Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1994 Dec;85(12):1288–1297. doi: 10.1111/j.1349-7006.1994.tb02942.x

Synergistic Antimetastatic Effects of Lentinan and Interleukin 2 with Pre‐ and Post‐operative Treatments

Junji Hamuro 1, Fumihiko Takatsuki 1, Tetsuya Suga 1, Tomoko Kikuchi 1,, Manabu Suzuki 1
PMCID: PMC5919389  PMID: 7852191

Abstract

The antimetastatic activity of a combination of lentinan and interleukin 2 (IL‐2) was evaluated against spontaneously metastatic 3‐methylcholanthrene‐induced DBA/2.MC.CS.T fibrosarcoma. Although pre‐operative treatment with either IL‐2 or lentinan alone exerted little effect on the reduction of lung metastasis colony numbers (7.1% or 28.4% reduction, respectively), the combination exhibited a synergistic effect (85% reduction). Furthermore, 3 of 13 mice given the pre‐operative combination treatment achieved complete cure, while no mice given saline did. Although the post‐operative combination treatment also reduced the colony number (71% reduction), it caused little prolongation of survival and no mouse achieved complete cure. Synergistic effects were observed between pre‐ and post‐operative treatments with lentinan and IL‐2: 8 of 12 mice were completely cured. The anti‐metastatic activity was abolished in mice treated simultaneously with antibodies to CD4 and CDS antigens, whereas either CD4, CDS, or NK1.1 antibody alone was ineffective. Analysis of the cellular mechanism involved in the antimetastatic activity revealed the involvement of a tumor‐associated antigen‐specific delayed‐type hypersensitivity response. These data suggest that the life‐prolonging effect of the combination of lentinan and IL‐2 is mediated by antigen‐specific T cells and that the combination of pre‐ and post‐operative therapy with lentinan and IL‐2 may be effective to prevent cancer recurrence and metastasis after surgical resection.

Keywords: Lentinan, IL‐2, Antitumor effect, Metastasis, Delayed‐type hypersensitivity

Full Text

The Full Text of this article is available as a PDF (659.5 KB).

REFERENCES

  • 1. ) Rosenberg , S. A.Immunotherapy of cancer using interleukin 2: current status and future prospects . Immunol. Today , 9 , 58 – 62 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Negrier , S. , Philip , T. , Stoter , G. , Fossa , S. D. , Janssen , S. , Iacone , A. , Cleton , F. S. , Eremin , O. , Israel , L. , Jasmin , C. , Rugarli , C. , Masse , H. V. D. , Thatcher , N. , Symann , M. , Bartsch , H. H. , Bergmann , L. , Bijman , J. T. , Palmer , P. A. and Franks , C. R.Interleukin‐2 with or without LAK cells in metastatic renal cell carcinoma: a report of a European multicenter study . Ear. J. Cancer Clin. Oncol. , 25 , S21 – S28 ( 1989. ). [PubMed] [Google Scholar]
  • 3. ) Kedar , E. and Klein , E.Cancer immunotherapy: Are the results discouraging? Can they be improved ? Adv. Cancer Res. , 59 , 245 – 322 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Old , L. C.Cancer immunology . Sci. Am. , 237 , 62 – 79 ( 1977. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Dye , E. S. and North , R. J.T cell‐mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases . J. Exp. Med. , 154 , 1033 – 1041 ( 1981. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. ) Hamuro , J. , Suzuki , M. and Kikuchi , T.Effects of lentinan on tumor progression and its roles in chemoitnmunomodulation . Biotherapy , 7 , 222 – 223 ( 1993. ) ( in Japanese ). [Google Scholar]
  • 7. ) Chihara , G.Recent progress in immunopharmacology and therapeutic effects of polysaccharides . Dev. Biol Stand. , 77 , 191 – 197 ( 1992. ). [PubMed] [Google Scholar]
  • 8. ) Moller , J. I.IL‐2: receptors and genes . Immunol. Rev. , 92 ( 1986. ). [PubMed] [Google Scholar]
  • 9. ) Smith , K. A.Interleukin‐2: inception, impact, and implications . Science , 240 , 1169 – 1176 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Wang , J. , Walle , A. , Gordon , B. , Novogrodsky , A. , Suthanthiran , M. , Rubin , A. , Morrison , H. , Silver , R. T. and Stenzel , K. H.Adoptive immunotherapy for stage IV renal cell carcinoma: a novel protocol utilizing periodate and interleukin‐2‐activated autologous leukocytes and continuous infusions of low‐dose interleukin‐2 . Am. J. Med. , 83 , 1016 – 1023 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Rosenberg , S. A. , Packard , B. S. , Aebersold , P. M. , Solomon , D. , Topalian , S. L. , Toy , S. T. , Simon , P. , Lotze , M. T. , Yang , J. C. , Seipp , C. A. and White , D. E.Use of tumor‐infiltrating lymphocytes and interleukin‐2 in the immunotherapy of patients with metastatic melanoma . N. Engl J. Med. , 319 , 1676 – 1680 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Masuzawa , M. , Higashi , K. , Nishioka , K. and Nishiyama , S.Successful immunotherapy for malignant hemangioendothelioma using recombinant interleukin‐2 . Jpn. J. Dermatol. , 98 , 367 – 369 ( 1988. ) ( in Japanese ). [PubMed] [Google Scholar]
  • 13. ) Hamuro , J. and Chihara , G.Lentinan, a T‐cell‐oriented immunopotentiator: its experimental and clinical application and possible mechanism of immune modulation . In “ Immune Modulation Agents and Their Mechanisms, ” ed. Feniche R. L. , pp. 409 – 435 ( 1985. ). Marcel Dekker Inc. , New York . [Google Scholar]
  • 14. ) Herbermen , R. B. and Nunn‐Hargrove , M. E.Augmentation of natural killer (NK) cell activity be lentinan . In “ Manipulation of Host Defense Mechanisms, ” ed. Aoki T. , pp. 188 – 193 ( 1981. ). Excerpta Medica; , Amsterdam . [Google Scholar]
  • 15. ) Suzuki , M. , Higuchi , S. , Taki , Y. , Taki , S. , Miwa , K. and Hamuro , J.Induction of endogenous lymphokineactivated killer activity by combined administration of lentinan and interleukin 2 , Int. J. Immunopharm. , 12 , 613 – 619 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Suzuki , M. , Kikuchi , T. , Takatsuki , F. and Hamuro , J.Curative effects of combination therapy with lentinan and interleukin‐2 against established murine tumors, and the role of CDS‐positive T cells . Cancer Immunol. Immunother. , 38 , 1 – 8 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. ) Suga , T. , Shiio , T. , Maeda , Y. Y. and Chihara , G.Antitumor activity of lentinan in murine syngeneic and autochthonous host and its suppressive effect on 3‐methylcholanthrene‐induced carcinogenesis . Cancer Res. , 44 , 5131 – 5137 ( 1984. ). [PubMed] [Google Scholar]
  • 18. ) Satoh , T. , Matsui , H. , Shibahara , S. , Kobayashi , T. , Morinaga , Y. , Kashima , N. , Yamasaki , S. , Hamuro , J. and Taniguchi , T.New approaches for the high‐level expression of human interleukin‐2 cDNA in Escherickia coli . J. Biochem. , 101 , 525 – 534 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Dialynas , D. P. , Quan , Z. S. , Wall , K. A. , Pires , A. , Quintous , J. , Loken , M. R. , Pierres , M. and Fitch , F. W.Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody OKI.5: similarity of L3T4 to the human Leu3/T4 molecule . J. Immunol. , 131 , 2445 – 2451 ( 1983. ). [PubMed] [Google Scholar]
  • 20. ) Nakayama , E. and Uenaka , A.Effects of in vivo administration of Lyt phenotype of T cells in lymphoid tissues and blocking of tumor rejection . J. Exp. Med. , 161 , 345 – 355 ( 1985. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. ) Koo , G. C. , Dumont , F. J. , Tutt , M. , Hackett , J. and Kumar , V.The NK1.1(‐) mouse: a model to study differentiation of murine NK cells . J. Immunol. , 137 , 3742 – 3747 ( 1986. ). [PubMed] [Google Scholar]
  • 22. ) Suzuki , M. , Iwashiro , M. , Takatsuki , P. , Kuribayashi , K. and Hamuro , J.Reconstitution of anti‐tumor effects of lentinan in nude mice: roles of delayed‐type hypersensi‐tivity reaction triggered by CD4‐positive T cell clone in the infiltration of effector cells into tumor . Jpn. J. Cancer Res. , 85 , 409 – 417 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. ) Brunda , M. J. , Bellantori , D. and Sulich , V.In vivo anti‐tumor activity of combinations of interferon alpha and interleukin‐2 in a murine model. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells . Int. J. Cancer , 40 , 365 – 371 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) McIntosh , J. K. , Mule , J. J. , Krosnick , J. A. and Rosenberg , S. A.Combination cytokine immunotherapy with tumor necrosis factor a, interleukin‐2, α‐interferon and its synergistic antitumor effects in mice . Cancer Res. , 49 , 1408 – 1414 ( 1989. ). [PubMed] [Google Scholar]
  • 25. ) Coli , V. , Gabriele , L. , Sestili , P. , Varano , F. , Proietti , E. , Gresser , I. , Testa , U. , Montesoro , E. , Bulgarini , D. , Mariani , G. , Peschle , C. and Belardelli , F.Combined interleukin 1/interleukin 2 therapy of mice injected with highly metastatic Friend leukemia cells: host antitumor mechanisms and marked effects on established metastases . J. Exp. Med. , 173 , 313 – 322 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. ) Yamasaki , K. , Sone , S. , Yamashita , T. and Ogura , T.Synergistic induction of lymphokine (IL‐2)‐activated killer activity by IL‐2 and the polysaccharide lentinan, and therapy of spontaneous pulmonary metastases . Cancer Immunol. Immunother. , 29 , 87 – 92 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. ) Fujiwara , H. , Fukuzawa , M. , Yoshioka , T. , Nakajima , H. and Hamaoka , T.The role of tumor‐specific Lyt‐l+2 T cells in eradicating tumor cells in vivo. I. Lyt‐l+2 T cells do not necessarily require recruitment of host's cytotoxic T cell precursors for implementation of in vivo immunity . J. Immunol. , 133 , 1671 – 1676 ( 1984. ). [PubMed] [Google Scholar]
  • 28. ) Hamaoka , T. and Fujiwara , H.Phenotypically and functionally distinct T‐cell subsets in anti‐tumor responses . Immunol. Today , 8 , 267 – 269 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Mossman , T. R. and Coffmann , R. L.Th 1 and Th 2 cells: different patterns of lymphokine secretion lead to different functional properties . Ann. Rev. Immunol. , 7 , 1529 – 1535 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Zinkernagel , R. M.H‐2 restriction of virus‐specific T‐cell‐mediated effector functions in vivo. II Adoptive transfer of delayed‐type hypersensitivity to murine lymphocytic choriomeningitis virus is restricted by the K and D region of H‐2 . J. Exp. Med. , 144 , 776 – 787 ( 1976. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. ) Askenase , P. W. , Bursztajn , S. , Gershon , M. D. and Gershon , R. K.T cell‐dependent mast cell degranulation and release of serotonin in murine delayed‐type hypersensitivity . J. Exp. Med. , 152 , 1358 – 1374 ( 1980. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. ) Meada , Y. , Watanabe , T. , Chihara , G. and Rokutanda , M.T‐cell mediated vascular dilatation and hemorrhage induced by antitumor polysaccharides . Int. J. Immunopharm. , 6 , 493 – 501 ( 1984. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Yoshimoto , R. , Kashima , N. , Okada , K. , Amikura , K. and Harauro , J.Recombinant interleukin 2 differentiated alloantigen‐primed Lyt2 + T cells into the activated cytotoxic state . Eur. J. Immunol. , 15 , 325 – 331 ( 1985. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES