Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1990 Dec;81(12):1281–1285. doi: 10.1111/j.1349-7006.1990.tb02691.x

Inhibitory Effects of Acyclic Retinoid (Polyprenoic Acid) and Its Hydroxy Derivative on Cell Growth and on Secretion of α‐Fetoprotein in Human Hepatoma‐derived Cell Line (PLC/PRF/5)

Yasushi Fukutomi 1, Masahide Omori 2, Yasutoshi Muto 1,, Mitsuo Ninomiya 1, Masataka Okuno 1, Hisataka Moriwaki 1
PMCID: PMC5918005  PMID: 1703522

Abstract

Acyclic retinoid (polyprenoic acid) has a slightly different structure from retinoic acid. However, acyclic retinoid acts similarly to retinoic acid, because both bind to cellular retinoic acid‐binding protein and cellular retinoid‐binding protein, F‐type, with the same strong binding affinity. We studied the effects of acyclic retinoid, the 7‐hydroxy derivative of acyclic retinoid (7OH‐acyclic retinoid) and retinoic acid on a human hepatoma‐derived cell line PLC/PRF/5 (Alexander cells). Acyclic retinoid inhibited cell growth with an ID50 value of 14 μM, and reduced cell viability with an LD50 value of 86 μM. The ratios of LD50 value to ID50 value were 6.1 for acyclic retinoid, 2.4 for 7OH‐acyclic retinoid and 1.4 for all‐trans‐retinoic acid. Taking this ratio as a parameter of relative cytotoxicity, we concluded that acyclic retinoid is the least toxic compound. Growth inhibition of cells by acyclic retinoid was associated with the incorporation of 3H‐thymidine in the logarithmic phase. Acyclic retinoid reduced secretion of α‐fetoprotein (AFP) and reciprocally increased secretion of albumin in the culture media, suggesting that acyclic retinoid influences gene expression of these proteins. Thus, acyclic retinoid, one of the less toxic retinoids, inhibits cell growth of human cancer cell line PLC/PRF/5 and appears to alter gene expression of AFP and albumin toward a “normal’direction.

Keywords: Acyclic retinoid, Human hepatoma cell line (PLC/PRF/5), α‐Fetoprotein, Albumin

Full Text

The Full Text of this article is available as a PDF (282.0 KB).

REFERENCES

  • 1. ) Moon , R. C. and Itri , L. M.Retinoid and cancer . In “ The Retinoids ,” Vol. 2 , ed. Sporn M. B. , Roberts A. B. and Goodman D. S. , pp. 327 – 372 ( 1984. ). Academic Press; , New York . [Google Scholar]
  • 2. ) Muto , Y. and Moriwaki , H.Antitumor activities of vitamin A and its derivatives . J. Natl. Cancer Inst. , 73 , 1389 – 1393 ( 1984. ). [PubMed] [Google Scholar]
  • 3. ) Moriwaki , H. , Muto , Y. , Ninomiya , M. , Kawai , K. , Suzuki , Y. and Seto , T.Inhibitory effects of synthetic acidic retinoid and polyprenoic acid on the development of hepatoma in rats induced by 3′‐methyl‐N, N‐dimethyl‐4‐aminoazobenzene . Gastroenterol. Jpn. , 23 , 546 – 552 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Shima , H. , Kuniyasu , T. , Sugie , S. , Tanaka , T. , Mori , H. , Takahashi , M. and Muto , Y.Inhibitory effects of polyprenoic acid (E‐5166) on N‐2‐fluorenylacetamide‐initiated hepatocarcinogenesis in rats . Jpn. J. Cancer Res. , 77 , 351 – 355 ( 1986. ). [PubMed] [Google Scholar]
  • 5. ) Daoud , A. H. and Grrifin , A. C.Effect of retinoic acid, selenium, butylated hydroxytoluene and sorbic acid on azo‐dye hepatocarcinogenesis . Cancer Lett. , 9 , 299 – 304 ( 1980. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Morré , D. M. , Kloppel , T. M. , Rosenthal , A. L. and Fink , P. C.Chemoprevention of tumor development and metastasis of transplanted hepatocellular carcinomas in rats by vitamin A . J. Nutr. , 110 , 1629 – 1634 ( 1980. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Sasaki , K. , Kawasaki , S. , Okita , K. , Murakami , T. , Takemoto , T. and Takahashi , M.Inhibitory effects of polyprenoic acid (E5166) on production and secretion of α‐fetoprotein and on cell kinetics in human hepatoma cells . Jpn. J. Cancer Res. , 77 , 264 – 269 ( 1986. ). [PubMed] [Google Scholar]
  • 8. ) Muto , Y. , Moriwaki , H. and Omori , M.In vitro binding affinity of novel synthetic polyprenoids (polyprenoic acids) to cellular retinoid‐binding proteins . Gann , 72 , 974 – 977 ( 1981. ). [PubMed] [Google Scholar]
  • 9. ) Alexander , J. J. , Bey , E. M. , Geddes , E. W. and Lecatsas , G.Establishment of a continuously growing cell line from primary carcinoma of the liver . SA Med. J. , 18 , 2124 – 2128 ( 1976. ). [PubMed] [Google Scholar]
  • 10. ) Dollé , P. , Ruberte , E. , Kastner , P. , Petkovich , M. , Stoner , C. M. , Gudas , L. J. and Chambon , P.Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse . Nature , 342 , 702 – 705 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Takase , S. , Ong , D. E. and Chytil , F.Transfer of retinoic acid from its complex with cellular retinoic acid‐binding protein to the nucleus . Arch. Biochem. Biophys. , 247 , 328 – 334 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Ingram , R. S. , Scott , R. W. and Tilghman , S. M.α‐Fetoprotein and albumin genes are in tandem in the mouse genome . Proc. Natl. Acad. Sci. USA , 78 , 4694 – 4698 ( 1981. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. ) Watanabe , K. , Saito , A. and Tamaoki , T.Cell‐specific enhancer activity in a far upstream region of the human α‐fetoprotein gene . J. Biol. Chem. , 262 , 4812 – 4818 ( 1987. ). [PubMed] [Google Scholar]
  • 14. ) Panduro , A. , Shalaby , F. and Weiner , F. R.Transcriptional switch from albumin to α‐fetoprotein and changes in transcription of other genes during carbon tetrachloride induced liver regeneration . Biochemistry , 25 , 1414 – 1420 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Omori , M. and Chytil , F.Mechanism of vitamin A action: gene expression in retinol‐deficient rats . J. Biol. Chem. , 257 , 14370 – 14374 ( 1982. ). [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES