Skip to main content
Springer logoLink to Springer
. 2018 Apr 18;2018(1):90. doi: 10.1186/s13660-018-1688-9

The Bézier variant of Kantorovich type λ-Bernstein operators

Qing-Bo Cai 1,
PMCID: PMC5906583  PMID: 29681722

Abstract

In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter λ[1,1]. We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Finally, we combine the Bojanic–Cheng decomposition method with some analysis techniques to derive an asymptotic estimate on the rate of convergence for some absolutely continuous functions.

Keywords: λ-Bernstein operators, Basis functions, Modulus of continuity, Rate of convergence, Absolutely continuous functions

Introduction

In 1912, Bernstein [1] proposed the famous polynomials, nowadays called Bernstein polynomials, to prove the Weierstrass approximation theorem as follows:

Bn(f;x)=k=0nf(kn)bn,k(x), 1

where x[0,1], n=1,2, , and Bernstein basis functions bn,k(x) are defined as follows:

bn,k(x)=(nk)xk(1x)nk. 2

Based on this, there are many papers that mention Bernstein type operators, we illustrate some of them [213]. In 2010, Ye et al. [14] defined the following new Bernstein bases with shape parameter λ:

{b˜n,0(λ;x)=bn,0(x)λn+1bn+1,1(x),b˜n,i(λ;x)=bn,i(x)+λ(n2i+1n21bn+1,i(x)n2i1n21bn+1,i+1(x))(1in1),b˜n,n(λ;x)=bn,n(x)λn+1bn+1,n(x), 3

where bn,i(x) (i=0,1,,n) are defined in (2), x[0,1], λ[1,1]. They discussed some important properties of the basis functions and the corresponding curves and tensor product surfaces. It must be pointed out that we have more modeling flexibility when adding the shape parameter λ.

Recently, Cai et al. [15] introduced the λ-Bernstein operators as follows:

Bn,λ(f;x)=k=0nb˜n,k(λ;x)f(kn), 4

where b˜n,k(λ;x) (k=0,1,,n) are defined in (3) and λ[1,1].

In this paper, we propose the Kantorovich type λ-Bernstein operators

Kn,λ(f;x)=(n+1)k=0nb˜n,k(λ;x)kn+1k+1n+1f(t)dt, 5

and the Bézier variant of Kantorovich type λ-Bernstein operators

Ln,λ,α(f;x)=(n+1)k=0nQn,k(α)(λ;x)kn+1k+1n+1f(t)dt, 6

where

Qn,k(α)(λ;x)=[Jn,k(λ;x)]α[Jn,k+1(λ;x)]α,Jn,k(λ;x)=j=knb˜n,k(λ;x),

b˜n,k(λ;x) (k=0,1,,n) are defined in (3), α1, x[0,1], and λ[1,1].

Obviously, when α=1, Ln,λ,1(f;x) reduce to Kantorovich type λ-Bernstein operators (5); when λ=0, Ln,0,α(f;x) reduce to Bernstein–Kantorovich–Bézier operators defined in [13]; when λ=0, α=1, Ln,0,1(f;x) reduce to Bernstein–Kantorovich operators defined in [13].

Let

Pn,λ,α(x,t)=(n+1)k=0nQn,k(α)(λ;x)χk(t)

and

Rn,λ,α(x,t)=0tPn,λ,α(x,s)ds,

where χk(t) is the characteristic function on the interval [kn+1,k+1n+1] with respect to [0,1]. By the Lebesgue–Stieltjes integral representations, we have

Ln,λ,α(f;x)=01f(t)Pn,λ,α(x,t)dt=01f(t)dtRn,λ,α(x,t). 7

The aims of this paper are to study the rate of convergence of operators Ln,λ,α for fC[0,1] and the asymptotic behavior of Ln,λ,α for some absolutely continuous functions fΦDB, where the class of functions of ΦDB is defined by

ΦDB={f|f(x)f(0)=0xϕ(u)du;x0;ϕ is bounded on [0,1]}. 8

For a bounded function f on [0,1], the following metric forms were first introduced in [12]:

Ωx(f;δ1)=supt[xδ1,x]|f(t)f(x)|;Ωx+(f;δ2)=supt[x,x+δ2]|f(t)f(x)|;Ωx(f;μ)=supt[xx/μ,x+(1x)/μ]|f(t)f(x)|,

where x[0,1] is fixed, 0δ1x, 0δ21x, and μ1. For the basic properties of Ωx(f;δ1), Ωx+(f;δ2), and Ωx(f;μ), refer to [12].

Some lemmas

For proving the main results, we need the following lemmas.

Lemma 2.1

([15])

Let ei=ti, i=0,1,2, and n>1. For the λ-Bernstein operators Bn,λ(f;x), we have

Bn,λ(e0;x)=1;Bn,λ(e1;x)=x+12x+xn+1(1x)n+1n(n1)λ;Bn,λ(e2;x)=x2+x(1x)n+λ[2x4x2+2xn+1n(n1)+xn+1+(1x)n+11n2(n1)].

Lemma 2.2

Let ei=ti, i=0,1,2, and n>1, for the Kantorovich type λ-Bernstein operators Kn,λ(f;x), we have the following equalities:

Kn,λ(e0;x)=1; 9
Kn,λ(e1;x)=x+12x2(n+1)+12x+xn+1(1x)n+1n21λ; 10
Kn,λ(e2;x)=x2+3nx(23x)3x2+13(n+1)2+2λ[(x2x2+xn+1)n+xn+1x(n1)(n+1)2]. 11

Proof

We can obtain (9) easily by the fact that k=0nb˜n,k(λ;x)=1. Next, by (5) and using Lemma 2.1, we have

Kn,λ(e1;x)=(n+1)k=0nb˜n,k(λ;x)kn+1k+1n+1tdt=k=0nb˜n,k(λ;x)2k+12(n+1)=nn+1Bn,λ(e1;x)+12(n+1)=x+12x2(n+1)+12x+xn+1(1x)n+1n21λ.

Finally,

Kn,λ(e2;x)=(n+1)k=0nb˜n,k(λ;x)kn+1k+1n+1t2dt=k=0nb˜n,k(λ;x)3k2+3k+13(n+1)2=n2(n+1)2Bn,λ(e2;x)+n(n+1)2Bn,λ(e1;x)+13(n+1)2=x2+3nx(23x)3x2+13(n+1)2+2λ[(x2x2+xn+1)n+xn+1x(n1)(n+1)2].

Lemma 2.2 is proved. □

Lemma 2.3

For the Kantorovich type λ-Bernstein operators Kn,λ(f;x) and n>1, using Lemma 2.2, we have

Kn,λ(tx;x)=12x2(n+1)+12x+xn+1(1x)n+1n21λ,Kn,λ((tx)2;x)=nx(1x)(n+1)2+13x(1x)3(n+1)2+2λ[xn+1(1x)+x(1x)n+1]n21Kn,λ((tx)2;x)=4x(1x)λ(n+1)2(n1)Kn,λ((tx)2;x)4n+1. 12

Lemma 2.4

For the Bézier variant of Kantorovich type λ-Bernstein operators Ln,λ,α(f;x) and fC[0,1] with the sup-norm f:=supx[0,1]|f(x)|, we have

Ln,λ,α(f)αf.

Proof

Since, for α1, we have

0<[Jn,k(λ;x)]α[Jn,k+1(λ;x)]αα[Jn,k(λ;x)Jn,k+1(λ;x)]=αb˜n,k(λ;x).

Then, from (9) and the definition of Ln,λ,α(f;x), we have

Ln,λ,α(f)αKn,λ(f)αf.

 □

Lemma 2.5

  • (i)
    For 0yx<1, we have
    Rn,λ,α(x,y)=0yPn,λ,α(x,t)dt4α(n+1)(xy)2. 13
  • (ii)
    For 0<x<z1, we have
    1Rn,λ,α(x,z)=z1Pn,λ,α(x,t)dt4α(n+1)(zx)2. 14

Proof

(i) Using (7) and (12), we have

Rn,λ,α(x,y)=0yPn,λ,α(x,t)dt0y(xtxy)2Pn,λ,α(x,t)dt1(xy)201(tx)2Pn,λ,α(x,t)dt=1(xy)2Ln,λ,α((tx)2;x)α(xy)2Kn,λ((tx)2;x)4α(n+1)(xy)2.

Similarly, (ii) is proved. □

Main results

As we know, the space C[0,1] of all continuous functions on [0,1] is a Banach space with sup-norm f:=supx[0,1]|f(x)|. Let fC[0,1], the Peetre’s K-functional is defined by K2(f;t):=infgC[0,1]2{fg+tg+t2g}, where t>0 and C[0,1]2:={gC[0,1]:g,gC[0,1]}. By [16], there exists an absolute constant C>0 such that

K2(f;t)Cω2(f;t), 15

where ω2(f;t):=sup0<htsupx,x+h,x+2h[0,1]|f(x+2h)2f(x+h)+f(x)| is the second order modulus of smoothness of fC[0,1]. We also denote the usual modulus of continuity of fC[0,1] by ω(f;t):=sup0<htsupx,x+h[0,1]|f(x+h)f(x)|.

Theorem 3.1

For fC[0,1], λ[1,1], we have

|Ln,λ,α(f;x)f(x)|Cω2(f;αn+1), 16

where C is a positive constant.

Proof

Let gC[0,1]2, by Taylor’s expansion

g(t)=g(x)+g(x)(tx)+xt(tu)g(u)du.

As we know, Ln,λ,α(1;x)=1. Applying Ln,λ,α(;x) to both sides of the above equation, we get

Ln,λ,α(g;x)=g(x)+g(x)Ln,λ,α(tx;x)+Ln,λ,α(xt(tu)g(u)du;x).

By the Cauchy–Schwarz inequality, (12) and Lemma 2.4, we have

|Ln,λ,α(g;x)g(x)||g(x)||Ln,λ,α(|tx|;x)|+|Ln,λ,α(xt(tu)g(u)du;x)|gLn,λ,α(|tx|;x)+g2Ln,λ,α((tx)2;x)gLn,λ,α((tx)2;x)+g2Ln,λ,α((tx)2;x)αgKn,λ((tx)2;x)+αg2Kn,λ((tx)2;x)2αgn+1+2αgn+1.

Then, using the above inequality, we have

|Ln,λ,α(f;x)f(x)||Ln,λ,α(fg;x)|+|(fg)(x)|+|Ln,λ,α(g;x)g(x)|2(fg+αn+1g+αn+1g).

Hence, taking infimum on the right-hand side over all gC[0,1]2, we get

|Ln,λ,α(f;x)f(x)|2K2(f;αn+1).

By (15), we obtain

|Ln,λ,α(f;x)f(x)|Cω2(f;αn+1).

This completes the proof of Theorem 3.1. □

Next, we recall some definitions of the Ditzian–Totik first order modulus of smoothness and K-functional, which can be found in [17]. Let fC[0,1], and φ(x):=x(1x), the first order modulus of smoothness is given by

ωφ(f;t):=sup0<ht,x±hφ(x)2[0,1]|f(x+hφ(x)2)f(xhφ(x)2)|.

The K-functional Kφ(f;t) is defined by Kφ(f;t):=infgC[0,1]φ{fg+tφg}, where t>0, C[0,1]φ:={g:gAC[0,1],φg<}, AC[0,1] is the class of all absolutely continuous functions on [0,1]. Besides, from [17], there exists a constant C>0 such that

Kφ(f;t)Cωφ(f;t). 17

Theorem 3.2

For fC[0,1], λ[1,1], and φ(x)=x(1x), we have

|Ln,λ,α(f;x)f(x)|Cωφ(f;22αn+1φ(x)),

where C is a positive constant.

Proof

Since

g(t)=g(x)+xtg(u)du,

applying Ln,λ,α(f;x) to the above equality, we have

Ln,λ,α(g;x)=g(x)+Ln,λ,α(xtg(u)du;x). 18

We will estimate xtg(u)du: For any x,t(0,1), we have

|xtg(u)du|φg|xt1φ(u)du|=φg|xt1u(1u)du|φg|xt(1u+11u)du|2φg(|tx|+|1t1x|)=2φg|tx|(1t+x+11t+1x)2φg|tx|(1x+11x)22φg|tx|φ(x).

From (18), using the Cauchy–Schwarz inequality, we obtain

|Ln,λ,α(g;x)g(x)|22φgφ(x)Ln,λ,α(|tx|;x)22φgφ(x)Ln,λ,α((tx)2;x)22αφgφ(x)Kn,λ((tx)2;x)42αφgn+1φ(x).

Hence, using the above inequality, we have

|Ln,λ,α(f;x)f(x)||Ln,λ,α(fg;x)|+|(fg)(x)|+|Ln,λ,α(f;x)g(x)|2(fg+22αn+1φ(x)φg).

Taking infimum on the right-hand side over all gC[0,1]φ, we get

|Ln,λ,α(f;x)f(x)|2Kφ(f;22αn+1φ(x)).

By (17), we obtain

|Ln,λ,α(f;x)f(x)|Cωφ(f;22αn+1φ(x)).

Theorem 3.2 is proved. □

Finally, we study the approximation properties of Ln,λ,α(f;x) for some absolutely continuous functions fΦDB.

Theorem 3.3

Let f be a function in ΦDB. If ϕ(x+) and ϕ(x) exist at a fixed point x(0,1), then we have

|Ln,λ,α(f;x)f(x)|2α(|ϕ(x+)|+|ϕ(x)|)n+1+8α+2x(1x)nx(1x)k=1[n]Ωx(ϕx;1k),

where [n] denotes the greatest integer not exceeding n, and

ϕx(u)={ϕ(u)ϕ(x+),x<u1;0,u=x;ϕ(u)ϕ(x),0u<x. 19

Proof

By the fact that Ln,λ,α(1;x)=1, using (7) and (8), we have

Ln,λ,α(f;x)f(x)=01[f(t)f(x)]dtRn,λ,α(x,t)=01(xtϕ(u)du)dtRn,λ,α(x,t).

By the Bojanic–Cheng decomposition [18], we have

ϕ(u)=ϕ(x+)+ϕ(x)2+ϕx(u)+ϕ(x+)ϕ(x)2sgn(ux)+δx(u)(ϕ(x)ϕ(x+)+ϕ(x)2), 20

where ϕx(u) is defined in (19), sgn(u) is a sign function and δx(u)={1,u=x;0,ux. By direct integrations, we find that

Ln,λ,α(f;x)f(x)=ϕ(x+)ϕ(x)2Ln,λ,α(|tx|;x)Un,λ,α(ϕx;x)+Tn,λ,α(ϕx;x)+ϕ(x+)+ϕ(x)2Ln,λ,α(tx;x), 21

where

Un,λ,α(ϕx;x)=0x(txϕx(u)du)dtRn,λ,α(x,t),Tn,λ,α(ϕx;x)=x1(xtϕx(u)du)dtRn,λ,α(x,t).

Integration by parts derives

Un,λ,α(ϕx;x)=0x(txϕx(u)du)dtRn,λ,α(x,t)=txϕx(u)duRn,λ,α(x,t)|0x+0xRn,λ,α(x,t)ϕx(t)dt=0xRn,λ,α(x,t)ϕx(t)dt=(0xx/n+xx/nx)Rn,λ,α(x,t)ϕx(t)dt.

Note that Rn,λ,α(x,t)1 and ϕx(x)=0, it follows that

|xx/nxRn,λ,α(x,t)ϕx(t)dt|xnΩx(ϕx;xn)2xnk=1[n]Ωx(ϕx;xk).

From Lemma 2.5 (i) and change of variable t=xx/u, we have

|0xx/nRn,λ,α(x,t)ϕx(t)dt|4αn+10xx/nΩx(ϕx,xt)(xt)2dt=4α(n+1)x1nΩx(ϕx;xu)du8α(n+1)xk=1[n]Ωx(ϕx;xk).

Thus, it follows that

|Un,λ,α(ϕx;x)|8α(n+1)xk=1[n]Ωx(ϕx;xk)+2xnk=1[n]Ωx(ϕx;xk)8α+2x2nxk=1[n]Ωx(ϕx;1k). 22

From Lemma 2.5(ii), using a similar method, we also obtain

|Tn,λ,α(ϕx;x)|8α+2(1x)2n(1x)k=1[n]Ωx(ϕx;1k). 23

By the Cauchy–Schwarz inequality, (12), and Lemma 2.4, we have

Ln,λ,α(|tx|;x)αKn,λ(|tx|;x)αKn,λ((tx)2;x)2αn+1. 24

Hence, by (22), (23), (24), and (21), we have

|Ln,λ,α(f;x)f(x)|2α(|ϕ(x+)|+|ϕ(x)|)n+1+8α+2x(1x)nx(1x)k=1[n]Ωx(ϕx;1k).

Theorem 3.3 is proved. □

Conclusion

In this paper, we have presented a Bézier variant of Kantorovich type λ-Bernstein operators Ln,λ,α(f;x), and established approximation theorems by using the usual second order modulus of smoothness and the Ditzian–Totik modulus of smoothness. From Theorem 3.3 of Sect. 3, we know that the rate of convergence of operators Ln,λ,α(f;x) for fΦDB is 1n+1. Furthermore, we might consider the approximation of these operators Ln,λ,α(f;x) for locally bounded functions.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11601266), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J05017), and the Program for New Century Excellent Talents in Fujian Province University. We also thank Fujian Provincial Key Laboratory of Data Intensive Computing and Key Laboratory of Intelligent Computing and Information Processing of Fujian Province University.

Authors’ contributions

The author carried out the work and wrote the whole manuscript. All authors read and approved the final manuscript.

Competing interests

The author declares that there are no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Bernstein S.N. Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Comm. Soc. Math. Charkow Sér. 2 t. 1912;13:1–2. [Google Scholar]
  • 2.Agrawal P.N., Gupta V., Kumar A.S. On q-analogue of Bernstein–Schurer–Stancu operators. Appl. Math. Comput. 2013;219(14):7754–7764. [Google Scholar]
  • 3.Ditzian Z., Ivanov K. Bernstein-type operators and their derivatives. J. Approx. Theory. 1989;56(1):72–90. doi: 10.1016/0021-9045(89)90134-2. [DOI] [Google Scholar]
  • 4.Guo S., Li C., Liu X., Song Z. Pointwise approximation for linear combinations of Bernstein operators. J. Approx. Theory. 2000;107(1):109–120. doi: 10.1006/jath.2000.3504. [DOI] [Google Scholar]
  • 5.Gupta V. Some approximation properties of q-Durrmeyer operators. Appl. Math. Comput. 2008;197:172–178. [Google Scholar]
  • 6.Mursaleen M., Ansari K.J., Khan A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015;266:874–882. [Google Scholar]
  • 7.Mursaleen M., Ansari K.J., Khan A. Some approximation results by (p,q)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 2015;264:392–402. [Google Scholar]
  • 8.Mursaleen M., Ansari K.J., Khan A. Approximation by Kantorovich type q-Bernstein–Stancu operators. Complex Anal. Oper. Theory. 2017;11:85–107. doi: 10.1007/s11785-016-0572-1. [DOI] [Google Scholar]
  • 9.Mursaleen M., Ansari K.J., Khan A. Some approximation results for Bernstein–Kantorovich operators based on (p,q)-calculus. UPB Sci. Bull., Ser. A. 2016;78(4):129–142. [Google Scholar]
  • 10.Nowak G. Approximation properties for generalized q-Bernstein polynomials. J. Math. Anal. Appl. 2009;350:50–55. doi: 10.1016/j.jmaa.2008.09.003. [DOI] [Google Scholar]
  • 11.Phillips G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997;4:511–518. [Google Scholar]
  • 12.Zeng X.M., Cheng F. On the rates of approximation of Bernstein type operators. J. Approx. Theory. 2001;109(2):242–256. doi: 10.1006/jath.2000.3538. [DOI] [Google Scholar]
  • 13.Zeng X.M., Piriou A. On the rate of convergence of two Bernstein–Bézier type operators for bounded variation functions. J. Approx. Theory. 1998;95:369–387. doi: 10.1006/jath.1997.3227. [DOI] [Google Scholar]
  • 14.Ye Z., Long X., Zeng X.M. International Conference on Computer Science and Education. 2010. Adjustment algorithms for Bézier curve and surface; pp. 1712–1716. [Google Scholar]
  • 15.Cai Q.B., Lian B.Y., Zhou G. Approximation properties of λ-Bernstein operators. J. Inequal. Appl. 2018;2018:61. doi: 10.1186/s13660-018-1653-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.DeVore R.A., Lorentz G.G. Constructive Approximation. Berlin: Springer; 1993. [Google Scholar]
  • 17.Ditzian Z., Totik V. Moduli of Smoothness. New York: Springer; 1987. [Google Scholar]
  • 18.Bojanic R., Cheng F. Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation. J. Math. Anal. Appl. 1989;141:136–151. doi: 10.1016/0022-247X(89)90211-4. [DOI] [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES