Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1991 Apr;82(4):456–463. doi: 10.1111/j.1349-7006.1991.tb01870.x

Establishment of Mouse Lymphokine‐activated Killer Cell Clones and Their Properties

Kazunori Kato 1, Naoko Sato 1, Toshifumi Tanabe 1, Hideo Yagita 2, Toshinori Agatsutna 1, Yoshiyuki Hashimoto 1,
PMCID: PMC5918447  PMID: 1904425

Abstract

To assess the properties of lymphokine‐activated killer (LAK) cells, we established mouse LAK cell clones from LAK cell lines induced from C57BL/6 mouse spleen cells. Although these clones expressed similar phenotypes to the parent LAK cells, Lyt‐2 was expressed in a restricted portion of the clones. All clones were found to express T3 CD3 and T cell receptor (TcR) αβ on their cell surface. Rearrangement patterns of TcR were the same among the clones derived from the same parent cell line but differed in those from different cell lines as determined by using Cβ1 and Jβ probes. The molecules responsible for LAK‐target cell binding were examined by using a monoclonal antibody (mAb) against lymphocyte function associated antigen 1 (LFA‐1). This mAb (termed KBA) showed inhibitory effects on both LAK‐target cell binding and cytolytic activity of LAK cell clones, indicating a principal role of LFA‐1 in LAK cell clones. The magnitude of perform mRNA expression in LAK cell clones was unrelated to their cytolytic activities.

Keywords: Lymphokine‐activated killer cell clone, T cell receptor αβ, Lymphocyte function‐associated antigen 1, Perforin

Full Text

The Full Text of this article is available as a PDF (449.2 KB).

REFERENCES

  • 1. ) Grimm , E. A. , Mazumder , A. , Zhang , H. Z. and Rosenberg , S. A.Lymphokine‐activated killer cell phenomenon: lysis of natural killer resistant fresh solid tumor cells by interleukin 2‐activated autologous human peripheral blood lymphocytes . J. Exp. Med. , 155 , 1823 – 1841 ( 1982. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. ) Ortaldo , J. R. , Mason , A. and Overton , R.Lymphokine‐activated killer cells: analysis of progenitors and effectors . J. Exp. Med. , 164 , 1193 – 1205 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. ) Yang , J. C , Mulé , J. J. and Rosenberg , S. A.Murine lymphocyte‐activated killer (LAK) cells; phenotypic characterization of their precursor and effector cells . J. Immunol. , 137 , 715 – 722 ( 1986. ). [PubMed] [Google Scholar]
  • 4. ) Owen‐Schaub , L. B. , Abraham , S. R. and Hemstreet , G. P. , III.Phenotypic characterization of murine lymphokine‐activated killer cells . Cell. Immunol , 107 , 272 – 286 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Phillips , J. H. and Lanier , L. L.Dissection of the lymphokine‐activated killer phenomenon: relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis . J. Exp. Med. , 164 , 814 – 825 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. ) Tiden , A. B. , Itoh , K. and Balch , C. M.Human lymphokine‐activated killer (LAK) cells: identification of two types of effector cells . J. Immunol , 138 , 1068 – 1073 ( 1987. ). [PubMed] [Google Scholar]
  • 7. ) Nishimura , T. , Yagi , H. , Yagita , H. , Uchiyama , Y. and Hashimoto , Y.Lymphokine‐activated cell‐associated antigen involved in broad‐reactive killer cell‐mediated cytotoxicity . Cell Immunol. , 94 , 122 – 132 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Imai , K. , Kanno , M. , Kimoto , H. , Shigemoto , K. , Yamamoto , S. and Taniguchi , M.Sequence and expression of transcripts of the T‐cell antigen receptor a‐chain gene in a functional, antigen‐specific suppressor‐T‐cell hybridoma . Proc. Natl. Acad. Sci. USA , 83 , 8708 – 8712 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. ) Hedrick , S. M. , Nielsen , E. A. , Kavaler , J. , Cohen , D. I. and Davis , M. M.Sequence relationships between putative T‐cell receptor polypeptides and immunoglobulins . Nature , 308 , 153 – 158 ( 1984. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Iwamoto , A. , Rupp , F. , Ohashi , P. S. , Walker , C. L. , Pircher , H. , Joho , R. , Hengartner , H. and Mak , T. W.T cell‐specific genes in C57BL/10 mice: sequence and expression of new constant and variable region genes . J. Exp. Med. , 163 , 1203 – 1212 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. ) Chien , Y. , Iwashima , M. , Kaplan , K. B. , Elliott , J. F. and Davis , M. M.A new T‐cell receptor gene located within the alpha locus and expressed early in T‐cell differentiation . Nature , 327 , 677 – 682 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Shinkai , Y. , Takio , K. and Okumura , K.Homology of perforin to the ninth component of complement (C9) . Nature , 334 , 525 – 527 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Kronenberg , M. , Goverman , J. , Haars , R. , Malissen , M. , Kraig , E. , Phillips , L. , Delovitch , T. , Suciu‐Foca , N. and Hood , L.Rearrangement and transcription of the β‐chain genes of the T‐cell antigen receptor in different types of murine lymphocytes . Nature , 313 , 647 – 653 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Yagita , H. , Okumura , K. and Nakauchi , H.Molecular cloning of the murine homologue of CD2: homology of the molecule to its human counterpart T11 . J. Immunol. , 140 , 1321 – 1326 ( 1988. ). [PubMed] [Google Scholar]
  • 15. ) Hashimoto , Y. and Sudo , H.Evaluation of cell damage in immune reactions by release of radioactivity from 3H‐uridine labeled cells . Gann , 62 , 139 – 143 ( 1971. ). [PubMed] [Google Scholar]
  • 16. ) Rayner , A. A. , Grimmn , E. A. , Lotze , M. T. , Willson , D. J. and Rosenberg , S. A.Lymphokine‐activated killer (LAK) cell phenomemon. IV. Lysis by LAK cell clones of fresh human tumor cells from autologous and multiple allogeneic tumors . J. Natl Cancer Inst. , 75 , 67 – 75 ( 1985. ). [PubMed] [Google Scholar]
  • 17. ) Ferrini , S. , Moretta , L. , Pantaleo , G. and Moretta , A.Surface markers of human lymphokine‐activated killer cells and their precursors. Analysis at the population and clonal level . Int. J. Cancer , 39 , 18 – 24 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Ferrini , S. , Miescher , S. , Zocchi , M. R. , Von Fliedner , V. and Moretta , A.Phenotypic and functional characterization of recombinant interleukin 2 (rIL 2)‐induced activated killer cells: analysis at the population and clonal levels . J. Immunol. , 138 , 1297 – 1302 ( 1987. ). [PubMed] [Google Scholar]
  • 19. ) Hersey , P. and Bolhuis , R.'Nonspecific' MHC‐unrestricted killer cells and their receptors . Immunol. Today , 8 , 233 – 239 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Alarcon , B. , Vries , J. D. , Pettey , C. , Boylston , A. , Yssel , H. , Terhorst , C. and Spits , H.The T‐cell receptor chain‐CDS complex: implication in the cytotoxic activity of a CD3+ CD4 CD8 human natural killer clone . Proc. Natl. Acad. Sci. USA , 84 , 3861 – 3865 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. ) Phillips , J. H. , Weiss , A. , Gemlo , B. T. , Rayner , A. A. and Lanier , L.Evidence that the T cell antigen receptor may not be involved in cytotoxicity mediated by / and α/β thymic cell lines J. Exp. Med. , 166 , 1579 – 1584 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. ) Janeway , C. A. , Jones , B.Jr. and Hayday , A.Specificity and function of T cells bearing receptors . Immunol. Today , 9 , 73 – 76 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Colamonici , O. R. , Ang , S. , Quinones , R. , Henkart , P. , Heikkila , R. , Gress , R. , Felix , C. , Kirsch , L , Longo , D. , Marti , G. , Seidman , J. G. and Neckers , L. M , IL‐2‐dependent expansion of CD34 large granular lymphocytes expressing T cell receptor‐. Evidence for a functional receptor by anti‐CD3 activation of cytolysis . J. Immunol. , 140 , 2527 – 2533 ( 1988. ). [PubMed] [Google Scholar]
  • 24. ) Happ , M. P. , Kubo , R. T. , Palmer , E. , Born , W. K. and O'Brien , R. L.Limited receptor repertoire in a mycobacteria‐reactive subset of T lymphocytes . Nature , 342 , 696 – 698 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Goodman , T , and Lefrancois , L.Intraepithelial lymphocytes: anatomical site, not T cell receptor from, dictates phenotype and function . J. Exp. Med. , 170 , 1569 – 1581 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. ) Davgnon , D. , Martz , E. , Reynolds , T. , Kurzinger , K. and Springer , T. A.Lymphocyte function‐associated antigen 1 (LFA‐1): a surface antigen distinct from Lyt‐2,3 that participates in T lymphocyte‐mediated killing . Proc. Natl. Acad. Sci. USA , 78 , 4535 – 4539 ( 1981. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. ) Shaw , S. , Goldstein , G. , Springer , T. A. and Biddison , W. E.Susceptibility of cytotoxic T lymphocyte (CTL) clones to inhibition by anti‐T3 and anti‐T4 (but not anti‐LFA‐1) monoclonal antibodies varies with the “avidity” of CTL‐target interaction . J. Immunol. , 134 , 3019 – 3026 ( 1985. ). [PubMed] [Google Scholar]
  • 28. ) Shaw , S. , Ginther Luce , G. E. , Quinones , R. , Gress , R. E. , Springer , T. A. and Sanders , M. E.Two antigen‐independent adhesion pathways used by human cytotoxic T‐cell clones . Nature , 323 , 262 – 264 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Shaw , S. and Ginther Luce , G. E.The lymphocyte function‐associated antigen (LFA)‐l and CD2/LFA‐3 pathways of antigen‐independent human T cell adhesion . J. Immunol. , 139 , 1037 – 1045 ( 1987. ). [PubMed] [Google Scholar]
  • 30. ) Takayama , T. , Trenn , G. , Humphrey , W. , Jr. , Bluestone , J. A. , Henkart , P. A. and Sitkovsky , M. V.Antigen receptor‐triggered secretion of a trypsin‐type esterase from cytotoxic T lymphocytes . J. Immunol , 138 , 566 – 569 ( 1986. ). [PubMed] [Google Scholar]
  • 31. ) Zalman , L. S. , Brothers , M. A. , Chiu , F. J. and Müller‐Eberhard , H. J.Mechanism of cytotoxicity of human large granular lymphocytes: relationship of the cytotoxic lymphocyte protein to the ninth component (C9) of human complement . Proc. Natl. Acad. Scl USA , 83 , 5262 – 5266 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. ) Young , J. D. , Hengartner , H. , Podack , E. R. and Cohn , Z. A.Purification and characterization of a cytolytic pore‐forming protein from granules of cloned lymphocytes with natural killer activity . Cell , 44 , 849 – 859 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Tschopp , J. , Masson , D. and Stanley , K. K.Structural/functional similarity between proteins involved in complement‐ and cytotoxic T‐lymphocyte‐mediated cytolysis . Nature , 322 , 831 – 834 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Young , J. D. , Cohn , Z. A. and Podack , E. R.The ninth component of complement and the pore‐forming protein (perforin 1) from cytotoxic T cells: structural, immuno‐logical, and functional similarities . Science , 233 , 184 – 190 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Zanovello , P. , Rosato , A. , Bronte , V. , Cerundolo , V. , Treves , S. , Virgilio , F. D. , Pozzan , T. , Biasi , G. and Collavo , D.Interaction of lymphokine‐activated killer cells with susceptible targets does not induce second messenger generation and cytolytic granule exocytosis . J. Exp. Med. , 170 , 665 – 677 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES