methods emerged together with a deepening understanding of DNA repair mechanisms. Back then, DNA conversion was found to occur between homology sequences, often termed homologous recombination (HR) (Zinn & Butow, 1985). Early studies took advantage of this finding to replace a selected endogenous genome DNA segment with a foreign DNA donor carrying homology sequences in living cells (Vasquez et al., 2001). Subsequently, by combining this with mouse embryonic stem cell (ESC) technology established at the same time, traditional gene targeting technology was developed to generate genetically modified mice (Koller et al., 1989). Since 1989, genetic modification by HR-based gene targeting in living mammals has become a fundamental approach to analyze gene functions and has revolutionized our understanding of mammalian development, metabolism, and genetic diseases (Capecchi, 2005; Koller et al., 1989).

Traditional HR-based gene targeting is associated with low efficiency and requires laborious clonal expansions and sophisticated selections to identify target cells carrying the desired modifications (Koller et al., 1989). With pioneering studies finding that the introduction of double-strand breaks (DSBs) in target DNA by rare-cutting endonuclease I-Sce-1 could increase HR efficiency by several orders of magnitude in the subsequent DNA repair process (Rouet et al., 1994), extensive effort has been made to develop programmable endonucleases.

Zinc finger nuclease (ZFN), which was first reported in 1986 as an artificial nuclease to carry a zinc finger domain and a catalytic domain from restriction enzyme FokI, was suitable for introducing DNA cleavage and enhancing HR-dependent gene targeting (Bibikova et al., 2002; Kim et al., 1996). However, the laborious work involved in the design and identification of an efficient ZFN to a newly selected target sequence significantly limited its utility. Transcription activator-like effector protein (TALE), which originated in plant pathogen Xanthomonas sp., was found to recognize target DNA with highly conserved yet variable repetitive elements, each showing a preference to bind to specific nucleotides (Boch et al., 2009; Moscou & Bogdanove, 2009). Fusion of the programmable TALE domains and FokI catalytic domain thus yielded TALE-nuclease (TALEN), which is easier to construct and can introduce DNA cleavage and targeted genome modification equally efficiently as ZFN (Christian et al., 2010).

More recently, an RNA-guided DNA-targeting approach was developed from the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system (Bhaya et al., 2011; Wiedenheft et al., 2012). In this system, a programmable small guide RNA (sgRNA) complexes with Cas9 nuclease and anneals with a 20-nt target DNA sequence, at the presence of the adjacent NGG PAM (proto-spacer adjacent motif) sequence in a base-pairing manner. This process allows Cas9 to introduce DSB at the target region and enables genome modification in a site-specific manner (Jinek et al., 2012). The ease of constructing a sequence-specific sgRNA and the highly specific RNA-DNA recognition has made the CRISPR/Cas9 system superior to ZFN and TALEN, becoming the most popular tool for introducing programmed DNA cleavage as well as site-specific genome modifications in cells and animals (Barrangou & Doudna, 2016; Mali et al., 2013; Ran et al., 2013).

These recent advances in engineered nucleases, especially the CRISPR/Cas system, have opened new prospects for accomplishing robust gene targeting in previously non-permissive cell contexts. More importantly, it has widely revolutionized biomedical research by promoting quick generation of various animal models, which either carry complex genome modifications or are derived from species that could not be genetically modified previously (Dow et al., 2015; Swiech et al., 2015; Yin et al., 2016). Such progress has provided a wide range of methods as well as advanced animal models to study gene function and biological processes, significantly promoting research under in vivo conditions. Hence, in this review, we focus on summarizing the recent developments and applications of CRISPR-based technology in generating various animal models.

OVERVIEW OF RECENT DEVELOPMENTS IN CRISPR-BASED ANIMAL MODELS

Since early 2013, when the first successful CRISPR-based genome editing was demonstrated in mammalian cells (Mali et al., 2013), the number of studies using the CRISPR system has grown dramatically. Among the CRISPR-based in vivo studies, the majority (61.2%) have been conducted using mouse models (Figure 1, left panel). With the comprehensive knowledge and technologies established so far, research investigations using CRISPR technology in mouse models have covered various areas of biomedical research, including inherited metabolic disorders (Xue et al., 2014; Yang et al., 2016), cancer (Maddalo et al., 2014; Platt et al., 2014), neurology and neuroscience (Li et al., 2015c; Swiech et al., 2015), and virus-related studies (Jiang et al., 2017; Zhu et al., 2016).

In addition to mouse models, CRISPR-based genome editing has been demonstrated in large mammals such as pigs and monkeys to establish disease or genetic models for organ transplantation (Niu et al., 2014; Yu et al., 2016). At the same time, CRISPR/Cas9 technology has also been applied in various lower vertebrate and invertebrate models (Irion et al., 2014; Shi et al., 2015; Wen et al., 2016). The success of CRISPR technology is particularly valuable in lower vertebrate models, such as Xenopus and zebrafish (Irion et al., 2014; Shi et al., 2015), in which targeted genome editing could not be achieved previously.

Molecular mechanisms for various genome editing strategies

Sequence-specific DNA cleavage induced by any of the above engineered nucleases will elicit endogenous cellular responses to repair the damaged DNA in target cells. Utilizing various DNA repair mechanisms to induce mutations/deletions or to incorporate insertions of foreign DNA lays the foundation for genome editing. Cellular repair of DNA damage is mediated by two main pathways, namely, homology-directed repair (HDR) and non-homologous end joining (NHEJ). Despite their varied activities in different cell types and species, both pathways are highly conserved, from yeasts to mammals (Taylor & Lehmann, 1998).

The HDR pathway mediates a strand-exchange process to repair DNA damage based on existing homologous DNA sequences (Heyer et al., 2010), allowing precise insertion of foreign DNA at target regions by replacing endogenous genomic segments with donor DNA. CRISPR/Cas9-introduced site-specific DNA cleavage triggers DNA repair and greatly promotes HR at nearby regions, thus enhancing the efficiency of HDR-based genome editing (Yang et al., 2013). In contrast, the conventional NHEJ pathway initiates DNA repair with quick occupation by the Ku70/Ku80 complex at DNA broken ends, followed by recruitment of other components for end processing and subsequently DNA ligase IV for ligation. NHEJ-based DNA repair is a homology-independent and mechanistically flexible process, which often results in random insertions or deletions (indels) of a small number of nucleotides (Lieber, 2010). Hence, CRISPR/Cas9-induced NHEJ repair has been employed to generate loss-of-function alleles in protein-coding genes (Wang et al., 2013). In general, the NHEJ pathway mediates rapid DNA repair and plays an important role in various cellular contexts. Therefore, CRISPR/Cas9-induced NHEJ repair offers high efficiency and has been exploited to develop a variety of targeting strategies.

More recently, in addition to the conventional HDR and NHEJ pathways, studies have discovered the microhomology-mediated end joining (MMEJ) pathway, which is also termed as alternative NHEJ (Alt-NHEJ) pathway (Lieber, 2010; McVey & Lee, 2008). This MMEJ pathway repairs DNA damage by initiating single-strand resection similar to the HDR process, followed by microhomology-based alignment and ligation by DNA ligase III. In general, the MMEJ pathway mediates an error-prone repair process and plays a minor role to complement DNA repair by HDR and NHEJ (McVey & Lee, 2008). Collectively, the coupling of different DNA repair mechanisms with various strategies to design donor templates or select target sites in genomes, has resulted in a variety of targeting approaches, each having distinct advantages in different species (Table 1).

Table 1.

Summary of CRISPR-based in vivo genome editing in zygotes via different DNA repair mechanisms in different species

Genome modifications and targeting strategies Species ESCs involvement Efficiency*# References
NHEJ-based knockout by introducing indels Mouse:
Multiple genes

Single gene

No

50%–80%

8%–90%

Dow et al., 2015; Mandasari et al., 2016; Swiech et al., 2015; Wang et al., 2013; Xu et al., 2017
Challa et al., 2016; Hay et al., 2017; Helsley et al., 2016; Hinze et al., 2017; Ishikawa-Fujiwara et al., 2017; Jiang et al., 2017; Kasparek et al., 2016; Kim et al., 2017b; Li et al., 2015d; Mandasari et al., 2016; Meyer et al., 2016; Mianné et al., 2017; Miyata et al., 2016; Sweeney et al., 2017; Wang et al., 2015a; Zhang et al., 2017b; Zhong et al., 2015; Zhu et al., 2016
Rat:
Single gene

No

28.6%–45.5%

Rannals et al., 2016; Wang et al., 2016c; Yoshimi et al., 2014
Pig:
Multiple genes
Single gene

No

N/A
60%–83%% for embryos

50%–100% for offspring

Wang et al., 2016a
Park et al., 2017; Petersen et al., 2016; Wang et al., 2015e; Yu et al., 2016
Monkey:
Single gene

No

10.2% for offspring

Niu et al., 2014
Sheep:
Single gene

No

37.4%–87.6% for embryos

59.1%–83.3% for offspring

Crispo et al., 2015; Li et al., 2017b; Niu et al., 2017a; Zhang et al., 2017a
Goat:
Single gene

No

15%–28.6%

Malpotra et al., 2017; Wang et al., 2015c; Zhou et al., 2017
Zebrafish:
Single gene

No

~32.9%

Ablain et al., 2015; Anelli et al., 2017; Fujii et al., 2016; Gallardo et al., 2015; Gui et al., 2017; He et al., 2015; Homma et al., 2017; Hoodless et al., 2016; Lee et al., 2016; Narayanan et al., 2016; Perles et al., 2015; Shah et al., 2015; Varshney et al., 2015; Vejnar et al., 2016; Wang et al., 2014; Yuan et al., 2016a; Zhang et al., 2014
Drosophila:
Multiple genes
Single gene

No

N/A

Port et al., 2014
Bassett et al., 2014; Gao et al., 2015; Wakabayashi et al., 2016
Rabbit:
Single gene

No

98.7% for embryos
100% for offspring

Lv et al., 2016; Yuan et al., 2016b
Mosquito: No N/A Dong et al., 2015
NHEJ-based knockout via deletion Mouse Yes 10%–90% Han et al., 2014; Kraft et al., 2015; Seruggia et al., 2015; Wang et al., 2015a, 2017; Zhang et al., 2016
NHEJ-based knock-in Zebrafish No 4%–54% Auer et al., 2014; Hisano et al., 2015; Kimura et al., 2014; Li et al., 2015a
Frog No 8%–12% Shi et al., 2015
Sheep No 34.7% Ma et al., 2017
HDR-based knockout Drosophila No 47% Wen et al., 2016
HDR-based knock-in Mouse:
dsDNA



ssODN

No

10%–88%



6%–66%

Aida et al., 2015; Chu et al., 2016; Guo et al., 2016; Han et al., 2015; Ishizu et al., 2016; Lewis et al., 2016; Li et al., 2016; Mashiko et al., 2014; Wang et al., 2015b; Wu et al., 2013
Inui et al., 2014; Zhu et al., 2017
HDR-based knock-in Rat:
ssODN

No

7.7%

Yoshimi et al., 2014
Pig:
dsDNA
ssODN

No

5%–18.2%
28.6%–80%

Peng et al., 2015
Zhou et al., 2016
Goat:
ssODN

No

24%

Niu et al., 2017b
Zebrafish
dsDNA

No

1.7%–3.5%

Irion et al., 2014
C.elegans:
ssODN

No

4.9%–62.8%

Paix et al., 2016
Drosophila No 4.3%–10.8% Li et al., 2015e; Lin & Potter, 2016; Liu et al., 2016; Ukken et al., 2016; Voutev & Mann, 2017; Yu et al., 2014
Frog No N/A Sakuma et al., 2016
MMEJ-based knock-in Zebrafish No N/A He et al., 2015
Mouse No 12% Aida et al., 2016

*: Data were converted into percentages, without normalization or additional statistical analysis.

#: Data presented were based on records at the offspring stage, if stage not indicated.

Enhanced genome editing via CRISPR-induced HDR

HDR is a major DNA repair mechanism broadly employed in CRISPR-based genome editing (Heyer et al., 2010). In the presence of Cas9 nuclease and specific sgRNA targeting a selected sequence in the genome, site-specific DNA cleavage is introduced at the target genomic locus, which then will trigger DNA repair. When the target cells are given a large quantity of donor templates carrying homology sequences, HDR-based repair will utilize the donors as templates to repair the damaged genome, thus introducing foreign DNA included in the donor construct into the recipient genome (Heyer et al., 2010).

The traditional gene targeting approach succeeded before the establishment of engineered nucleases. To accomplish sequence replacement in the genome, this approach relies on the HDR repair process triggered by spontaneous DNA damage that randomly occurs near target regions, (Koller et al., 1989). The desired targeting events occur at low frequency. Hence, successful genome targeting requires long homology arms in donor constructs, and needs sophisticated selection and clonal expansion in mouse ESCs before generating chimeric animals and genetically modified offspring (Koller et al., 1989; Thomas & Capecchi, 1987). It often takes more than one year to establish a knock-in or knockout strain of mouse.

Site-specific DNA breaks trigger DNA repair around a target region. Hence, coupling this to the CRISPR system can greatly enhance the efficiency of HDR-based genome targeting and result in a high success rate of desired targeting. This improvement has bypassed the usage of ESC cells, allowing direct genome targeting in mouse zygotes (Yang et al., 2013). The direct genome targeting in zygotes via CRISPR-coupled HDR can produce a high percentage of chimeric animals and genetically modified mouse strains within 3–6 months, a much shortened period of time (Yang et al., 2013). Moreover, direct genome targeting in zygotes has also overcome the limitations of ESC unavailability, and made genome editing possible in many previously inaccessible organisms, such as pigs and monkeys (Peng et al., 2015). Furthermore, the introduction of site-specific DNA breaks allows the use of much shorter homology arms to achieve successful genetic modifications. Around 1 000 bp homology fragments are usually sufficient, and around 100 bp single-stranded oligodeoxynucleotides (ssODN) carrying a 50–60 nt homology sequence at each side are effective in introducing small mutations/insertions to produce genetically modified animals (Inui et al., 2014; Zhou et al., 2016).

CRISPR-coupled HDR-mediated in vivo genome editing has been broadly used to introduce knock-in or knockout in the genome of various animal models for studying gene functions, modeling diseases, or developing novel treatment by correcting disease-associated mutations. Direct injection of Cas9 mRNA, sgRNA targeting only the mutant allele, and donor ssODN carrying a wild-type allele sequence into mouse zygotes carrying a heterozygous dominant-negative cataract-causing mutation in the Crygc gene resulted in cataract-free progeny (Wu et al., 2013). Besides rodents, large animals like pigs have also been used for disease modeling (Peng et al., 2015; Wang et al., 2015d; Zhou et al., 2016). In these studies, together with the use of the single blastocyst genotyping system and/or ssODN donors, researchers can assess sgRNA efficiency at the embryonic stage and achieve up to 80% targeting efficiency in producing animals carrying the desired genetic modification. Furthermore, successful targeting has also been reported in lower vertebrates and invertebrates (Irion et al., 2014; Li et al., 2015e; Lin & Potter, 2016; Liu et al., 2016; Paix et al., 2016; Sakuma et al., 2016; Ukken et al., 2016; Voutev & Mann, 2017; Yu et al., 2014). Targeted gene modification and tagging has been achieved in Drosophila based on the CRISPR/Cas9-coupled HDR approach (Li et al., 2015e; Lin & Potter, 2016; Liu et al., 2016; Ukken et al., 2016; Voutev & Mann, 2017; Yu et al., 2014), with a similar method also applied in zebrafish, producing up to 50% targeted mutations in larvae (Irion et al., 2014). With modified ssODN templates and CRISPR components, gene editing efficiency has reached 85% in C. elegans (Paix et al., 2016). Targeted genes or long noncoding RNA (lncRNA) can be precisely replaced with fluorescence reporters to deplete target genes by inserting visible markers (Platt et al., 2014; Wen et al., 2016).

Gene correction in somatic tissues has also been performed using the CRISPR system and donor DNA (Table 2). Targeting of deficient ornithine transcarbamylase in the mouse model showed more than 10% correction of the deficient gene in liver cells and significantly improved the survival rate in target groups (Yang et al., 2016). Similarly, somatic correction of Duchenne muscular dystrophy (DMD) caused by a mutation in the gene encoding dystrophin has been reported, showing a 70% increase in functional dystrophin and apparent improvement in the mouse model (Bengtsson et al., 2017).

Diverse targeting strategies through CRISPR-induced NHEJ-mediated DNA repair

Double-strand DNA breaks due to the disruption of phosphodiester bonds between adjacent nucleotides in double-helix DNA. While HDR repairs a broad range of DNA damage, NHEJ is the primary mechanism for repairing DSBs in mammalian cells. With site-specific DSBs able to be introduced at almost any target site in the genome with high efficiency and accuracy using the CRISPR system, the NHEJ repair mechanism has been broadly employed to introduce random mutations at selected target sites. This CRISPR-coupled NHEJ-based mutagenesis approach can disrupt protein coding potential of a target gene by causing frame shift or premature termination, and therefore deplete functional proteins and introduce loss-of-function effects (Figure 1). To date, most animal models established using CRISPR technology have employed this strategy to knockout a specific gene, especially model organisms that are incompatible with the traditional HDR-based strategy, such as zebrafish or Xenopus (broadly noticed via personal communications) (Table 1 and Table 2) (Auer & Del Bene, 2014; Irion et al., 2014; Won & Dawid, 2017). Furthermore, due to its simple principles and procedures, CRISPR-NHEJ-based mutagenesis has been applied in high-throughput studies. Xu et al. reported successful loss-of-function screening to identify genes essential to tumorigenesis in mice using pre-constructed sgRNA libraries (Xu et al., 2017). Interestingly, in vivo application of a sgRNA library has also been reported in zebrafish (Shah et al., 2015). Combining CRISPR-based high-throughput screening with excellent accessibility to embryonic development, straight-forward phenotyping has allowed large scale analysis of gene function. Shawn M. Burgess and colleagues have verified more than 50 genes by this method (Varshney et al., 2015), and Stefania Nicolia’s team has succeeded in a similar screening using the sgRNA pool-targeting miRNA family (Narayanan et al., 2016).

Table 2.

Summary of CRISPR-based in vivo genome editing in somatic tissues

Genome modifications and targeting strategies Species Delivery system Efficiency*# References
NHEJ-based knockout via indel formation Mouse Virus






Hydrodynamic injection
Electroporation

Cell injection
14.8%–86%






N/A
N/A

90%
Cheng et al., 2014; Chiou et al., 2015; de Solis et al., 2016; Ding et al., 2014; El Fatimy et al., 2017; Guo et al., 2017; Heckl et al., 2014; Hung et al., 2016; Kaminski et al., 2016; Kim et al., 2017a; Li et al., 2017a; Monteys et al., 2017; Ortinski et al., 2017; Tabebordbar et al., 2016; Wang et al., 2015a, 2016b; Yin et al., 2017

Liang et al., 2017; Weber et al., 2015; Xue et al., 2014
Kalebic et al., 2016; Latella et al., 2016; Maresch et al., 2016; Shinmyo et al., 2016; Straub et al., 2014
Courtney et al., 2016; Katigbak et al., 2016; Wu et al., 2017
Chicken Electroporation N/A Véron et al., 2015
NHEJ-based knockout via deletion Mouse Virus
Hydrodynamic injection
N/A
30%
Long et al., 2016; Nelson et al., 2016
Pankowicz et al., 2016
HDR-based knockout Mouse Virus 85% Platt et al., 2014
HDR-based knock-in Mouse Virus

Electroporation
Cell injection
2.3%–6% Bengtsson et al., 2017; Xie et al., 2016; Yang et al., 2016; Yin et al., 2016
Chen et al., 2016
Ou et al., 2016
MMEJ-based knock-in Mouse Virus 20% Yao et al., 2017
NHEJ-based knock-in Mouse Virus 3.4%–10% Suzuki et al., 2016
Chromosomal rearrangement Mouse Virus N/A Blasco et al., 2014; Maddalo et al., 2014

*: Data were converted into percentages, without normalization or additional statistical analysis.

#: Data presented were based on records at somatic tissue level, if stage not indicated.

In addition, NHEJ repair has been found to be highly efficient in re-ligating DNA ends from DSBs concurrently produced by the CRISPR system at two different genome loci, despite the long distance in genome. In support of these observations, the CRISPR-coupled NHEJ repair mechanism has also been employed to delete selected large DNA fragments by targeting two regions in the same chromosome (Dow et al., 2015; Han et al., 2014; Wang et al., 2015b) or catalyzing the desired genomic rearrangements by targeting two selected regions from different chromosomes (Blasco et al., 2014). These strategies have succeeded in generating mouse models carrying a 353-kb intragenic deletion of Laf4, which recapitulates a human malformation syndrome (Kraft et al., 2015), and engineering mouse models that harbor chromosomal rearrangements recurrently found in lung cancer to model carcinogenesis (Blasco et al., 2014; Maddalo et al., 2014). The functional study of lncRNA genes is another important application of NHEJ-mediated large fragment deletion. Knockout of the lncRNA gene Rian through a large deletion of up to 23 kb demonstrated efficiency as high as 33% (Han et al., 2014) can be achieved, with similar results reported for the tyrosinase (Tyr) associated lncRNA gene (Seruggia et al., 2015).

Rather strikingly, CRISPR-coupled NHEJ repair has also enabled high-efficiency knock-in of exogenous DNA at pre-selected locations. This is consistent with common observations that NHEJ is the predominant repair mechanism in mammalian cells. Since the early 1980s, transgenic technology has been established and applied broadly to render stable ectopic expression by introducing foreign DNA fragments carrying complete gene cassettes into host genomes (Palmiter et al., 1982). Later studies have found that the NHEJ repair mechanism is responsible for capturing foreign DNA fragments at spontaneously occurring DSBs in the genome, resulting in random integrations (Lin & Waldman, 2001). Consistently, traditional gene targeting studies have also shown that the frequency of random DNA integration via the NHEJ repair mechanism is significantly higher (over 1 000-fold) than targeted insertion mediated by the HDR pathway (Vasquez et al., 2001). Due to the unavailability of programmable site-specific nucleases and their erroneous nature, the potential of the NHEJ mechanism in targeted DNA knock-in was largely neglected for a long time.

Until recently, after ZFN was successfully established, short oligonucleotides (<100 bp) were able to be inserted efficiently at ZFN-induced DSBs via NHEJ repair (Orlando et al., 2010). Subsequently, inclusion of a ZFN or TALEN target sequence in donor vectors showed that simultaneous cleavage of donor and genome DNA could enable targeted integration via NHEJ repair (Cristea et al., 2013; Maresca et al., 2013). Using promoterless fluorescence reporters followed by direct quantification using fluorescence-activated cell sorting (FACS), we compared the frequencies of NHEJ- and HDR-mediated knock-in after coupling with the CRISPR system (He et al., 2016). We found that knock-in via CRISPR/Cas9-induced NHEJ is superior to the commonly used HDR-based method in all human cell lines examined (He et al., 2016). This NHEJ-based knock-in approach has been applied in precise reporter knock-in in zebrafish (Auer et al., 2014; Hisano et al., 2015; Irion et al., 2014; Kimura et al., 2014; Li et al., 2015a) and Xenopus (Shi et al., 2015), with such gene targeting previously impeded by the deficiency of the HDR pathway. More recently, CRISPR/Cas9-induced NHEJ has been shown to mediate high efficiency knock-in in mouse somatic tissues (Suzuki et al., 2016), but success in targeting zygotes or blastocysts to generate genetically modified mice has not yet been reported.

Through CRISPR-coupled NHEJ repair, various genome targeting strategies have been established and utilized in generating genetically modified animal models. From studies published since early 2013, 75.9% (110/145) of in vivo genome editing studies have employed NHEJ-based targeting strategies. Extensive evidence has shown that NHEJ-based genome targeting is simpler, more flexible, and more efficient compared with HDR-based approaches. Without homology sequences involved, the design and system construction for NHEJ-based strategies are less laborious. On the other hand, however, the random nature of NHEJ repair incurs disadvantages including the unpredictability of indel-based mutagenesis as well as off-target cleavage and insertion.

Genome editing by CRISPR-induced MMEJ repair

Distinct from NHEJ and HDR, the two common forms of DNA repair, MMEJ requires microhomologous sequences of only 5–25 bp for the repair of DSBs in DNA. Sakuma et al. devised a detailed protocol for CRISPR-based gene knock-in using MMEJ, termed Precise Integration into Target Chromosomes (PITCh) (Sakuma et al., 2016).

In this system, DSBs are needed in both the genomic DNA and donor vector to insert a DNA fragment from the donor into the genome. As MMEJ repair requires the presence of microhomology both upstream and downstream of the DSB site, two microhomologous sequences need to be added to the donor vector at both sides of the purpose sequence (Sakuma et al., 2016). For the CRISPR system, two sgRNAs are required to generate DNA cleavages near the microhomology sequences on both sides, while one sgRNA is used to induce DSBs on the genome DNA (Figure 2). Longer microhomologies of around 20 bp are currently used to improve accuracy. After alignment between microhomologous sequences, the unmatched non-homologous sequences at the 3'-parts on both sides of the donor appear as single-strand tails and are removed. This results in the loss of a small part of the genome sequence at the target sites. Therefore, MMEJ-based genome editing is associated with deletion/insertions that are often larger than NHEJ-introduced indels (Villarreal et al., 2012).

Targeted integration mediated by CRISPR-coupled MMEJ has been demonstrated in cultured cells and the generation of genetically modified zebrafish (He et al., 2015; Hisano et al., 2015; Nakade et al., 2014). Moreover, one-step knock-in of gene cassettes and floxed alleles has also been achieved in human cells and mouse zygotes through MMEJ (Aida et al., 2016). Recently, precisely targeted gene integration in somatic tissues to correct mutation of the Fah gene and rescue liver failure in Fah−/− mice has also been demonstrated (Yao et al., 2017).

Comparison between different targeting strategies

Conventional NHEJ repair does not require the presence of homology sequences and involves minimal processing of DNA broken ends. The activity of the NHEJ pathway is high and stable throughout the cell cycle. Distinctly, the HDR repair mechanism relies on long homology sequences (> 500 bp in general) to repair DNA lesions, and is only active from the late S phase to G2 phase during the cell cycle. The MMEJ pathway depends on microhomology sequences (5–25 bps) for DSB repair and is active during the M to early S phase (Taleei & Nikjoo, 2013). These differences explain why the activities of the different DNA repair pathways vary in different cell contexts.

The intrinsic activities of the two major pathways, HDR and NHEJ, also vary in different species, despite high conservation of these pathways across a broad range of organisms. Lower vertebrates, such as zebrafish and Xenopus, are deficient in HDR-based DNA repair. Hence, modification of genome sequences in these models has mainly succeeded with NHEJ-based strategies, such as transgenesis, indel-based targeted mutagenesis/deletion, or the recent knock-in approach based on coupling TALEN- or CRISPR-induced DNA cleavage to the NHEJ repair mechanism (Auer et al., 2014; Hisano et al., 2015; Irion et al., 2014; Kimura et al., 2014; Li et al., 2015a; Shi et al., 2015) (Table 1). In mammalian systems, although HDR was first employed to produce genetically modified mice, evidence shows that the NHEJ repair mechanism is predominant (Vasquez et al., 2001). Thus, the efficiency of NHEJ-based genome editing is generally superior to HDR-based approaches (He et al., 2016).

Scientists have attempted to manipulate the balance between the HDR and NHEJ pathways. Through inhibiting DNA ligase IV, a key component of the NHEJ pathway, studies have shown that the efficiency of HDR-based gene targeting can be increased substantially (Chu et al., 2015). Similarly, silencing KU70, KU80, or DNA ligase IV largely suppressed NHEJ-mediated introduction of indels at the junction and enhanced HDR-mediated genome editing (Pierce et al., 2001). To date, this type of approach has not been applied for in vivo gene targeting.

Besides efficiency, accuracy is another major concern. The HDR-based targeting strategy requires homology sequences as a template for DNA replication to repair induced DNA cleavage. It involves the cloning of homologous DNA and multi-step construction of donor plasmids. In return, the designed modifications can be introduced into the genome with high accuracy and off-target integrations can be largely reduced compared to other knock-in strategies. MMEJ-based targeting requires microhomologous sequences, which can be easily introduced into donor vectors through synthesized oligos, or during PCR amplification of the desired DNA for insertion. Although the intrinsic MMEJ pathway often plays a minor role in overall DNA repair, the MMEJ-based targeting strategy has shown efficiency up to 10-fold higher than that of the HDR-based approach (Yao et al., 2017). Lastly, the NHEJ repair mechanism, which is completely independent of any homology sequences, offers the easiest path to modify an existing design for a new target site in the genome. In our recent study, a universal donor was established with the use of artificial sgRNA ,which did not target any sequence in mice and humans (He et al., 2016). With the minimum work involved in constructing the new sgRNA to the genome, the whole system was easily orientated for targeting a new locus (He et al., 2016). However, the random errors potentially present at the integration/ repair junctions with NHEJ-based targeting approaches should be considered during the design.

CONCLUSIONS

The recent advent of CRISPR technology has offered the simplest and possibly ultimate solution for introducing site-specific DSBs in genome DNA, which was once an insurmountable challenge in genome editing. Through coupling with different DNA repair mechanisms present in the endogenous cellular system, various targeting strategies have been developed to introduce a wide range of modifications in the genome through sequence-based editing. While further research is needed to evaluate the off-target issues and overcome the risks by developing improved CRISPR systems, the above technological advances have undoubtedly revolutionized biomedical research. The CRISPR-based genome editing approaches have significantly promoted studies on gene function via the rapid generation of animal models that carry genetic deficiencies of single or multiple genes. In addition, they have also enabled modeling of genetic diseases caused by chromosomal rearrangement or large deletions. Therefore, rapid progress could be foreseen in establishing various animal models for disease modeling or therapeutic intervention, which will significantly improve our understanding of human diseases and promote the development of new therapeutic strategies.

Acknowledgements

We thank Xiang-Jun He and Chen-Zi Zhang for critical comments on the manuscript.

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHORS’ CONTRIBUTIONS

X.M. A.S.W., H.Y.T., S.Y.T, and D.L.C. wrote different parts of the manuscript; B.F. compiled and revised the manuscript. All authors read and approved the final manuscript.

Funding Statement

This study was supported by funds provided by the Research Grants Council of Hong Kong (CUHK 14104614, TBF16ENG007 and TBF17MED002 to B.F.; and 3132966 to W.Y.C.), and in part by funds from the Croucher Foundation (CAS16CU01/ CAS16401 to W.Y.C.) and the National Basic Research Program of China (973 Program, 2015CB964700 to Y.L.)

REFERENCES

  1. Ablain J., Durand E.M., Yang S., Zhou Y., Zon L.I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Developmental Cell. 2015;32(6):756–764. doi: 10.1016/j.devcel.2015.01.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aida T., Chiyo K., Usami T., Ishikubo H., Imahashi R., Wada Y., Tanaka K.F., Sakuma T., Yamamoto T., Tanaka K. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biology. 2015;16:87. doi: 10.1186/s13059-015-0653-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aida T., Nakade S., Sakuma T., Izu Y., Oishi A., Mochida K., Ishikubo H., Usami T., Aizawa H., Yamamoto T., Tanaka K. Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics. 2016;17:979. doi: 10.1186/s12864-016-3331-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anelli V., Villefranc J.A., Chhangawala S., Martinez-McFaline R., Riva E., Nguyen A., Verma A., Bareja R., Chen Z., Scognamiglio T., Elemento O., Houvras Y. Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. ELife. 2017 doi: 10.7554/eLife.20728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Auer T.O., Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods. 2014;69(2):142–150. doi: 10.1016/j.ymeth.2014.03.027. [DOI] [PubMed] [Google Scholar]
  6. Barrangou R., Doudna J.A. Applications of CRISPR technologies in research and beyond. Nature Biotechnology. 2016;34(9):933–941. doi: 10.1038/nbt.3659. [DOI] [PubMed] [Google Scholar]
  7. Bassett A.R., Azzam G., Wheatley L., Tibbit C., Rajakumar T., McGowan S., Stanger N., Ewels P.A., Taylor S., Ponting C.P., Liu J.L., Sauka-Spengler T., Fulga T.A. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nature Communications. 2014;5:4640. doi: 10.1038/ncomms5640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bengtsson N.E., Hall J.K., Odom G.L., Phelps M.P., Andrus C.R., Hawkins R.D., Hauschka S.D., Chamberlain J.R., Chamberlain J.S. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nature Communications. 2017;8:14454. doi: 10.1038/ncomms14454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bhaya D., Davison M., Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics. 2011;45(1):273–297. doi: 10.1146/annurev-genet-110410-132430. [DOI] [PubMed] [Google Scholar]
  10. Bibikova M., Golic M., Golic K.G., Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161(3):1169–1175. doi: 10.1093/genetics/161.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blasco R.B., Karaca E., Ambrogio C., Cheong T.C., Karayol E., Minero V.G., Voena C., Chiarle R. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Reports. 2014;9(4):1219–1227. doi: 10.1016/j.celrep.2014.10.051. [DOI] [PubMed] [Google Scholar]
  12. Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–1512. doi: 10.1126/science.1178811. [DOI] [PubMed] [Google Scholar]
  13. Capecchi M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews. 2005;6(6):507–512. doi: 10.1038/nrg1619. [DOI] [PubMed] [Google Scholar]
  14. Challa A.K., Boitet E.R., Turner A.N., Johnson L.W., Kennedy D., Downs E.R., Hymel K.M., Gross A.K., Kesterson R.A. Novel hypomorphic alleles of the mouse tyrosinase gene induced by CRISPR-Cas9 nucleases cause non-albino pigmentation phenotypes. PLoS One. 2016;11(5):e0155812. doi: 10.1371/journal.pone.0155812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen S., Lee B., Lee A.Y.F., Modzelewski A.J., He L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. Journal of Biological Chemistry. 2016;291(28):14457–14467. doi: 10.1074/jbc.M116.733154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cheng R.R., Peng J., Yan Y.H., Cao P.L., Wang J.W., Qiu C., Tang L.C., Liu D., Tang L., Jin J.P., Huang X.X., He F.C., Zhang P.M. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Letters. 2014;588(21):3954–3958. doi: 10.1016/j.febslet.2014.09.008. [DOI] [PubMed] [Google Scholar]
  17. Chiou S.H., Winters I.P., Wang J., Naranjo S., Dudgeon C., Tamburini F.B., Brady J.J., Yang D., Grüner B.M., Chuang C.H., Caswell D.R., Zeng H., Chu P., Kim G.E., Carpizo D.R., Kim S.K., Winslow M.M. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes & Development. 2015;29(14):1576–1585. doi: 10.1101/gad.264861.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–761. doi: 10.1534/genetics.110.120717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chu V.T., Weber T., Wefers B., Wurst W., Sander S., Rajewsky K., Kuhn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology. 2015;33(5):543–548. doi: 10.1038/nbt.3198. [DOI] [PubMed] [Google Scholar]
  20. Chu V.T., Weber T., Graf R., Sommermann T., Petsch K., Sack U., Volchkov P., Rajewsky K., Kühn R. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnology. 2016;16:4. doi: 10.1186/s12896-016-0234-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Courtney D.G., Moore J.E., Atkinson S.D., Maurizi E., Allen E.H.A., Pedrioli D.M.L., McLean W.H.I., Nesbit M.A., Moore C.B.T. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Therapy. 2016;23(1):108–112. doi: 10.1038/gt.2015.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Crispo M., Mulet A.P., Tesson L., Barrera N., Cuadro F., dos Santos-Neto P.C., Nguyen T.H., Crénéguy A., Brusselle L., Anegón I., Menchaca A. Efficient generation of myostatin knockout sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10(8):e0136690. doi: 10.1371/journal.pone.0136690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cristea S., Freyvert Y., Santiago Y., Holmes M.C., Urnov F.D., Gregory P.D., Cost G.J. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnology and Bioengineering. 2013;110(3):871–880. doi: 10.1002/bit.24733. [DOI] [PubMed] [Google Scholar]
  24. De Solis C.A., Ho A., Holehonnur R., Ploski J.E. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing. Frontiers in Molecular Neuroscience. 2016;9:70. doi: 10.3389/fnmol.2016.00070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ding Q.R., Strong A., Patel K.M., Ng S.L., Gosis B.S., Regan S.N., Cowan C.A., Rader D.J., Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation Research. 2014;115(5):488–492. doi: 10.1161/CIRCRESAHA.115.304351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dong S.Z., Lin J.Y., Held N.L., Clem R.J., Passarelli A.L., Franz A.W.E. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. PLoS One. 2015;10(3):e0122353. doi: 10.1371/journal.pone.0122353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dow L.E., Fisher J., O’Rourke K.P., Muley A., Kastenhuber E.R., Livshits G., Tschaharganeh D.F., Socci N.D., Lowe S.W. Inducible in vivo genome editing with CRISPR-Cas9. Nature Biotechnology. 2015;33(4):390–394. doi: 10.1038/nbt.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. El Fatimy R., Subramanian S., Uhlmann E.J., Krichevsky A.M. Genome editing reveals glioblastoma addiction to MicroRNA-10b. Molecular Therapy. 2017;25(2):368–378. doi: 10.1016/j.ymthe.2016.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fujii T., Tsunesumi S., Sagara H., Munakata M., Hisaki Y., Sekiya T., Furukawa Y., Sakamoto K., Watanabe S. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis. Scientific Reports. 2016;6:29157. doi: 10.1038/srep29157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gallardo V.E., Varshney G.K., Lee M., Bupp S., Xu L., Shinn P., Crawford N.P., Inglese J., Burgess S.M. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. Disease Models & Mechanisms. 2015;8(6):565–576. doi: 10.1242/dmm.018689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gao J.L., Fan Y.J., Wang X.Y., Zhang Y., Pu J., Li L., Shao W., Zhan S., Hao J., Xu Y.Z. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila. Genes & Develpoment. 2015;29(7):760–771. doi: 10.1101/gad.258863.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gui H.S., Schriemer D., Cheng W.W., Chauhan R.K., Antiňolo G., Berrios C., Bleda M., Brooks A.S., Brouwer R.W.W., Burns A.J., Cherny S.S., Dopazo J., Eggen B.J.L., Griseri P., Jalloh B., Le T.L., Lui V.C.H., Luzón -Toro B., Matera I., Ngan E.S.W., Pelet A., Ruiz-Ferrer M., Sham P.C., Shepherd I.T., So M.T., Sribudiani Y., Tang C.S.M., van den Hout M.C.G.N., van der Linde H.C., van Ham T.J., van IJcken W.F.J., Verheij J.B.G.M., Amiel J., Borrego S., Ceccherini I., Chakravarti A., Lyonnet S., Tam P.K.H., Garcia-Barceló M.M., Hofstra R.M.W. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biology. 2017;18(1):48. doi: 10.1186/s13059-017-1174-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Guo H., Cooper S., Friedman A.D. In vivo deletion of the cebpa +37 kb enhancer markedly reduces cebpa mRNA in myeloid progenitors but not in non-hematopoietic tissues to impair granulopoiesis. PLoS One. 2016;11(3):e0150809. doi: 10.1371/journal.pone.0150809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Guo Y.X., VanDusen N.J., Zhang L.N., Gu W.L., Sethi I., Guatimosim S., Ma Q., Jardin B.D., Ai Y.L., Zhang D.H., Chen B.Y., Guo A., Yuan G.C., Song L.S., Pu W.T. Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo. Circulation Research. 2017;120(12):1874–1888. doi: 10.1161/CIRCRESAHA.116.310283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Han J.X., Zhang J., Chen L., Shen B., Zhou J.K., Hu B., Du Y.N., Tate P.H., Huang X.G., Zhang W.S. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biology. 2014;11(7):829–835. doi: 10.4161/rna.29624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Han Y., Slivano O.J., Christie C.K., Cheng A.W., Miano J.M. CRISPR-Cas9 genome editing of a single regulatory element nearly abolishes target gene expression in mice--brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(2):312–315. doi: 10.1161/ATVBAHA.114.305017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Hay E.A., Khalaf A.R., Marini P., Brown A., Heath K., Sheppard D., MacKenzie A. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome. Neuropeptides. 2017;64:101–107. doi: 10.1016/j.npep.2016.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. He M.D., Zhang F.H., Wang H.L., Wang H.P., Zhu Z.Y., Sun Y.H. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2015;780:86–96. doi: 10.1016/j.mrfmmm.2015.08.004. [DOI] [PubMed] [Google Scholar]
  39. He X.J., Tan C.L., Wang F., Wang Y.F., Zhou R., Cui D.X., You W.X., Zhao H., Ren J.W., Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research. 2016;44(9):e85. doi: 10.1093/nar/gkw064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Heckl D., Kowalczyk M.S., Yudovich D., Belizaire R., Puram R.V., McConkey M.E., Thielke A., Aster J.C., Regev A., Ebert B.L. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nature Biotechnology. 2014;32(9):941–946. doi: 10.1038/nbt.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Helsley R.N., Sui Y.P., Park S.H., Liu Z., Lee R.G., Zhu B.B., Kern P.A., Zhou C.C. Targeting IκB kinase β in adipocyte lineage cells for treatment of obesity and metabolic dysfunctions. Stem Cells. 2016;34(7):1883–1895. doi: 10.1002/stem.2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Heyer W.D., Ehmsen K.T., Liu J. Regulation of homologous recombination in eukaryotes. Annual Review of Genetics. 2010;44(1):113–139. doi: 10.1146/annurev-genet-051710-150955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hinze S.J., Jackson M.R., Lie S., Jolly L., Field M., Barry S.C., Harvey R.J., Shoubridge C. Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis. Translational Psychiatry. 2017;7:e1110. doi: 10.1038/tp.2017.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hisano Y., Sakuma T., Nakade S., Ohga R., Ota S., Okamoto H., Yamamoto T., Kawahara A. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Scientific Reports. 2015;5:8841. doi: 10.1038/srep08841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Homma N., Harada Y., Uchikawa T., Kamei Y., Fukamachi S. Protanopia (red color-blindness) in medaka: a simple system for producing color-blind fish and testing their spectral sensitivity. BMC Genetics. 2017;18:10. doi: 10.1186/s12863-017-0477-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hoodless L.J., Lucas C.D., Duffin R., Denvir M.A., Haslett C., Tucker C.S., Rossi A.G. Genetic and pharmacological inhibition of CDK9 drives neutrophil apoptosis to resolve inflammation in zebrafish in vivo. Scientific Reports. 2016;5:36980. doi: 10.1038/srep36980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hung S.S.C., Chrysostomou V., Li F., Lim J.K., Wang J.H., Powell J.E., Tu L., Daniszewski M., Lo C., Wong R.C., Crowston J.G., Pébay A., King A.E., Bui B.V., Liu G.S., Hewitt A.W. AV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Investigative Ophthalmology & Visual Science. 2016;57(7):3470–3476. doi: 10.1167/iovs.16-19316. [DOI] [PubMed] [Google Scholar]
  48. Inui M., Miyado M., Igarashi M., Tamano M., Kubo A., Yamashita S., Asahara H., Fukami M., Takada S. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Scientific Reports. 2014;4:5396. doi: 10.1038/srep05396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Irion U., Krauss J., Nusslein-Volhard C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. 2014;141(24):4827–4830. doi: 10.1242/dev.115584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ishikawa-Fujiwara T., Shiraishi E., Fujikawa Y., Mori T., Tsujimura T., Todo T. Targeted inactivation of DNA photolyase genes in medaka fish (Oryzias latipes) Photochemistry and Photobiology. 2017;93(1):315–322. doi: 10.1111/php.12658. [DOI] [PubMed] [Google Scholar]
  51. Ishizu N., Yui D.S., Hebisawa A., Aizawa H., Cui W.P., Fujita Y., Hashimoto K., Ajioka I., Mizusawa H., Yokota T., Watase K. Impaired striatal dopamine release in homozygous Vps35 D620N knock-in mice. Human Molecular Genetics. 2016;25(20):4507–4517. doi: 10.1093/hmg/ddw279. [DOI] [PubMed] [Google Scholar]
  52. Jiang C., Mei M., Li B., Zhu X.R., Zu W.H., Tian Y.J., Wang Q.N., Guo Y., Dong Y.Z., Tan X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Research. 2017;27(3):440–443. doi: 10.1038/cr.2017.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821. doi: 10.1126/science.1225829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kalebic N., Taverna E., Tavano S., Wong F.K., Suchold D., Winkler S., Huttner W.B., Sarov M. CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo. EMBO Reports. 2016;17(3):338–348. doi: 10.15252/embr.201541715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kaminski R., Bella R., Yin C., Otte J., Ferrante P., Gendelman H.E., Li H., Booze R., Gordon J., Hu W., Khalili K. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Therapy. 2016;23(8–9):690–695. doi: 10.1038/gt.2016.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kasparek P., Ileninova Z., Haneckova R., Kanchev I., Jenickova I., Sedlacek R. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene. Biological Chemistry. 2016;397(12):1287–1292. doi: 10.1515/hsz-2016-0194. [DOI] [PubMed] [Google Scholar]
  57. Katigbak A., Cencic R., Robert F., Senecha P., Scuoppo C., Pelletier J. A CRISPR/Cas9 functional screen identifies rare tumor suppressors. Scientific Reports. 2016;6:38968. doi: 10.1038/srep38968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kim E., Koo T., Park S.W., Kim D., Kim K., Cho H.Y., Song D.W., Lee K.J., Jung M.H., Kim S., Kim J.H., Kim J.H., Kim J.S. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications. 2017a;8:14500. doi: 10.1038/ncomms14500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kim K., Park S.W., Kim J.H., Lee S.H., Kim D., Koo T., Kim K.E., Kim J.H., Kim J.S. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Research. 2017b;27(3):419–426. doi: 10.1101/gr.219089.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(3):1156–1160. doi: 10.1073/pnas.93.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kimura Y., Hisano Y., Kawahara A., Higashijima S. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Scientific Reports. 2014;4:6545. doi: 10.1038/srep06545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Koller B.H., Hagemann L.J., Doetschman T., Hagaman J.R., Huang S., Williams P.J., First N.L., Maeda N., Smithies O. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(22):8927–8931. doi: 10.1073/pnas.86.22.8927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Kraft K., Geuer S., Will A.J., Lee Chan W., Paliou C., Borschiwer M., Harabula I., Wittler L., Franke M., Ibrahim D.M., Kragesteen B.K., Spielmann M., Mundlos S., Lupiáñez D.G., Andrey G. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Reports. 2015;10(5):833–839. doi: 10.1016/j.celrep.2015.01.016. [DOI] [PubMed] [Google Scholar]
  64. Latella M.C., Di Salvo M.T., Cocchiarella F., Benati D., Grisendi G., Comitato A., Marigo V., Recchia A. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the Mouse Retina. Molecular Therapy Nucleic Acids. 2016;5:e389. doi: 10.1038/mtna.2016.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Lee R.T., Ng A.S., Ingham P.W. Ribozyme mediated gRNA generation for in vitro and in vivo CRISPR/Cas9 mutagenesis. PLoS One. 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Lewis W.R., Malarkey E.B., Tritschler D., Bower R., Pasek R.C., Porath J.D., Birket S.E., Saunier S., Antignac C., Knowles M.R., Leigh M.W., Zariwala M.A., Challa A.K., Kesterson R.A., Rowe S.M., Drummond I.A., Parant J.M., Hildebrandt F., Porter M.E., Yoder B.K., Berbari N.F., Dutcher S.K. Mutation of growth arrest specific 8 reveals a role in motile cilia function and human disease. PLoS Genetics. 2016;12(7):e1006220. doi: 10.1371/journal.pgen.1006220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Li J., Zhang B.B., Ren Y.G., Gu S.Y., Xiang Y.H., Huang C., Du J.L. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Research. 2015a;25(5):634–637. doi: 10.1038/cr.2015.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Li L., Song L.J., Liu X.W., Yang X., Li X., He T., Wang N., Yang S., Yu C., Yin T., Wen Y.Z., He Z.Y., Wei X.W., Su W.J., Wu Q.J., Yao S.H., Gong C.Y., Wei Y.Q. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano. 2017a;11(1):95–111. doi: 10.1021/acsnano.6b04261. [DOI] [PubMed] [Google Scholar]
  69. Li M.C., Feng B., Wang L., Guo S., Zhang P., Gong J., Zhang Y., Zheng A.K., Li H.L. Tollip is a critical mediator of cerebral ischaemia-reperfusion injury. The Journal of Pathology. 2015c;237(2):249–262. doi: 10.1002/path.4565. [DOI] [PubMed] [Google Scholar]
  70. Li M.Y., Huang R., Jiang X., Chen Y.X., Zhang Z., Zhang X.Y., Liang P.P., Zhan S.Q., Cao S.B., Zhou S.Y., Huang J.J. CRISPR/Cas9 promotes functional study of testis specific X-linked gene in vivo. PLoS One. 2015d;10(11):e0143148. doi: 10.1371/journal.pone.0143148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Li Q.Y., Barish S., Okuwa S., Volkan P.C. Examination of endogenous rotund expression and function in developing Drosophila olfactory system using CRISPR-Cas9-mediated protein tagging. G3 (Bethesda) 2015e;5(12):2809–2816. doi: 10.1534/g3.115.021857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Li W.R., Liu C.X., Zhang X.M., Chen L., Peng X.R., He S.G., Lin J.P., Han B., Wang L.Q., Huang J.C., Liu M.J. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS Journal. 2017b;284(17):2764–2773. doi: 10.1111/febs.14144. [DOI] [PubMed] [Google Scholar]
  73. Li X.L., Li Y.Q., Han G.Y., Li X.R., Ji Y.S., Fan Z.R., Zhong Y.L., Cao J., Zhao J., Mariusz G., Zhang M.Z., Wen J.G., Nesland J.M., Suo Z.H. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses. Oncotarget. 2016;7(48):79981–79994. doi: 10.18632/oncotarget.13210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Liang W.C., Liang P.P., Wong C.W., Ng T.B., Huang J.J., Zhang J.F., Waye M.M.Y., Fu W.M. CRISPR/Cas9 technology targeting fas gene protects mice from concanavalin-a induced fulminant hepatic failure. Journal of Cellular Biochemistry. 2017;118(3):530–536. doi: 10.1002/jcb.25722. [DOI] [PubMed] [Google Scholar]
  75. Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry. 2010;79:181–211. doi: 10.1146/annurev.biochem.052308.093131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Lin C.C., Potter C.J. Non-mendelian dominant maternal effects caused by CRISPR/Cas9 transgenic components in Drosophila melanogaster. G3 (Bethesda) 2016;6(11):3586–3691. doi: 10.1534/g3.116.034884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Lin Y., Waldman A.S. Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics. 2001;158(4):1665–1674. doi: 10.1093/genetics/158.4.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Liu Y., Lin J.J., Zhang M.J., Chen K., Yang S.X., Wang Q., Yang H.Q., Xie S.S., Zhou Y.J., Zhang X., Chen F., Yang Y.F. PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis. Developmental Biology. 2016;419(2):357–372. doi: 10.1016/j.ydbio.2016.08.028. [DOI] [PubMed] [Google Scholar]
  79. Long C.Z., Amoasii L., Mireault A.A., McAnally J.R., Li H., Sanchez-Ortiz E., Bhattacharyya S., Shelton J.M., Bassel-Duby R., Olson E.N. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400–403. doi: 10.1126/science.aad5725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lv Q.Y., Yuan L., Deng J.C., Chen M., Wang Y., Zeng J., Li Z.J., Lai L.X. Efficient generation of Myostatin gene mutated rabbit by CRISPR/Cas9. Scientific Reports. 2016;6:25029. doi: 10.1038/srep25029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Ma T., Tao J.L., Yang M.H., He C.J., Tian X.Z., Zhang X.S., Zhang J.L., Deng S.L., Feng J.Z., Zhang Z.Z., Wang J., Ji P.Y., Song Y.K., He P.L., Han H.B., Fu J.C., Lian Z.X., Liu G.S. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. Journal of Pineal Research. 2017;63(1):e12406. doi: 10.1111/jpi.12406. [DOI] [PubMed] [Google Scholar]
  82. Maddalo D., Manchado E., Concepcion C.P., Bonetti C., Vidigal J.A., Han Y.C., Ogrodowski P., Crippa A., Rekhtman N., de Stanchina E., Lowe S.W., Ventura A. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516(7531):423–427. doi: 10.1038/nature13902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Mali P., Yang L.H., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826. doi: 10.1126/science.1232033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Malpotra S., Vats A., Kumar S., Gautam D., De S. Generation of genomic deletions (of Rig-I GENE) in goat primary cell culture using CRISPR/CAS9 method. Animal Biotechnology. 2017 doi: 10.1080/10495398.2017.1331915. [DOI] [PubMed] [Google Scholar]
  85. Mandasari M., Sawangarun W., Katsube K., Kayamori K., Yamaguchi A., Sakamoto K. A facile one-step strategy for the generation of conditional knockout mice to explore the role of Notch1 in oroesophageal tumorigenesis. Biochemical and Biophysical Research Communications. 2016;469(3):761–767. doi: 10.1016/j.bbrc.2015.12.006. [DOI] [PubMed] [Google Scholar]
  86. Maresca M., Lin V.G., Guo N., Yang Y. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Research. 2013;23(3):539–546. doi: 10.1101/gr.145441.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Maresch R., Mueller S., Veltkamp C., Öllinger R., Friedrich M., Heid I., Steiger K., Weber J., Engleitner T., Barenboim M., Klein S., Louzada S., Banerjee R., Strong A., Stauber T., Gross N., Geumann U., Lange S., Ringelhan M., Varela I., Unger K., Yang F.T., Schmid R.M., Vassiliou G.S., Braren R., Schneider G., Heikenwalder M., Bradley A., Saur D., Rad R. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nature Communications. 2016;7:10770. doi: 10.1038/ncomms10770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Mashiko D., Young S.A.M., Muto M., Kato H., Nozawa K., Ogawa M., Noda T., Kim Y.J., Satouh Y., Fujihara Y., Ikawa M. Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes. Development, Growth & Differentiation. 2014;56(1):122–129. doi: 10.1111/dgd.12113. [DOI] [PubMed] [Google Scholar]
  89. McVey M., Lee S.E. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends in Genetics. 2008;24(11):529–538. doi: 10.1016/j.tig.2008.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Meyer M.B., Benkusky N.A., Onal M., Pike J.W. Selective regulation of Mmp13 by 1,25(OH)2D3, PTH, and Osterix through distal enhancers. The Journal of Steroid Biochemistry and Molecular Biology. 2016;164:258–264. doi: 10.1016/j.jsbmb.2015.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Mianné J., Codner G.F., Caulder A., Fell R., Hutchison M., King R., Stewart M.E., Wells S., Teboul L. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods. 2017;121–122:68–76. doi: 10.1016/j.ymeth.2017.03.016. [DOI] [PubMed] [Google Scholar]
  92. Miyata H., Castaneda J.M., Fujihara Y., Yu Z.F., Archambeault D.R., Isotani A., Kiyozumi D., Kriseman M.L., Mashiko D., Matsumura T., Matzuk R.M., Mori M., Noda T., Oji A., Okabe M., Prunskaite-Hyyrylainen R., Ramirez-Solis R., Satouh Y., Zhang Q., Ikawa M., Matzuk M.M. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(28):7704–7710. doi: 10.1073/pnas.1608458113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Monteys A.M., Ebanks S.A., Keiser M.S., Davidson B.L. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Molecular Therapy. 2017;25(1):12–23. doi: 10.1016/j.ymthe.2016.11.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Moscou M.J., Bogdanove A.J. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501. doi: 10.1126/science.1178817. [DOI] [PubMed] [Google Scholar]
  95. Nakade S., Tsubota T., Sakane Y., Kume S., Sakamoto N., Obara M., Daimon T., Sezutsu H., Yamamoto T., Sakuma T., Suzuki K.I.T. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature Communications. 2014;5:5560. doi: 10.1038/ncomms6560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Narayanan A., Hill-Teran G., Moro A., Ristori E., Kasper D.M., Roden C.A., Lu J., Nicoli S. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system. Scientific Reports. 2016;6:32386. doi: 10.1038/srep32386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., Moreb E.A., Castellanos Rivera R.M., Madhavan S., Pan X.F., Ran F.A., Yan W.X., Asokan A., Zhang F., Duan D.S., Gersbach C.A. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–407. doi: 10.1126/science.aad5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Niu Y., Jin M., Li Y., Li P., Zhou J., Wang X., Petersen B., Huang X., Kou Q., Chen Y. Biallelic β-carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9. Animal Genetics. 2017a;48(2):242–244. doi: 10.1111/age.12515. [DOI] [PubMed] [Google Scholar]
  99. Niu Y.Y., Shen B., Cui Y.Q., Chen Y.C., Wang J.Y., Wang L., Kang Y., Zhao X.Y., Si W., Li W., Xiang A.P., Zhou J.K., Guo X.J., Bi Y., Si C.Y., Hu B., Dong G.Y., Wang H., Zhou Z.M., Li T.Q., Tan T., Pu X.Q., Wang F., Ji S.H., Zhou Q., Huang X.X., Ji W.Z., Sha J.H. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–843. doi: 10.1016/j.cell.2014.01.027. [DOI] [PubMed] [Google Scholar]
  100. Niu Y.Y., Zhao X.E., Zhou J.K., Li Y., Huang Y., Cai B., Liu Y.T., Ding Q., Zhou S.W., Zhao J., Zhou G.X., Ma B.H., Huang X.X., Wang X.L., Chen Y.L. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reproduction, Fertility and Development. 2017b doi: 10.1071/RD17068. [DOI] [PubMed] [Google Scholar]
  101. Orlando S.J., Santiago Y., DeKelver R.C., Freyvert Y., Boydston E.A., Moehle E.A., Choi V.M., Gopalan S.M., Lou J.F., Li J., Miller J.C., Holmes M.C., Gregory P.D., Urnov F.D., Cost G.J. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Research. 2010;38(15):e152. doi: 10.1093/nar/gkq512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Ortinski P.I., O’Donovan B., Dong X.Y., Kantor B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Molecular Therapy. Methods & Clinical Development. 2017;5:153–164. doi: 10.1016/j.omtm.2017.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Ou Z.H., Niu X.H., He W.Y., Chen Y.C., Song B., Xian Y.X., Fan D., Tang D.L., Sun X.F. The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice. Scientific Reports. 2016;6:32463. doi: 10.1038/srep32463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Paix A., Schmidt H., Seydoux G. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Research. 2016;44(15):e128. doi: 10.1093/nar/gkw502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Palmiter R.D., Brinster R.L., Hammer R.E., Trumbauer M.E., Rosenfeld M.G., Birnberg N.C., Evans R.M. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982;300(5893):611–615. doi: 10.1038/300611a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Pankowicz F.P., Barzi M., Legras X., Hubert L., Mi T., Tomolonis J.A., Ravishankar M., Sun Q., Yang D., Borowiak M., Sumazin P., Elsea S.H., Bissig-Choisat B., Bissig K.D. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nature Communications. 2016;7:12642. doi: 10.1038/ncomms12642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Park K.E., Kaucher A.V., Powell A., Waqas M.S., Sandmaier S.E.S., Oatley M.J., Park C.H., Tibary A., Donovan D.M., Blomberg L.A., Lillico S.G., Whitelaw C.B., Mileham A., Telugu B.P., Oatley J.M. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Scientific Reports. 2017;7:40176. doi: 10.1038/srep40176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Peng J., Wang Y., Jiang J.Y., Zhou X.Y., Song L., Wang L.L., Ding C., Qin J., Liu L.P., Wang W.H., Liu J.Q., Huang X.X., Wei H., Zhang P.M. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Scientific Reports. 2015;5:16705. doi: 10.1038/srep16705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Perles Z., Moon S., Ta-Shma A., Yaacov B., Francescatto L., Edvardson S., Rein A.J., Elpeleg O., Katsanis N. A human laterality disorder caused by a homozygous deleterious mutation in MMP21. Journal of Medical Genetics. 2015;52(12):840–847. doi: 10.1136/jmedgenet-2015-103336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Petersen B., Frenzel A., Lucas-Hahn A., Herrmann D., Hassel P., Klein S., Ziegler M., Hadeler K.G., Niemann H. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation. 2016;23(5):338–346. doi: 10.1111/xen.12258. [DOI] [PubMed] [Google Scholar]
  111. Pierce A.J., Hu P., Han M.G., Ellis N., Jasin M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes & Development. 2001;15(24):3237–3242. doi: 10.1101/gad.946401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Platt R.J., Chen S.D., Zhou Y., Yim M.J., Swiech L., Kempton H.R., Dahlman J.E., Parnas O., Eisenhaure T.M., Jovanovic M., Graham D.B., Jhunjhunwala S., Heidenreich M., Xavier R.J., Langer R., Anderson D.G., Hacohen N., Regev A., Feng G.P., Sharp P.A., Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–455. doi: 10.1016/j.cell.2014.09.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Port F., Chen H.M., Lee T., Bullock S.L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(29):E2967–E2976. doi: 10.1073/pnas.1405500111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 2013;8(11):2281–2308. doi: 10.1038/nprot.2013.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Rannals M.D., Page S.C., Campbell M.N., Gallo R.A., Mayfield B., Maher B.J. Neurodevelopmental models of transcription factor 4 deficiency converge on a common ion channel as a potential therapeutic target for Pitt Hopkins syndrome. Rare Diseases. 2016;4(1):e1220468. doi: 10.1080/21675511.2016.1220468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Rouet P., Smih F., Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(13):6064–6068. doi: 10.1073/pnas.91.13.6064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Sakuma T., Nakade S., Sakane Y., Suzuki K.T., Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nature Protocols. 2016;11(1):118–133. doi: 10.1038/nprot.2015.140. [DOI] [PubMed] [Google Scholar]
  118. Seruggia D., Fernández A., Cantero M., Pelczar P., Montoliu L. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Research. 2015;43(10):4855–4867. doi: 10.1093/nar/gkv375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Shah A.N., Davey C.F., Whitebirch A.C., Miller A.C., Moens C.B. Rapid reverse genetic screening using CRISPR in zebrafish. Nature Methods. 2015;12(6):535–540. doi: 10.1038/nmeth.3360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Shi Z.Y., Wang F.Q., Cui Y., Liu Z.Z., Guo X.G., Zhang Y.Q., Deng Y., Zhao H., Chen Y.L. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB Journal. 2015;29(12):4914–4923. doi: 10.1096/fj.15-273425. [DOI] [PubMed] [Google Scholar]
  121. Shinmyo Y., Tanaka S., Tsunoda S., Hosomichi K., Tajima A., Kawasaki H. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Scientific Reports. 2016;6:20611. doi: 10.1038/srep20611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Straub C., Granger A.J., Saulnier J.L., Sabatini B.L. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One. 2014;9:e105584. doi: 10.1371/journal.pone.0105584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Suzuki K., Tsunekawa Y., Hernandez-Benitez R., Wu J., Zhu J., Kim E.J., Hatanaka F., Yamamoto M., Araoka T., Li Z., Kurita M., Hishida T., Li M., Aizawa E., Guo S.C., Chen S., Goebl A., Soligalla R.D., Qu J., Jiang T.S., Fu X., Jafari M., Esteban C.R., Berggren W.T., Lajara J., Nuñez -Delicado E., Guillen P., Campistol J.M., Matsuzaki F., Liu G.H., Magistretti P., Zhang K., Callaway E.M., Zhang K., Belmonte J.C.I. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–149. doi: 10.1038/nature20565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Sweeney C.L., Choi U., Liu C., Koontz S., Ha S.K., Malech H.L. CRISPR-mediated knockout of cybb in NSG mice establishes a model of chronic granulomatous disease for human stem-cell gene therapy transplants. human gene therapy. 2017;28(7):565–575. doi: 10.1089/hum.2017.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Swiech L., Heidenreich M., Banerjee A., Habib N., Li Y., Trombetta J., Sur M., Zhang F. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnology. 2015;33(1):102–106. doi: 10.1038/nbt.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Tabebordbar M., Zhu K.X., Cheng J.K., Chew W.L., Widrick J.J., Yan W.X., Maesner C., Wu E.Y., Xiao R., Ran F.A., Cong L., Zhang F., Vandenberghe L.H., Church G.M., Wagers A.J. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407–411. doi: 10.1126/science.aad5177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Taleei R., Nikjoo H. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2013;756(1–2):206–212. doi: 10.1016/j.mrgentox.2013.06.004. [DOI] [PubMed] [Google Scholar]
  128. Taylor E.M., Lehmann A.R. Conservation of eukaryotic DNA repair mechanisms. International Journal of Radiation Biology. 1998;74(3):277–286. doi: 10.1080/095530098141429. [DOI] [PubMed] [Google Scholar]
  129. Thomas K.R., Capecchi M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem-cells. Cell. 1987;51(3):503–512. doi: 10.1016/0092-8674(87)90646-5. [DOI] [PubMed] [Google Scholar]
  130. Ukken F.P., Bruckner J.J., Weir K.L., Hope S.J., Sison S.L., Birschbach R.M., Hicks L., Taylor K.L., Dent E.W., Gonsalvez G.B., O’Connor-Giles K. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission. Journal of Cell Science. 2016;129(1):166–177. doi: 10.1242/jcs.178699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Varshney G.K., Pei W.H., LaFave M.C., Idol J., Xu L.S., Gallardo V., Carrington B., Bishop K., Jones M., Li M.Y., Harper U., Huang S.C., Prakash A., Chen W.B., Sood R., Ledin J., Burgess S.M. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research. 2015;25(7):1030–1042. doi: 10.1101/gr.186379.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Vasquez K.M., Marburger K., Intody Z., Wilson J.H. Manipulating the mammalian genome by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(15):8403–8410. doi: 10.1073/pnas.111009698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Véron N., Qu Z.D., Kipen P.A.S., Hirst C.E., Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Developmental Biology. 2015;407(1):68–74. doi: 10.1016/j.ydbio.2015.08.007. [DOI] [PubMed] [Google Scholar]
  134. Vejnar C.E., Moreno-Mateos M.A., Cifuentes D., Bazzini A.A., Giraldez A.J. Optimized CRISPR-Cas9 system for genome editing in zebrafish. Cold Spring Harbor Protocols. 2016;2016(10):pdb.prot086850. doi: 10.1101/pdb.prot086850. [DOI] [PubMed] [Google Scholar]
  135. Villarreal D.D., Lee K., Deem A., Shim E.Y., Malkova A., Lee S.E. Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genetics. 2012;8(11):e1003026. doi: 10.1371/journal.pgen.1003026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Voutev R., Mann R.S. Bxb1 phage recombinase assists genome engineering in Drosophila melanogaster. Biotechniques. 2017;62(1):37–38. doi: 10.2144/000114494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Wakabayashi S., Sawamura N., Voelzmann A., Broemer M., Asahi T., Hoch M. Ohgata the single Drosophila ortholog of human cereblon regulates insulin signaling-dependent organismic growth. Journal of Biological Chemistry. 2016;291(48):25120–25132. doi: 10.1074/jbc.M116.757823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Wang B.L., Li M.Y., Qu C., Miao W.Y., Yin Q., Liao J.Y., Cao H.T., Huang M., Wang K., Zuo E.W., Peng G.D., Zhang S.X., Chen G.D., Li Q., Tang K., Yu Q., Li Z.J., Wong C.C.L., Xu G.L., Jing N.H., Yu X., Li J.S. CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Research. 2017;27(6):815–829. doi: 10.1038/cr.2017.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Wang D., Mou H.W., Li S.Y., Li Y.X., Hough S., Tran K., Li J., Yin H., Anderson D.G., Sontheimer E.J., Weng Z.P., Gao G.P., Xue W. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Human Gene Therapy. 2015a;26(7):432–442. doi: 10.1089/hum.2015.087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Wang H.Y., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–918. doi: 10.1016/j.cell.2013.04.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Wang L.R., Shao Y.J., Guan Y.T., Li L., Wu L.J., Chen F.R., Liu M.Z., Chen H.Q., Ma Y.L., Ma X.Y., Liu M.Y., Li D.L. Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Nautre Scientific Reports. 2015b;5:17517. doi: 10.1038/srep17517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Wang S., Sengel C., Emerson M.M., Cepko C.L. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Developmental Cell. 2014;30(5):513–527. doi: 10.1016/j.devcel.2014.07.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Wang X., Raghavan A., Chen T., Qiao L., Zhang Y.X., Ding Q.R., Musunuru K. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 2016b;36(5):783–786. doi: 10.1161/ATVBAHA.116.307227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Wang X., Tang Y., Lu J., Shao Y.J., Qin X., Li Y.M., Wang L.R., Li D.L., Liu M.Y. Characterization of novel cytochrome P450 2E1 knockout rat model generated by CRISPR/Cas9. Biochemical Pharmacology. 2016c;105:80–90. doi: 10.1016/j.bcp.2016.03.001. [DOI] [PubMed] [Google Scholar]
  145. Wang X.L., Zhou J.W., Cao C.W., Huang J.J., Hai T., Wang Y.F., Zheng Q.T., Zhang H.Y., Qin G.S., Miao X.N., Wang H.M., Cao S.Z., Zhou Q., Zhao J.G. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Scientific Reports. 2015d;5:13348. doi: 10.1038/srep13348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Wang X.L., Yu H.H., Lei A.M., Zhou J.K., Zeng W.X., Zhu H.J., Dong Z.M., Niu Y.Y., Shi B.B., Cai B., Liu J.W., Huang S., Yan H.L., Zhao X.E., Zhou G.X., He X.L., Chen X.X., Yang Y.X., Jiang Y., Shi L., Tian X.E., Wang Y.J., Ma B.H., Huang X.X., Qu L., Chen Y.L. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports. 2015c;5:13878. doi: 10.1038/srep13878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Wang X.L., Cao C.W., Huang J.J., Yao J., Hai T., Zheng Q.T., Wang X., Zhang H.Y., Qin G.S., Cheng J.B., Wang Y.F., Yuan Z.Q., Zhou Q., Wang H.M., Zhao J.G. One-step generation of triple gene-targeted pigs using CRISPR/ Cas9 system. Scientific Reports. 2016a;6:20620. doi: 10.1038/srep20620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Wang Y., Du Y.A., Shen B., Zhou X.Y., Li J., Liu Y., Wang J.Y., Zhou J.K., Hu B., Kang N.N., Gao J.M., Y L.Q., Huang X.X., Wei H. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Scientific Reports. 2015e;5:8256. doi: 10.1038/srep08256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Weber J., Öllinger R., Friedrich M., Ehmer U., Barenboim M., Steiger K., Heid I., Mueller S., Maresch R., Engleitner T., Gross N., Geumann U., Fu B.Y., Segler A., Yuan D.T., Lange S., Strong A., de la Rosa J., Esposito I., Liu P.T., Cadiñanos Jan, Vassiliou G.S., Schmid R.M., Schneider G., Unger K., Yang F.T., Braren R., Heikenwälder M., Varela I., Saur D., Bradley A., Rad R. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(45):13982–13987. doi: 10.1073/pnas.1512392112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Wen K.J., Yang L.J., Xiong T.L., Di C., Ma D.H., Wu M.H., Xue Z.Y., Zhang X.D., Long L., Zhang W.M., Zhang J.Y., Bi X.L., Dai J.B., Zhang Q.F., Lu Z.J., Gao G.J. Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Research. 2016;26(9):1233–1244. doi: 10.1101/gr.199547.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331–338. doi: 10.1038/nature10886. [DOI] [PubMed] [Google Scholar]
  152. Won M., Dawid I.B. PCR artifact in testing for homologous recombination in genomic editing in zebrafish. PLoS One. 2017;12(3):e0172802. doi: 10.1371/journal.pone.0172802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Wu W.B., Lu Z.W., Li F., Wang W.J., Qian N.N., Duan J.Z., Zhang Y., Wang F.C., Chen T. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(7):1660–1665. doi: 10.1073/pnas.1614775114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Wu Y.X., Liang D., Wang Y.H., Bai M.Z., Tang W., Bao S.M., Yan Z.Q., Li D.S., Li J.S. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13(6):659–662. doi: 10.1016/j.stem.2013.10.016. [DOI] [PubMed] [Google Scholar]
  155. Xie C., Zhang Y.P., Song L., Luo J., Qi W., Hu J.L., Lu D.B., Yang Z., Zhang J., Xiao J., Zhou B., Du J.L., Jing N.H., Liu Y., Wang Y., Li B.L., Song B.L. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Research. 2016;26(10):1099–1111. doi: 10.1038/cr.2016.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Xu C.L., Qi X.L., Du X.G., Zou H.Y., Gao F., Feng T., Lu H.X., Li S.L., An X.M., Zhang L.J., Wu Y.Y., Liu Y., Li N., Capecchi M.R., Wu S. piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(4):722–727. doi: 10.1073/pnas.1615735114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Xue W., Chen S.D., Yin H., Tammela T., Papagiannakopoulos T., Joshi N.S., Cai W.X., Yang G., Bronson R., Crowley D.G., Zhang F., Anderson D.G., Sharp P.A., Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514(7522):380–384. doi: 10.1038/nature13589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Yang H., Wang H.Y., Shivalila C.S., Cheng A.W., Shi L.Y., Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–1379. doi: 10.1016/j.cell.2013.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Yang Y., Wang L.L., Bell P., McMenamin D., He Z.N., White J., Yu H.W., Xu C.Y., Morizono H., Musunuru K., Batshaw M.L., Wilson J.M. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nature Biotechnology. 2016;34(3):334–338. doi: 10.1038/nbt.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Yao X., Wang X., Liu J.L., Hu X.D., Shi L.Y., Shen X.W., Ying W.Q., Sun X.Y., Wang X., Huang P.Y., Yang H. CRISPR/Cas9 - mediated precise targeted integration in vivo using a double cut donor with short homology arms. EBioMedicine. 2017;20:19–26. doi: 10.1016/j.ebiom.2017.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Yin C.R., Zhang T., Qu X.Y., Zhang Y.G., Putatunda R., Xiao X., Li F., Xiao W.D., Zhao H.Q., Dai S., Qin X.B., Mo X.M., Young W.B., Khalili K., Hu W.H. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Molecular Therapy. 2017;25(5):1168–1186. doi: 10.1016/j.ymthe.2017.03.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Yin H., Song C.Q., Dorkin J.R., Zhu L.J., Li Y.X., Wu Q.Q., Park A., Yang J., Suresh S., Bizhanova A., Gupta A., Bolukbasi M.F., Walsh S., Bogorad R.L., Gao G.P., Weng Z.P., Dong Y.Z., Koteliansky V., Wolfe S.A., Langer R., Xue W., Anderson D.G. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology. 2016;34(3):328–333. doi: 10.1038/nbt.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Yoshimi K., Kaneko T., Voigt B., Mashimo T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nature Communications. 2014;5:4240. doi: 10.1038/ncomms5240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Yu H.H., Zhao H., Qing Y.B., Pan W.R., Jia B.Y., Zhao H.Y., Huang X.X., Wei H.J. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. International Journal of Molecular Sciences. 2016;17(10):1668. doi: 10.3390/ijms17101668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Yu Z.S., Chen H.Q., Liu J.Y., Zhang H.T., Yan Y., Zhu N.N., Guo Y.W., Yang B., Chang Y., Dai F., Liang X.H., Chen Y.X., Shen Y., Deng W.M., Chen J.M., Zhang B., Li C.Q., Jiao R.J. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biology Open. 2014;3(4):271–280. doi: 10.1242/bio.20147682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Yuan B.L., Wang X.S., Fan C.Y., You J., Liu Y.C., Weber J.D., Zhong H.B., Zhang Y.D. DHX33 transcriptionally controls genes involved in the cell cycle. Molecular and Cellular Biology. 2016a;36(23):2903–2917. doi: 10.1128/MCB.00314-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Yuan L., Sui T.T., Chen M., Deng J.C., Huang Y.Y., Zeng J., Lv Q.Y., Song Y.N., Li Z.J., Lai L.X. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Scientific Reports. 2016b;6:22024. doi: 10.1038/srep22024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Zhang D.H., Golubkov V.S., Han W.L., Correa R.G., Zhou Y., Lee S., Strongin A.Y., Dong P.D. Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival. Developmental Biology. 2014;395(1):96–110. doi: 10.1016/j.ydbio.2014.08.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Zhang T., Yin Y.J., Liu H., Du W.L., Ren C.H., Wang L., Lu H.Z., Zhang Z.Y. Generation of VDR knockout mice via zygote injection of CRISPR/Cas9 system. PLoS One. 2016;11(9):e0163551. doi: 10.1371/journal.pone.0163551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Zhang X.M., Li W.R., Liu C.X., Peng X.R., Lin J.P., He S.G., Li X.J., Han B., Zhang N., Wu Y.S., Chen L., Wang L.Q., MaYila, Huang J.C., Liu M.J. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Scientific Reports. 2017a;7:8149. doi: 10.1038/s41598-017-08636-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Zhang Y.H., Wu L.Z., Liang H.L., Yang Y., Qiu J., Kan Q., Zhu W., Ma C.L., Zhou X.Y. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system. American Journal of Translational Research. 2017b;9(2):355–365. [PMC free article] [PubMed] [Google Scholar]
  172. Zhong H., Chen Y.Y., Li Y.M., Chen R., Mardon G. CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes. Scientific Reports. 2015;5:8366. doi: 10.1038/srep08366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Zhou W.J., Wan Y.J., Guo R.H., Deng M.T., Deng K.P., Wang Z., Zhang Y.L., Wang F. Generation of beta-lactoglobulin knockout goats using CRISPR/ Cas9. PLoS One. 2017;12(10):e0186056. doi: 10.1371/journal.pone.0186056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Zhou X.Y., Wang L.L., Du Y.N., Xie F., Li L., Liu Y., Liu C.H., Wang S.Q., Zhang S.B., Huang X.X., Wang Y., Wei H. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Human Mutation. 2016;37(1):110–118. doi: 10.1002/humu.22913. [DOI] [PubMed] [Google Scholar]
  175. Zhu Q.M., Ko K.A., Ture S., Mastrangelo M.A., Chen M.H., Johnson A.D., O’Donnell C.J., Morrell C.N., Miano J.M., Lowenstein C.J. Novel thrombotic function of a human SNP in STXBP5 revealed by CRISPR/Cas9 gene editing in mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2017;37(2):264–270. doi: 10.1161/ATVBAHA.116.308614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Zhu W., Xie K., Xu Y.J., Wang L., Chen K.M., Zhang L.Z., Fang J.M. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse. Virus Research. 2016;217:125–132. doi: 10.1016/j.virusres.2016.04.003. [DOI] [PubMed] [Google Scholar]
  177. Zinn A.R., Butow R.A. Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break. Cell. 1985;40(4):887–895. doi: 10.1016/0092-8674(85)90348-4. [DOI] [PubMed] [Google Scholar]

Articles from Zoological Research are provided here courtesy of Editorial Office of Zoological Research, Kunming Institute of Zoology, The Chinese Academy of Sciences

RESOURCES