Abstract
The levels of complement‐regulatory molecules (complement receptor type one [CR1], decay‐accelerating factor [DAF], membrane cofactor protein [MCP], and an inhibitor of membrane attack complex [CD59]) in lung cancer cells were analyzed to investigate the relation between their expression and histological subtypes, and the possibility of homologous complement deposition on cancer cells. In 25 cell lines (10 adenocarcinoma, 3 large‐cell carcinoma, 7 small‐cell lung cancer [SCLC], and 5 squamous cell carcinoma), flow cytometric analysis revealed that MCP was expressed in all cell lines, whereas none of the cell lines was CR1‐positive. CD59 was detected in all cells. The DAF epitope defined by IA10 was expressed in all cells except one large cell carcinoma cell line. However, another epitope for anti‐DAF monoclonal antibody, D17, was not detected in 5 (71.4%) SCLC and in 4 (22.2%) non‐small‐cell lung cancer. This disparity was seen in most cell lines, irrespective of histological subtypes. The loss of D17 reactivity seemed to be pertinent to malignant phenotype, because most of the normal pulmonary cells possessed the D17 epitope. Furthermore, a cell line lacking DAF (IA10−/D17−) allowed alternative pathway‐mediated homologous complement (C3) deposition after pretreatment with anti‐MCP antibody. This raises a new possibility for immuno‐targeting of cancer. These cell lines should be useful in studying the biology of lung cancer.
Keywords: Decay‐accelerating factor (DAF, CD55); Flow cytometry; Lung cancer; Monoclonal antibody
Full Text
The Full Text of this article is available as a PDF (493.1 KB).
REFERENCES
- 1. ) Parkin , D. M , Läärä , E. and Muir , C. S.Estimation of the worldwide frequency of sixteen major cancers in 1980 . Int. J. Cancer , 41 , 184 – 197 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Stanley , K. and Stjernsward , J.Lung cancer — a worldwide health problem . Chest , 96 , 1S – 5S ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Seifter , E. J. and Ihde , D. C.Small cell lung cancer: a distinct clinicopathologic entity . In “ Lung Cancer. A Comprehensive Treatise ,” ed. Bitran J. D. , Golomb H. M. , Little A. G. and Weichselbaum R. R. , pp. 257 – 279 ( 1988. ). Grune & Stratton; , Orlando . [Google Scholar]
- 4. ) Fraser , R. G. , Paré , J. A. P. , Paré , P. D. , Fraser , R. S. and Genereux , G. P.Neoplastic disease of the lung . In “ Diagnosis of Diseases of the Chest ,” 3rd Ed. , pp. 1327 – 1699 ( 1989. ). W. B. Saunders; , Philadelphia . [Google Scholar]
- 5. ) Tateishi , R. , Horai , T. and Hattori , S.Demonstration of argyrophil granules in small cell carcinoma of the lung . Virchows Arch. A. Pathol. Anat. Histol. , 377 , 203 – 210 ( 1978. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Gazdar , A. F. and Carney , D. N.Endocrine properties of small cell carcinoma of the lung . In “ The Endocrine Lung in Health and Disease ,” ed. Becker K. L. and Gazdar A. F. , pp. 501 – 508 ( 1984. ). W. B. Saunders; , Philadelphia . [Google Scholar]
- 7. ) Carney , D. N. , Marangos , P. J. , Ihde , D. C. , Bunn , P. A. , Jr. , Cohen , M. H. , Minna , J. D. and Gazdar , A. F.Serum neuron‐specific enolase: a marker for disease extent and response to therapy of small‐cell lung cancer . Lancet , i , 583 – 585 ( 1982. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Cheung , N‐K. V. , Walter , E. I. , Smith‐Mensah , W. H. , Ratnoff , W. D. , Tykocinski , M. L. and Medof , M. E.Decay‐accelerating factor protects human tumor cells from complement‐mediated cytotoxicity in vitro . J. Clin. Invest. , 81 , 1122 – 1128 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. ) Fearon , D. T.Regulation of the amplification of C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane . Proc. Natl. Acad. Sci. USA , 76 , 5867 – 5871 ( 1979. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. ) Nicholson‐Weller , A. , Burge , J. , Fearon , D. T. , Weller , P. F. and Austen , K. F.Isolation of a human erythrocyte membrane glycoprotein with decay‐accelerating activity for C3 convertases of the complement system . J. Immunol. , 129 , 184 – 189 ( 1982. ). [PubMed] [Google Scholar]
- 11. ) Seya , T. , Turner , J. R. and Atkinson , J. P.Purification and characterization of a membrane protein (gp45–70) that is a cofactor for cleavage of C3b and C4b . J. Exp. Med. , 163 , 837 – 855 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. ) Sugita , Y. , Nakano , Y. and Tomita , M.Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels . J. Biochem. , 104 , 633 – 637 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 13. ) Okada , N. , Harada , R. , Fujita , T. and Okada , H.A novel membrane glycoprotein capable of inhibiting membrane attack by homologous complement . Int. Immunol. , 1 , 205 – 208 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Matsumoto , T. , Terasaki , T. , Mukai , K. , Wada , M. , Okamoto , A. , Yokota , J. , Yamaguchi , K. , Kato , K. , Nagatsu , T. and Shimosato , Y.Relation between nucleolar size and growth characteristics in small cell lung cancer cell lines . Jpn. J. Cancer Res. , 82 , 820 – 828 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. ) Seya , T. , Kara , T. , Matsumoto , M. and Akedo , H.Quantitative analysis of membrane cofactor protein (MCP) of complement. High expression of MCP on human leukemia cell lines, which is down‐regulated during cell differentiation . J. Immunol. , 145 , 238 – 245 ( 1990. ). [PubMed] [Google Scholar]
- 16. ) Hara , T. , Kojima , A. , Fukuda , H. , Masaoka , T. , Fukumori , Y. , Matsumoto , M. and Seya , T.Levels of complement regulatory proteins, CD35 (CR1), CD46 (MCP) and CD55 (DAF) in human haematological malignancies . Br. J. Haematol. , 82 , 368 – 373 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Hara , T. , Matsumoto , M. , Fukumori , Y. , Miyagawa , S. , Hatanaka , M. , Kinoshita , T. , Seya , T. and Akedo , H.A monoclonal antibody against human decay‐accelerating factor (DAF, CD55), D17, which lacks the reactivity with semen DAF . Immunol, Lett. ( 1993. ), in press . [DOI] [PubMed] [Google Scholar]
- 18. ) Kinoshita , T. , Medof , M. E. , Silber , R. and Nussenzweig , V.Distribution of decay‐accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria . J. Exp. Med. , 162 , 75 – 92 ( 1985. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. ) Sugita , Y. , Choi , N. , Tobe , T. , Tomita , M. and Mazda , T.Some features of MACIF, a new regulatory protein of complement cascade . Proc. Jpn. Soc. Immunol. , 19264 ( 1989. ). [Google Scholar]
- 20. ) Seya , T. , Inoue , H. , Okada , M. , Matsumoto , M. , Kitamura , H. , Kinoshita , T. and Akedo , H.Proteolytic elimination of decay‐accelerating factor (DAF): lytic abnormality coincides with removal of DAF in papaintreated human erythrocytes . Mol. Immunol. , 27 , 69 – 78 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Matsumoto , M. , Seya , T. and Nagasawa , S.Polymorphism and proteolytic fragments of granulocyte membrane cofactor protein (MCP, CD46) of complement . Biochem. J. , 281 , 493 – 499 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. ) Ripoche , J. and Sim , R. B.Loss of complement receptor type 1 (CR1) on ageing of erythrocytes. Studies of proteolytic release of the receptor . Biochem. J. , 235 , 815 – 821 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. ) Sayama , K. , Shiraishi , S. , Shirakata , Y. , Kobayashi , Y. , Seya , T. and Miki , Y.Expression and characterization of membrane co‐factor protein (MCP) in human skin . J. Invest. Dermatol. , 97 , 722 – 724 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Seya , T. , Hara , T. , Matsumoto , M. , Sugita , Y. and Akedo , H.Complement‐mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46) . J. Exp. Med. , 172 , 1673 – 1680 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. ) Lublin , D. M. , Kinoshita , T. , Fujita , T. , Austee , D. J. and Rosse , W. F.Mapping of epitopes, glycosylation sites, and functional domains in human decay‐accelerating factor . Complement Inflammation , 8184 ( 1991. ). [PubMed] [Google Scholar]
- 26. ) Okada , H. , Tanaka , H. and Okada , N.Prevention of complement activation on the homologous cell membrane of nucleated cells as well as erythrocytes . Eur. J. Immunol. , 13 , 340 – 345 ( 1983. ). [DOI] [PubMed] [Google Scholar]
- 27. ) Lederman , M. M. , Purvis , S. F. , Walter , E. I. , Carey , J. T. and Medof , M. E.Heightened complement sensitivity of acquired immunodeficiency syndrome lymphocytes related to diminished expression of decay‐accelerating factor . Proc. Natl. Acad. Sci. USA , 86 , 4205 – 4209 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. ) Bryant , R. W. , Granzow , C. A. , Siegel , M. I. , Egan , R. W. and Morassium , B. M.Wheat germ agglutinin and other selected lectins increase synthesis of decay‐accelerating factor in human endothelial cells . J. Immunol , 147 , 1856 – 1861 ( 1991. ). [PubMed] [Google Scholar]