Abstract
The antitumor effect of PSK, a Coriolus preparation, at a distant site was analyzed with the use of a double grafted tumor system in which male BALB/c mice received simultaneous intradermal inoculations of Meth‐A tumor in the right (106 cells) and the left (2 × 105 cells) flanks and were then injected with PSK in the right tumor on the third day thereafter. The antitumor effect of intratumoral administration of PSK in the right tumor on days 3, 4 and 5 was compared with the effect of surgical resection of the right tumor on day 5. Three out of 8 mice given PSK intratumorally became tumor‐free whereas no mouse tumor‐free in the left flank was found among the surgically resected mice. As regards sinecomitant immunity, tumor inoculation into the right flank followed by intratumoral administration of PSK on days 3 and 5 and surgical excision of the primary tumor on day 6 resulted in complete rejection of a tumor challenge in the left flank on day 21. The combination of presurgical intratumoral injections of PSK (more than 2 times) and postoperative oral administration of PSK appeared to be most effective in eradicating secondary tumors. Isolated TILs (tumor‐infiltrating lymphocytes), obtained from the right tumor (treated with PSK) and the left tumor on day 10 in the double grafted tumor system were cultured in RPMI1640 with 10% fetal calf serum for 24 h. The culture supernatants were harvested and tested for the presence of chemotactic activity for neutrophils or macrophages. Significant neutrophil chemotactic factor (NCF) and macrophage chemotactic factor (MCF) activities were detected in the culture media from PSK‐treated TILs that had been cultured for 24 h. Neither significant neutrophil nor macrophage chemotactic activity was detected in the media from untreated TILs. NCF and MCF activities were also detected in the culture supernatant from PSK‐treated tumor tissue on day 6. PSK‐induced NCF in the murine tumor was neutralized by treatment with anti‐human IL‐8 IgG, and might be murine IL‐8‐like factor. Therefore, neutrophil and macrophage infiltrations of tumors following intratumoral injections of PSK are probably mediated by inductions of IL‐8‐like factor and MCF.
Keywords: Biological response modifier, Neutrophil chemotactic factor, Macrophage chemotactic factor, Antitumor effect, Interleukin‐8
Full Text
The Full Text of this article is available as a PDF (377.4 KB).
REFERENCES
- 1. ) Ebina , T. , Kohya , H. , Yamaguchi , T. and Ishida , N.Antimetastatic effect of biological response modifiers in the “double grafted tumor system ” Jpn. J. Cancer Res. , 77 , 1034 – 1042 ( 1986. ). [PubMed] [Google Scholar]
- 2. ) Ebina , T. and Kohya , H.Antitumor effector mechanism at a distant site in the double grafted tumor system of PSK, a protein‐bound polysaccharide preparation . Jpn. J. Cancer Res. , 79 , 957 – 964 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. ) Ebina , T. , Kohya , H. and Ishikawa , K.Antitumor effect of PSK: role of regional lymph nodes and enhancement of concomitant and sinecomitant immunity in the mouse . Jpn. J. Cancer Res. , 80 , 158 – 166 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. ) Ebina , T. and Ishikawa , K.Antitumor effect of interleukin‐1β in the double grafted tumor system . Jpn. J. Cancer Res. , 80 , 570 – 576 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. ) Kohya , H. , Ebina , T. , Yamaguchi , T. and Ishida , N.The “double grafted tumor system,” proposed to find effector cells in the analyses of antitumor effect of BRMs . Biotherapy , 1 , 139 – 151 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Mukaida , N. , Shiroo , M. and Matsushima , K.Genomic structure of the human monocyte‐derived neutrophil chemotactic factor IL‐8 . J. Immunol. , 143 , 1366 – 1371 ( 1989. ). [PubMed] [Google Scholar]
- 7. ) Furutani , Y. , Nomura , H. , Notake , M. , Oyamada , Y. , Fukui , T. , Yamada , M. , Larsen , C. G. , Oppenheim , J. J. and Matsushima , K.Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF) . Biochem. Biophys. Res. Commun. , 159 , 249 – 255 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Yoshimura , T. , Matsushima , K. , Tanaka , S. , Robinson , E. A. , Appella , E. , Oppenheim , J. J. and Leonard , E. J.Purification of a human monocyte‐derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines . Proc. Natl. Acad. Sci. USA , 84 , 9233 – 9237 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. ) Larsen , C. G. , Anderson , A. O. , Appella , E. , Oppenheim , J. J. and Matsushima , K.The neutrophil‐activating protein (NAP‐1) is also chemotactic for T lymphocytes . Science , 23 , 1464 – 1466 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Larsen , C. G. , Zachariae , C. D. , Oppenheim , J. J. and Matsushima , K.Production of monocyte chemotactic and activating factor (MCAF) by human dermal fibroblasts in response to interleukin‐1 or tumor necrosis factor . Biochem. Biophys. Res. Commun. , 160 , 1403 – 1408 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Yoshizuka , N. , Yoshimura , M. , Tsuchiya , S. , Okamoto , K. , Kobayashi , Y. and Osawa , T.Macrophage chemotactic factor (MCF) produced by a human T cell hybridoma clone . Cell. Immunol. , 123 , 212 – 225 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Yoshimura , T. , Yuhki , N. , Moore , S. K. , Appella , E. , Lerman , M. I. and Leonard , E. J.Human monocyte chemoattractant protein‐1 (MCP‐1), full‐length cDNA cloning, expression in mitogen‐stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE . FEBS Lett. , 244 , 487 – 493 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 13. ) Matsushima , K. , Morishita , K. , Yoshimura , T. , Lavu , S. , Kobayashi , Y. , Lew , W. , Appella , E. , Kung , H. F. , Leonard , E. J. and Oppenheim , J. J.Molecular cloning of a human monocyte‐derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor . J. Exp. Med. , 167 , 1883 – 1893 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. ) Larsen , C. G. , Anderson , A. O. , Oppenheim , J. J. and Matsushima , K.Production of interleukin‐8 by human dermal fibroblasts and keratinocytes in response to interleukin‐1 or tumor necrosis factor . Immunology , 68 , 31 – 36 ( 1989. ). [PMC free article] [PubMed] [Google Scholar]
- 15. ) Yoshimura , T. , Matsushima , K. , Oppenheim , J. J. and Leonard , E. J.Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)‐stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL‐1) . J. Immunol. , 189 , 788 – 793 ( 1987. ). [PubMed] [Google Scholar]
- 16. ) Matsushima , K. , Larsen , C. G. , Du Bois , G. C. and Oppenheim , J. J.Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line . J. Exp. Med. , 169 , 1485 – 1490 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. ) Benomar , A. , Ming , W. J. , Taraboletti , G. , Ghezzi , P. , Balotta , C. , Cianciolo , G. J. , Snyderman , R. , Dore , J. F. and Mantovani , A.Chemotactic factor and P15E‐related chemotaxis inhibitor in human melanoma cell lines with different macrophage content and tumorigenicity in nude mice . J. Immunol. , 138 , 2372 – 2379 ( 1987. ). [PubMed] [Google Scholar]
- 18. ) Wolpe , S. D. , Sherry , B. , Juers , D. , Davatelis , G. , Yurt , R. W. and Cerami , A.Identification and characterization of macrophage inflammatory protein 2 . Proc. Natl. Acad. Sci. USA , 86 , 612 – 616 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]