Abstract
Recombinant human interleukin‐lβ (IL‐lβ) Inhibited the growth of not only the right, but also the left non‐treated tumor in a double grafted tumor system. Since the antitumor activity of IL‐lβ against the right and left tumors was not seen in nude mice, lymphocytes have a key role in the antitumor effect of intratumoral administration of IL‐lβ. TIL (tumor‐infiltrating leukocytes) obtained from left and right side tumors treated with IL‐1β were examined by Winn assay for their antitumor activity against Meth‐A sarcoma in BALB/c mice. TIL from the right side clearly inhibited the growth of admixed Meth‐A cells, but control TIL did not. Spleen cells and right and left regional lymph node cells prepared from IL‐1‐treated mice were examined for Lyt‐1, Lyt‐2 and L3T4 phenotypes. The number of Lyt‐1‐positive lymphocytes increased in the spleen and in the right regional lymph nodes after intratumoral administration of IL‐1. Isolated tumor cells obtained from the right tumor treated with IL‐lβ and the left side tumor on day 6 were cultured in RPMI1640 with 10% fetal calf serum for 24 h. The culture supernatants were harvested and tested for the presence of chemotactic activity for neutrophils or macrophages. Significant neutrophil chemotactic factor and macrophage chemotactic factor activities were detected in the culture media from IL‐1‐treated tumor tissues cultured for 24 h. Neither significant neutrophil nor macrophage chemotactic activity was detected in the media from untreated tumor tissues. These results suggest that intratumoral administration of IL‐1 first induces neutrophils and macrophages in the right tumor, then Lyt‐1‐positive cells in the right regional lymph nodes and in the spleen, and subsequently induces macrophages in the left, non‐treated tumor.
Keywords: Interleukin‐1, Interleukin‐8, Monocyte chemotactic factor, Antitumor effect, Sinecomitant immunity
Full Text
The Full Text of this article is available as a PDF (458.1 KB).
REFERENCES
- 1. ) Dinarello , C. A.Interfeukin‐1 and its biologically related cytokines . Adv. Immunol. , 44 , 153 – 205 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Di Giovine , F. S. and Duff , G. W.Interleukin 1: the first interleukin . Immunol. Today , 11 , 13 – 20 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Ebina , T. and Ishikawa , K.Antitumor effect of interleukin‐ 1β in the double grafted tumor system . Jpn. J. Cancer Res. , 80 , 570 – 576 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. ) Kamogashira , T. , Masui , Y. , Ohmoto , Y. , Hirano , T. , Nagamura , K. , Mizuno , K. , Hong , Y. M. , Kikumoto , Y. , Nakai , S. and Hirai , Y.Site‐specific mutagenesis of the human interleukin‐1β gene: structure‐function analysis of the cysteine residues . Biochem. Biophys. Res. Commun. , 150 , 1106 – 1114 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Ebina , T. , Kohya , H. , Yamaguchi , T. and Ishida , N.Antimetastatic effect of biological response modifiers in the “double grafted tumor system.” Jpn. J. Cancer Res. , 77 , 1034 – 1042 ( 1986. ). [PubMed] [Google Scholar]
- 6. ) Ebina , T. and Kohya , H.Antitumor effector mechanism at a distant site in the double grafted tumor system of PSK, a protein‐bound polysaccharide preparation . Jpn. J. Cancer Res. , 79 , 957 – 964 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. ) Ebina , T. , Kohya , H. and Ishikawa , K.Antitumor effect of PSK: role of regional lymph nodes and enhancement of concomitant and sinecomitant immunity in the mouse . Jpn. J. Cancer Res. , 80 , 158 – 166 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. ) Ferry , B. L. , Planner , G. R. , Robins , R. A. , Lawry , J. and Baldwin , R. W.Phenotype of cytotoxic effector cells infiltrating a transplanted, chemically induced rat sarcoma . Immunology , 53 , 243 – 250 ( 1984. ). [PMC free article] [PubMed] [Google Scholar]
- 9. ) Winn , H. J.Immune mechanisms in homotransplantation. II. Quantitative assay of the immunologic activity of lymphoid cell stimulated tumor homografts . J. Immunol. , 86 , 228 – 239 ( 1961. ). [PubMed] [Google Scholar]
- 10. ) Fisher , B. and Fisher , E. R.The interrelationship of hematogenous and lymphatic tumor cell dissemination . Surg. Gynecol. Obstet. , 122 , 791 – 798 ( 1966. ). [PubMed] [Google Scholar]
- 11. ) Luger , T. A. , Charon , J. A. , Colot , M. , Micksche , M. and Oppenheim , J. J.Chemotactic properties of partially purified human epidermal cell‐derived thymocyte‐activating factor (ETAF) for polymorpho‐nuclear and mononuclear cells . J. Immunol. 131 , 816 – 820 ( 1983. ). [PubMed] [Google Scholar]
- 12. ) Sauder , D. N. , Mounessa , N. L. , Katz , S. I. , Dinerello , C. A. and Gallin , J. K.Chemotactic cytokines: the role of leukocytic pyrogen and epidermal cell thymocyte‐activating factor in neutrophill chemotaxis . J. Immunol. , 132 , 828 – 832 ( 1984. ). [PubMed] [Google Scholar]
- 13. ) Yoshimura , T. , Matsushima , K. , Oppenheim , J. J. and Leonard , E. J.Neutrophil Chemotactic factor produced by lipopolysaccharide (LPS)‐stimuIated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL‐1) . J. Immunol , 189 , 788 – 793 ( 1987. ). [PubMed] [Google Scholar]
- 14. ) Larsen , C. G. , Anderson , A. O. , Oppenheim , J. J. and Matsushima , K.Production of interleukin‐8 by human dermal fibroblasts and keratinocytes in response to interleukin‐1 or tumor necrosis factor . Immunology , 68 , 31 – 36 ( 1989. ). [PMC free article] [PubMed] [Google Scholar]
- 15. ) Schroder , J. M. , Sticherling , M. , Henneicke , H. H. , Preissner , W. C. and Christophers , E.IL‐lα or tumor necrosis factor‐α stimulate release of three NAP‐l/IL‐8‐related neutrophil chemotactic proteins in human dermal fibroblasts . J. Immunol , 144 , 2223 – 2232 ( 1990. ). [PubMed] [Google Scholar]
- 16. ) Thornton , A. J. , Stricter , R. M. , Lindley , L , Baggiolini , M. and Kunkel , S. L.Cytokine‐induced gene expression of a neutrophil chemotactic factor/IL‐8 in human hepatocytes . J. Immunol , 144 , 2609 – 2613 ( 1990. ). [PubMed] [Google Scholar]
- 17. ) Sica , A. , Wang , J. M. , Colotta , F. , Dejana , E. , Mantovani , A. , Oppenheim , J. J. , Larsen , C. G. , Zachariae , C. O. C. and Matsushima , K.Monocyte chemotactic and activating factor gene expression induced in endothelial cells by IL‐1 and tumor necrosis factor . J. Immunol , 144 , 3034 – 3038 ( 1990. ). [PubMed] [Google Scholar]
- 18. ) Matsushima , K. , Larsen , C. G. , Du Bois , G. C. and Oppenheim , J. J.Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line . J. Exp. Med. , 169 , 1485 – 1490 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. ) Benomar , A. , Ming , W. J. , Taraboletti , G. , Ghezzi , P. , Balotta , C. , Cianciolo , G. J. , Snyderman , R. , Dore , J. F. and Mantovani , A.Chemotactic factor and P15E‐related chemotaxis inhibitor in human melanoma cell lines with different macrophage content and tumorigenicity in nude mice . J. Immunol. , 138 , 2372 – 2379 ( 1987. ). [PubMed] [Google Scholar]
- 20. ) Wolpe , S. D. , Sherry , B. , Juers , D. , Davatelis , G. , Yurt , R. W. and Cerami , A.Identification and characterization of macrophage inflammatory protein 2 . Proc. Natl. Acad. Sci. USA , 86 , 612 – 616 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. ) Yoshimura , T. , Matsushima , K. , Tanaka , S. , Robinson , E. A. , Appella , E. , Oppenheim , J. J. and Leonard , E. J.Purification of a human monocyte‐derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines . Proc. Natl. Acad. Sci. USA , 84 , 9233 – 9237 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. ) Zachariae , C. O. C. , Anderson , A. O. , Thompson , H. L. , Appella , E. , Mantovani , A. , Oppenheim , J. J. and Matsushima , K.Properties of monocyte chemotactic and activating factor (MCAF) purified from a human fibro‐sarcoma cell line . J. Exp. Med. , 171 , 2177 – 2182 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]