Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1990 Oct;81(10):1003–1011. doi: 10.1111/j.1349-7006.1990.tb03338.x

Inhibition of Lung Metastasis by Synthetic and Recombinant Fragments of Human Fibronectin with Functional Domains

Ikuo Saiki 1,, Jun Murata 1, Takashi Makabe 1, Yoshihiro Matsumoto 1, Yoichi Ohdate 2, Yasutoshi Kawase 2, Yuki Taguchi 2, Tomoko Shimojo 2, Fusao Kimizuka 2, Ikunoshin Kato 2, Ichiro Azuma 1
PMCID: PMC5917966  PMID: 2121673

Abstract

We have investigated the antimetastatic effect of synthetic or recombinant peptides containing the functional domains of fibronectin on experimental and spontaneous lung metastases of murine tumor cells. CS1 peptide which is present within type III homology connecting segment (IIICS) as well as C‐274 (cell‐binding domain) were able to inhibit experimental lung metastasis when co‐injected intravenously (iv) with B16‐BL6 melanoma cells, while H‐271 (heparin‐binding domain) could not. In the spontaneous metastasis model, multiple iv administrations of CS1 or C‐274 after surgical excision of primary tumors caused a significant reduction of metastatic colonies in the lung. Both CS1 and C‐274 significantly inhibited cell adhesion and migration to fibronectin‐coated substrates when added freely in solution. CS1 peptide also inhibited the cell adhesion and migration to laminin‐coated substrates, but C‐274 did not. H‐271 did not have any inhibitory effect on cell adhesion or migration to either of the substrates. Similarly, CS1 inhibited tumor invasion to both Matrigel/fibronectin‐ and Matrigel/laminin‐coated filters, whereas C‐274 inhibited the invasion to only Matrigel/fibronectin‐coated filter. These results indicate that CS1 peptide of fibronectin, lacking the Arg‐Gly‐Asp‐containing domain, actively inhibits tumor metastases in spontaneous and experimental metastasis models. The use of such a peptide might offer a promising therapeutic approach for combatting or preventing cancer metastasis.

Keywords: Recombinant fibronectin fragment, Metastasis, Haptotactic migration, Cell adhesion, Invasion

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

References

  • 1.Fidler, I.J. The Ernst, W.Bertner Memorial Award Lecture: the evolution of biological heterogeneity in metastatic neoplasms In“Cancer Invasion and Metastases: Biologic and Therapeutic Aspects,” ed. Nicolson G. L. and Milas L., pp. 5–26 (1984). Raven Press, New York. [PubMed] [Google Scholar]
  • 2.Nicolson, G. L.Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncofetal expression. Cancer Res., 47, 1473–1487 (1987). [PubMed] [Google Scholar]
  • 3.Hart, I. R.“Seed and soil” revisited: mechanisms of site specific metastasis. Cancer Metastasis Rev., 1, 5–16 (1982). [DOI] [PubMed] [Google Scholar]
  • 4.Liotta, L. A., Rao, C. V. and Barsky, S. H.Tumor invasion and the extracellular matrix. Lab. Invest., 49, 636–649 (1983). [PubMed] [Google Scholar]
  • 5.Terranova, V. P., Hujanen, E. S. and Martin, G. R.Basement membrane and the invasive activity of metastatic tumor cells. J. Natl. Cancer Inst., 77, 311–316 (1986). [PubMed] [Google Scholar]
  • 6.McCarthy, J. B. and Furcht, L. T.Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell Biol., 98, 1474–1480 (1984). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Karpathlan, S. and Pearlstein, E.Heterogenous mechanism of tumor cell‐induced platelet aggregation with possible strategy toward prevention of metastases In“Hemostasis Mechanisms and Metastasis,” ed. Honn K. V. and Sloane B. F., pp. 139–169 (1984). Martinus Nijhoff, Boston. [Google Scholar]
  • 8.Kornblihtt, A. R., Umezaka, K., Vibe‐Pedrsan, K. and Baralle, F. E.Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J., 4, 1755–1759 (1985). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Suzuki, S., Oldberg, A., Hayman, E. G., Pierschbacher, M. D. and Rouslahti, E.Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J., 4, 2519–2524 (1985). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Sasaki, M., Kato, S., Kohno, K., Martin, G. R. and Yamada, Y.Sequence of the cDNA encoding the laminin B1 chain reveals a multidomain protein containing cysteine rich repeats. Proc. Natl. Acad. Sci. USA, 84, 935–938 (1987). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Sasaki, M. and Yamada, Y.The laminin B2 chain has a multidomain structure homologous to the B1 chain. J. Biol. Chem., 262, 17111–17117 (1987). [PubMed] [Google Scholar]
  • 12.Pierschbacher, M. D. and Ruoslahti, E.Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309, 30–33 (1982). [DOI] [PubMed] [Google Scholar]
  • 13.Ruoslahti, E. and Pierschbacher, M. D.Arg‐Gly‐Asp: a versatile cell recognition signal. Cell, 44, 517–518 (1986). [DOI] [PubMed] [Google Scholar]
  • 14.Graf, J., Iwamoto, Y., Sasaki, M., Martin, G. R., Kleinman, H. K., Robey, F. A. and Yamada, Y.Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell, 48, 989–996 (1987). [DOI] [PubMed] [Google Scholar]
  • 15.Barsky, S. H., Rao, C. N., Williams, J. E. and Liotta, L. A.Laminin molecular domains which alter metastasis in a murine model. J. Clin. Invest., 74, 843–848 (1984). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.McCarthy, J. B., Skubitz, A. P. N., Palm, S. L. and Furcht, L. T.Metastasis inhibition of different tumor types by purified laminin fragments and a heparin‐binding fragment of fibronectin. J. Natl. Cancer Inst., 80, 108–116 (1988). [DOI] [PubMed] [Google Scholar]
  • 17.Humphries, M. J., Olden, K. and Yamada, K. M.A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science, 233, 467–470 (1986). [DOI] [PubMed] [Google Scholar]
  • 18.Humphries, M. J.Yamada, K. M. and Olden, K.Investigation of the biological effects of anti‐cell adhesive synthetic peptides that inhibit experimental metastasis of B16‐F10 murine melanoma cells. J. Clin. Invest. 81, 782–790 (1988). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Saiki, I., Iida, J., Murata, J., Ogawa, R., Nishi, N., Sugimura, K., Tokura, S. and Azuma, I.Inhibition of the metastasis of murine malignant melanoma by synthetic polymeric peptides containing core sequence of cell‐adhesive molecules. Cancer Res., 49, 3815–3822 (1989). [PubMed] [Google Scholar]
  • 20.Saiki, I., Murata, J., Iida, J.Nishi, N., Sugimura, K. and Azuma, I.The inhibition of murine lung metastasis by synthetic polypeptides [poly(arg‐gly‐asp) and poly(tyr‐ile‐gly‐ser‐arg)] with a core sequence of cell adhesion molecules. Br. J. Cancer, 59, 194–197 (1989). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Saiki, I., Murata, J., Iida, J., Sakurai, T., Nishi, N., Matsuno, K. and Azuma, I.Antimetastatic effects of synthetic polypeptides containing repeated structures of the cell adhesive Arg‐Gly‐Asp (RGD) and Tyr‐Ile‐Gly‐Ser‐Arg (YIGSR) sequences. Br. J. Cancer, 60, 722–728 (1989). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.McCarthy, J. B., Hagen, S. T. and Furcht, L. T.Human plasma fibronectin contains multiple adhesion‐ and motility‐promoting domains for metastatic melanoma cells. J. Cell Biol., 102, 179–188 (1986). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Humphries, M. J., Komoriya, A., Akiyama, S. K., Olden, K. and Yamada, K. M.Identification of two distinct regions of the type IIICS connectin that promote cell type‐specific adhesion. J. Biol. Chem., 262, 6886–6892 (1987). [PubMed] [Google Scholar]
  • 24.Humphries, M. J., Akiyama, S. K., Komoriya, A., Olden, K. and Yamada, K. M.Neurite extension of chicken peripheral nervous system neurons on fibronectin: relative importance of specific adhesion sites in the central cell‐binding domain and the alternatively spliced type III connecting segment. J. Cell Biol., 106, 1289–1297 (1988). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Dufour, S., Duband, J‐L., Humphries, M. J., Obara, M., Yamada, K. M. and Thiery, J. P.Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple sites on fibronectin molecules. EMBO J., 7, 2661–2671 (1988). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Maki, M., Takano, E., Mori, H., Sato, A., Murachi, T. and Hatanaka, M.All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpeins I and II. FEBS Lett., 223, 174–180 (1987). [DOI] [PubMed] [Google Scholar]
  • 27.Sekiguchi, K., Klos, M. A., Kurachi, K., Yoshitake, S. and Hakomori, S.Human liver fibronectin complementary DNAs: identification of two different messenger RNAs possibly encoding the α and β subunits of plasma fibronectin. Biochemistry, 25, 4936–4941 (1986). [DOI] [PubMed] [Google Scholar]
  • 28.Hart, I. R.The selection and characterization of an invasive variant of the B16 melanoma. Am. J. Pathol., 97, 587–592 (1979). [PMC free article] [PubMed] [Google Scholar]
  • 29.McCarthy, J. B., Palm, S. L. and Furcht, L. T.Migration of haptotaxis of a Schwann cell tumor line to the basement membrane glycoprotein laminin. J. Cell Biol., 97, 772–777 (1983). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Saiki, I., Murata, J., Watanabe, K., Fujii, H., Abe, F. and Azuma, I.Inhibition of tumor cell invasion by ubenimex (bestatin) in vitro. Jpn. J. Cancer Res., 80, 873–878 (1989). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M. and McEwan, R. N.A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res., 47, 3239–3245 (1987). [PubMed] [Google Scholar]
  • 32.Liotta, L. A., Garbisa, S. and Tryggvason, K.Biochemical mechanisms involved in tumor cell penetration of the basement membrane In“Tumor Invasion and Metastasis,” ed. Liotta L. A. and Hart T. R., pp. 319–334 (1982). The Hague: Martinus Nijhoff, Boston. [Google Scholar]
  • 33.Nicolson, G. L., Nakajima, M. and Irimura, T.Invasion of vascular endothelium and organ tissue in vitro by B16 melanoma variants In“Mechanisms of Metastasis: Potential Therapeutic Implications,” ed. Honn K. V., Powers W. E. and Sloane B. F., pp. 275–297 (1985). The Hague: Martinus Nijhoff, Boston. [Google Scholar]
  • 34.Wayner, E. A., Garcia‐Pardo, A., Humphries, M. J., McDonald, J. A. and Carter, W. G.Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS1) in plasma fibronectin. J. Cell. Biol., 109, 1321–1330 (1989). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Guan, J‐L. and Hynes, R. O.Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell, 60, 53–61 (1990). [DOI] [PubMed] [Google Scholar]
  • 36.McCarthy, J. B., Chelberg, M. K., Mickelson, D. J. and Furcht, L. T.Localization and chemical synthesis of fibronectin peptides with melanoma adhesion and heparin binding activities. Biochemistry, 27, 1380–1388 (1988). [DOI] [PubMed] [Google Scholar]
  • 37.Mould, A. P., Wheldon, L. A., Komoriya, A., Wayner, E. A., Yamada, K. M. and Humphries, M. J.Affinity chromatographic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin and its identification as the integrin α4β1. J. Biol. Chem., 265, 4020–4024 (1990). [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES