Abstract
KW‐2189 has been selected as a lead compound for clinical trial among duocarmycin derivatives with structural similarity to CC‐1065, a cyclopropylpyrroloindole. The purpose of this study was to examine the DNA‐binding potency and the mechanisms of cytotoxicity of KW‐2189. In order to analyze DNA‐binding activity of KW‐2189, plasmid pBR322 was treated with KW‐2189 with or without pretreatment with carboxyl esterase, which we demonstrated to be an activating enzyme, and the products were examined by agarose gel electrophoresis and restriction enzyme analysis. Cytotoxic activity was examined by exposing a human small cell lung cancer cell line, NCI‐H69 to KW‐2189 with or without carboxyl esterase. Alkaline elution was performed to examine whether KW‐2189 induces DNA strand breaks. DNA treated with KW‐2189 and carboxyl esterase migrated faster than KW‐2189‐treated DNA, which migrated at the same rate as untreated DNA. In addition DNA treated with esterase‐activated KW‐2189 was protected from digestion by some restriction enzymes. KW‐2189 showed concentration‐ and time‐dependent growth inhibitory effect with IC50 values (drug concentration required for 50% growth inhibition) of 58 nM (96 h) to 1900 nM (1 h) in H69 cells. The IC50 values of 4‐h exposure of H69 to KW‐2189 with 0, 26, 130, 650 mU/ml carboxyl esterase were 460, 120, 30, and 7 nM, respectively. Time‐dependent enhancement of cytotoxicity by carboxyl esterase was also observed. KW‐2189 induced DNA strand breaks in H69 cells in a concentration‐dependent manner around the IC50 value. We conclude that 1) KW‐2189 is activated by carboxyl esterase to its active form(s), 2) activated KW‐2189 has a stronger DNA‐binding activity and cytotoxicity than KW‐2189, 3) DNA cleavage is one of the major mechanisms of KW‐2189‐mediated cytotoxicity.
Keywords: KW‐2189, Cytotoxicity, DNA strand break, Carboxyl esterase, Drug activation
Full Text
The Full Text of this article is available as a PDF (453.2 KB).
REFERENCES
- 1. ) Hsiang , Y.‐H. , Hertzberg , R. , Hecht , S. and Liu , L. F.Camptothecin induces protein‐linked DNA breaks via mammalian DNA topoisomerase I . J. Biolog. Chem. , 27 , 14873 – 14878 ( 1985. ). [PubMed] [Google Scholar]
- 2. ) Hsiang , Y.‐H. and Liu , L. F.Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin . Cancer Res. , 48 , 1722 – 1726 ( 1988. ). [PubMed] [Google Scholar]
- 3. ) Kawato , Y. , Aonuma , M. , Hirota , Y. , Kuga , H. and Sato , K.Intracellular roles of SN‐38, a metabolite of the camptothecin derivative CPT‐11, in the antitumor effect of CPT‐11 . Cancer Res. , 51 , 4187 – 4191 ( 1991. ). [PubMed] [Google Scholar]
- 4. ) Masuda , N. , Fukuoka , M. , Kusunoki , Y. , Matsui , K. , Takifuji , N. , Kudoh , S. , Negoro , S. , Nishioka , M. , Nakagawa , K. and Takada , M.CPT‐11: a new derivative of camptothecin for the treatment of refractory or relapsed small‐cell lung cancer . J. Clin. Oncol. , 10 , 1225 – 1229 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Shimada , Y. , Yoshino , M. , Wakui , A. , Nakao , I. , Futatsuki , K. , Sakata , Y. , Kambe , M. and Taguchi , T.Phase II study of CPT‐11, new camptothecin derivative, in the patients with metastatic colorectal cancer . Proc. Am. Soc. Clin. Oncol. , 10 , 135 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Yamashita , Y. , Fujii , N. , Murakata , C. , Ashizawa , T. , Okabe , M. and Nakano , H.Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives . Biochemistry , 31 , 12069 – 12075 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 7. ) Schiff , P. B. , Fant , J. and Horwitz , S. B.Promotion of microtubule assembly in vitro by taxol . Nature , 227 , 665 – 667 ( 1979. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Tsuruo , T. , Oh‐hara , T. , Iida , H. , Tsukagoshi , S. , Sato , Z. , Matsuda , I. , Iwasaki , S. , Okuda , S. , Shimizu , F. and Sasagawa , K.Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine‐resistant sublines . Cancer Res. , 46 , 381 – 385 ( 1986. ). [PubMed] [Google Scholar]
- 9. ) Li , L. H. , Swenson , D. H. , Schpok , S. L. F. , Kuentzel , S. L. , Dayton , B. D. and Krueger , W. C.CC‐1065 (NSC 298223), a novel antitumor agent that interacts strongly with double‐stranded DNA . Cancer Res. , 42 , 999 – 1004 ( 1982. ). [PubMed] [Google Scholar]
- 10. ) Hanka , L. J. , Dietz , A. , Gerpheide , S. A. , Kuentzel , S. L. and Martin , D. G.CC‐1065 (NSC‐298223), a new antitumor antibiotic . J. Antibiot. , 31 , 1211 – 1217 ( 1978. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Adams , E. G. , Badiner , G. J. and Bhuyan , B. K.Effects of U‐71,184 and several other CC‐1065 analogues on cell survival and cell cycle of Chinese hamster ovary cells . Cancer Res. , 48 , 109 – 116 ( 1988. ). [PubMed] [Google Scholar]
- 12. ) Lee , C.‐S. and Gibson , N. W.DNA damage and differential cytotoxicity produced in human carcinoma cells by CC‐1065 analogues, U‐73,975 and U‐77,779 . Cancer Res. , 51 , 6586 – 6591 ( 1991. ). [PubMed] [Google Scholar]
- 13. ) Li , L. H. , Kelly , R. C. , Warpehoski , M. A. , McGovren , J. P. , Gebhard , I. and DeKoning , T. F.Adozelesin, a selected lead among cyclopropylpyrroloindole analogues of the DNA‐binding antibiotic, CC‐1065 . Invest. New Drugs , 9 , 137 – 148 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Li , L. H. , DeKoning , T. F. , Kelly , R. C. , Krueger , W. C. , McGovren , J. P. , Padbury , G. E. , Petzold , G. L. , Wallace , T. L. , Ouding , R. J. , Prairie , M. D. and Gebhard , I.Cytotoxicity and antitumor activity of Carzelesin, a prodrug cyclopropylpyrroloindole analogue . Cancer Res. , 52 , 4904 – 4913 ( 1992. ). [PubMed] [Google Scholar]
- 15. ) Bogger , D. L. , Ishizaki , T. and Zarrinmayeh , H.Synthesis and preliminary evaluation of agents incorporating the pharmacophore of the duocarmycin/pyrindamycin alkylation subunit: identification of the CC‐1065/duocarmycin common pharmacophore . J. Org. Chem. , 55 , 4499 – 4502 ( 1990. ). [Google Scholar]
- 16. ) Gomi , K. , Kobayashi , E. , Miyoshi , K. , Ashizawa , T. , Okamoto , A. , Ogawa , T. , Katsumata , S. , Mihara , A. , Okabe , M. and Hirata , T.Anticellular and antitumor activity of duocarmycins, novel antitumor antibiotics . Jpn. J. Cancer Res. , 83 , 113 – 120 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. ) Ogasawara , H. , Nishio , K. , Ohmori , T. , Takeda , Y. , Kubota , N. , Funayama , Y. , Ohira , T. , Ohta , S. , Isogai , Y. and Saijo , N.Mechanisms of cytotoxicity induced by a new anticancer drug KW‐2189 . Proc. Am. Assoc. Cancer Res. , 34 , 370 ( 1993. ). [Google Scholar]
- 18. ) Gomi , K. , Kobayashi , E. , Okabe , M. , Nagamura , S. and Saito , H.Antitumor activity of KW‐2189, a duocarmycin derivative, against human tumors inoculated into nude mice . Proc. Am. Assoc. Cancer Res. , 34 , 372 ( 1993. ). [Google Scholar]
- 19. ) Swenson , D. H. , Li , L. H. , Hurley , L. H. , Rokem , J. S. , Petzold , G. L. , Dayton , B. D. , Wallace , T. L. , Lin , A. H. and Krueger , W. C.Mechanism of interaction of CC‐1065 (NSC 298223) with DNA . Cancer Res. , 42 , 2821 – 2828 ( 1982. ). [PubMed] [Google Scholar]
- 20. ) Mosmann , T.Rapid calorimetric assay for cellular growth and survival: application of proliferation and cytotoxicity assay . J. Immunol. Methods. , 65 , 438 – 442 ( 1983. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Kohn , K. W. , Ewig , R. A. G. , Erickson , L. C. and Zwelling , L. A.Measurement of strand breaks and cross links by alkaline elution . In “ DNA Repair: A Laboratory Manual of Research Procedures ,” ed. Friedberg E. C. and Hanawalt P. C. , pp. 379 – 401 ( 1981. ). Marcel Dekker; , New York . [Google Scholar]
- 22. ) Hurley , L. H. and Reynolds , V. L.Reaction of the antitumor antibiotic CC‐1065 with DNA: structure of a DNA adduct with DNA sequence specificity . Science , 226 , 843 – 845 ( 1984. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Needham‐VanDevanter , D. R. and Hurley , L. H.Construction and characterization of a site‐directed CC‐1065‐N3‐adenine adduct within a 117 base pair DNA restriction fragment . Biochemistry , 25 , 8430 – 8436 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Sun , D. and Hurley , L. H.Effect of the (+)‐CC‐1065‐(N3‐adenine)DNA adduct on in vitro DNA synthesis mediated by Escherichia coli DNA polymerase . Biochemistry , 31 , 2823 – 2829 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Maine , I. P. , Sun , D. , Hurley , L. H. and Kodadek , T.The antitumor agent CC‐1065 inhibits helicase‐catalyzed unwinding of duplex DNA . Biochemistry , 31 , 3968 – 3975 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Reynold , V. L. , Molineux , I. J. , Kaplan , D. J. , Swenson , D. H. and Hurley , L. H.Reaction of the antitumor antibiotic CC‐1065 with DNA. Location of the site of thermally induced strand breakage and analysis of DNA sequence specificity . Biochemistry , 24 , 6228 – 6237 ( 1985. ). [DOI] [PubMed] [Google Scholar]