Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1994 Dec;85(12):1257–1262. doi: 10.1111/j.1349-7006.1994.tb02938.x

New Human Oral Squamous Carcinoma Cell Line and Its Tumorigenic Subline Producing Granulocyte Colony‐stimulating Factor

Kou Matsuo 1, Yukiko Ishibashi 1, Ieyoshi Kobayashi 1, Satoru Ozeki 2, Masamichi Ohishi 2, Tsuyoshi Tange 3, Jouji Hirata 4, Tamotsu Kiyoshima 1, Hidetaka Sakai 1,
PMCID: PMC5919384  PMID: 7531680

Abstract

A new human carcinoma cell line, MISK81‐5, was established from a metastatic lymph node of oral squamous cell carcinoma. Immunocytochemical and ultrastructural observations revealed an obvious epithelial origin of the cell line. Chromosome analysis revealed a hypertriploid karyotype with numerical and structural anomalies. MISK81‐5 cells could form a tumor mass in the subcutaneous tissue of recipient BALB/c athymic mice only when coinjected with Matrigel. A stem cell assay revealed that conditioned medium (CM) of MISK81‐5 contained granulocyte colony‐stimulating factor (G‐CSF) or interleukin‐6 activity. Quantitation by ELISA disclosed a higher concentration of G‐CSF in the CM of MISK81‐5 than in the CM of other squamous and gastric carcinoma cell lines. The sMISK, that was derived from MISK81‐5 as a subpopulation of the cell line having higher tumorigenicity, also showed a similar hematopoietic stimulating activity to that of MISK81‐5. These characteristics of the MISK81‐5 cell line and its subpopulation, sMISK will be useful for studying the biological behavior of oral squamous cell carcinomas and its relation to hematopoietic stimulating factors.

Keywords: Squamous cell carcinoma, Carcinoma cell line, Oral mucosa, Granulocyte colony‐stimulating factor, Tumorigenicity

Full Text

The Full Text of this article is available as a PDF (524.2 KB).

REFERENCES

  • 1. ) Berdel , W. E. , Danhauser‐Riedl , S. , Steinhauser , G. and Winton , E. F.Various human hematopoietic growth factors (interleukin‐3, GM‐CSF, G‐CSF) stimulate clonal growth of nonhematopoietic tumor cells . Blood , 73 , 80 – 83 ( 1989. ). [PubMed] [Google Scholar]
  • 2. ) Filderman , A. E. , Bruckner , A. , Kacinski , B. M. , Deng , N. and Remold , H. G.Macrophage colony‐stimulating factor (CSF‐1) enhances invasiveness in CSF‐1 receptor‐positive carcinoma cell lines . Cancer Res. , 52 , 3661 – 3666 ( 1992. ). [PubMed] [Google Scholar]
  • 3. ) Hamburger , A. W. , Lurie , K. A. and Condon , M. E.Stimulation of anchorage‐independent growth of human tumor cells by interleukin 1 . Cancer Res. , 47 , 5612 ( 1915. ). [PubMed] [Google Scholar]
  • 4. ) Tamm , I. , Cardinale , I. , Krueger , J. , Murphy , J. S. , May , L. T. and Sehgal , P. B.Interleukin 6 decreases cell‐cell association and increases motility of ductal breast carcinoma cells . J. Exp. Med. , 170 , 1649 – 1669 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. ) Segawa , K. , Ueno , Y. and Kataoka , T.In vivo tumor growth enhancement by granulocyte colony‐stimulating factor . Jpn. J. Cancer Res. , 82 , 440 – 447 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. ) Sato , N. , Asano , S. , Ueyama , Y. , Mori , M. , Okabe , T. , Kondo , Y. , Ohsawa , N. and Kosaka , K.Granulocytosis and colony‐stimulating activity (CSA) produced by a human squamous cell carcinoma . Cancer , 43 , 605 – 610 ( 1979. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Yanoma , S. , Watanabe , S. , Utakoji , T. , Kubota , A. , Tsukuda , M , and Sawaki , S.Role of cytokines produced by head and neck tumor cell lines in tumor metastasis . Proc. Jpn. Cancer Assoc., 50th Annu. Meet. , 208 ( 1991. ) ( in Japanese ).
  • 8. ) Hsu , S.‐M. , Raine , L. and Fanger , H.Use of avidin‐biotin‐peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody PAP procedures . J. Histochem. Cytochem. , 29 , 577 – 580 ( 1981. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Seabright , M.A rapid banding technique for human chromosomes . Lancet , 2 , 971 – 972 ( 1971. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) ISCN 1985. . “ An International System for Human Cytogenic Nomenclature, ” ed. Harnden D. G. and Klinger H. P. ( 1985 ), published in collaboration with Cytogenet. Cell Genet. , Karger, Basel . [Google Scholar]
  • 11. ) Nakahata , T. and Ogawa , M.Identification in culture of a class of hemopoietic colony‐forming units with extensive capability to self‐renew and generate multipotential hemopoietic colonies . Proc. Natl. Acad. Sci. USA , 79 , 3843 – 3847 ( 1982. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. ) Iscove , N. N. and Sieber , F.Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture . Exp. Hematol , 3 , 32 – 43 ( 1975. ). [PubMed] [Google Scholar]
  • 13. ) Matsuo , K. , Oda , H. , Fukushima , T. , Matsuoka , J. , Hashimoto , N. , Tadokoro , K. , Kohama , H. , Sato , M. , Jasmin , C. , Urano , Y. and Tange , T.Detection of burst‐promoting activity in spleens of myeloproliferative sarcoma virus‐infected mice using serum‐free cultures . Acta Pathol. Jpn. , 41 , 259 – 264 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Clark , S. C. and Kamen , R.The human hematopoietic colony‐stimulating factors . Science , 236 , 1229 – 1237 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Wong , G. G. , Witek‐Giannotti , J. S. , Temple , P. A. , Kriz , R. , Ferenz , C. , Hewick , R. M. , Clark , S. C. , Ikebuchi , K. and Ogawa , M.Stimulation of murine hemopoietic colony formation by human IL‐6 . J. Immunol. , 140 , 3040 – 3044 ( 1988. ). [PubMed] [Google Scholar]
  • 16. ) Suda , T. , Yamaguchi , Y. , Suda , J. , Miura , Y. , Okano , A. and Akiyama , Y.Effect of interleukin 6 (IL‐6) on the differentiation and proliferation of murine and human hemopoietic progenitors . Exp. Hematol , 16 , 891 – 895 ( 1988. ). [PubMed] [Google Scholar]
  • 17. ) Fridman , R. , Giaccone , G. , Kanemoto , T. , Martin , G. R. , Gazdar , A. F. and Mulshine , J. L.Reconstituted basement membrane (Matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines . Proc. Natl. Acad. Sci. USA , 87 , 6698 – 6702 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. ) Kleinman , H. K. , McGarvey , M. L. , Hassell , J. R. , Star , V. L. , Cannon , F. B. , Laurie , G. W. and Martin , G. R.Basement membrane complexes with biological activity . Biochemistry , 25 , 312 – 318 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Terranova , V. P. , Williams , J. E. , Liotta , L. A. and Martin , G. R.Modulation of the metastatic activity of melanoma cells by laminin and flbronectin . Science , 226 , 982 – 985 ( 1984. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Liotta , L. A. , Rao , C. N. and Wewer , U. M.Biochemical interactions of tumor cells with the basement membrane . Annu. Rev. Biochem. , 55 , 1037 – 1057 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Turpeenniemi‐Hujanen , T. , Thorgeirsson , U. P. , Rao , C. N. and Liotta , L. A.Laminin increases the release of type IV collagenase from malignant cells . J. Biol. Chem. , 261 , 1883 – 1889 ( 1986. ). [PubMed] [Google Scholar]
  • 22. ) Partridge , M. , Chantry , D. , Turner , M. and Feldman , M.Production of interleukin‐1 and interleukin‐6 by human keratinocytes and squamous cell carcinoma cell lines . J. Invest. Dermatol. , 96 , 771 – 776 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Danner , M. and Luger , T. A.Human keratinocytes and epidermoid carcinoma cell lines produce a cytokine with interleukin 3‐like activity . J. Invest. Dermatol , 88 , 353 – 361 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Matsuguchi , T. , Okamura , S. , Kawasaki , C. , Shimoda , K. , Omori , F. , Hayashi , S. , Kimura , N. and Niho , Y.Constitutive production of granulocyte colony‐stimulating factor and interleuldn‐6 by a human lung cancer cell line, KSNY: gene amplification and increased mRNA stability . Eur. J. Haematol , 47 , 128 – 133 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Nishizawa , M. , Tsuchiya , M. , Watanabe‐Fukunaga , R. and Nagata , S.Multiple elements in the promoter of granulocyte colony‐stimulating factor gene regulate its constitutive expression in human caricnoma cells . J. Biol. Chem. , 265 , 5897 – 5902 ( 1990. ). [PubMed] [Google Scholar]
  • 26. ) Kanda , N. , Fukushige , S.‐L , Murotsu , T. , Yoshida , M. C. , Tsuchiya , M. , Asano , S. , Kaziro , Y. and Nagata , S.Human gene coding for granulocyte colony‐stimulating factor is assigned to the q21‐q22 region of chromosome 17 . Somatic Cell Mol Genet. , 13 , 679 – 684 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Segawa , K. , Ueno , Y. and Kataoka , T.Growth enhancement of solid tumors by G‐CSF administration , clin. Immunol. , 24 , 295 – 301 ( 1992. ) ( in Japanese ). [Google Scholar]
  • 28. ) Ishikawa , M. , Koga , Y. , Hosokawa , M. and Kobayashi , H.Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis . Int. J. Cancer , 37 , 919 – 924 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Kariya , Y. , Taga , T. and Uchida , A.Suppression of NK cell activity by recombinant human granulocyte colony stimulating factor (G‐CSF) . Clin. Immunol , 25 , 1112 – 1117 ( 1993. ) ( in Japanese ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Welch , D. R. , Schissel , D. J. , Howrey , R. P. and Aeed , P. A.Tumor‐elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells . Proc. Natl. Acad. Sci. USA , 86 , 5859 – 5863 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. ) Colombo , M. P. , Ferrari , G. , Stoppacciaro , A. , Parenza , M. , Rodolfo , M. , Mavilio , F. and Parmiani , G.Granulocyte colony‐Stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo . J. Exp. Med. , 173 , 889 – 897 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES