Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1994 Jul;85(7):744–749. doi: 10.1111/j.1349-7006.1994.tb02423.x

Dual Function of Macrophage Galactose/N‐Acetylgalactosamine‐specific Lectins: Glycoprotein Uptake and Tumoricidal Cellular Recognition

Kyoko Kawakami 1, Kazuo Yamamoto 1, Satoshi Toyoshima 1,, Toshiaki Osawa 1,, Tatsuro Irimura 1,
PMCID: PMC5919541  PMID: 8071116

Abstract

We investigated whether the interaction of peritoneal macrophages with extracellular ligands is mediated by C‐type lectins specific for galactose and N‐acetylgalactosamine. The carbohydrate‐binding domain of mouse galactose/N‐acetylgalactosamine‐specific lectin was prepared in a recombinant form. The purified recombinant lectins were tested for competitive inhibition against glycoprotein uptake and against tumoricidal effect. Thioglycolate‐elicited macrophages internalized galactosylated bovine serum albumin in vitro. The internalization was blocked by recombinant macrophage lectins. Activated macrophages obtained after intraperitoneal injection of a nonspecific immune potentiator, OK432, did not internalize galactosylated bovine serum albumin. These cells elicited a cytotoxic effect against P815 murine mastocytoma cells, and the effect was blocked by recombinant macrophage lectins. These results indicated that galactose/N‐acetylgalactosamine‐specific C‐type lectins expressed on the surface of inflammatory macrophages and on activated tumoricidal macrophages mediate two distinct functions, i.e. glycoprotein uptake and tumoricidal effector mechanisms.

Keywords: Macrophage, Lectin, Cellular recognition, Tumoricidal function

Full Text

The Full Text of this article is available as a PDF (413.7 KB).

REFERENCES

  • 1. ) Oda , S. , Sato , M. , Toyoshima , S. and Osawa , T.Purification and characterization of lectin‐like molecule specific for galactose/N‐acetylgalactosamine from tumoricidal macrophages . J. Biochem. , 104 , 600 – 605 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Oda , S. , Sato , M. , Toyoshima , S. and Osawa , T.Binding of activated macrophages to tumor cells through a macrophage lectin and its role in macrophage tumoricidal activity . J. Biochem. , 105 , 1040 – 1043 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Drickamer , K.Two distinct classes of carbohydrate‐recognition domains in animal lectins . J. Biol. Chem. , 263 , 9557 – 9560 ( 1988. ). [PubMed] [Google Scholar]
  • 4. ) Sato , M. , Kawakami , K. , Osawa , T. and Toyoshima , S.Molecular cloning and expression of cDNA encoding a galactose/N‐acetylgalactosamine‐specific lectin on mouse tumoricidal macrophages . J. Biochem. , 111 , 331 – 336 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Halberg , D. F. , Wager , R. E. , Farrell , D. C. , Hildreth , J. , Quesenberry , M. S. , Loab , J. A. E. , Holland , C. and Drickamer , K.Major and minor forms of the rat liver asialoglycoprotein receptor are independent galactose‐binding proteins . J. Biol. Chem. , 262 , 9828 – 9838 ( 1987. ). [PubMed] [Google Scholar]
  • 6. ) Ii , M. , Kurata , H. , Itoh , N. , Yamashina , I. and Kawasaki , T.Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N‐acetylgalactosamine . J. Biol. Chem. , 265 , 11295 – 11298 ( 1990. ). [PubMed] [Google Scholar]
  • 7. ) Hunter , W. H. and Greenwood , F. C.Preparation of iodine‐131 labelled human growth hormone of high specific activity . Nature , 194 , 495 – 496 ( 1962. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Roos , P. H. , Hartman , H.‐J. , Schlepper‐Schäfer , J. , Kolb , H. and Kolb‐Bachofen , V.Galactose‐specific receptor on liver cells. II. Characterization of the purified receptor from macrophages reveals no structural relationship to the hepatocyte receptor . Biochim. Biophys. Acta , 847 , 115 – 121 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Kelm , S. and Schauer , R.The galactose‐recognizing system of rat peritoneal macrophages; identification and characterization of the receptor molecule . Biol. Chem. Hoppe-Seyler , 369 , 693 – 704 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Ii , M. , Wada , M. , Kawasaki , T. and Yamashina , I.Isolation and characterization of lectins specific for mannose/fucose/N‐acetylgalactosamine from rat peritoneal macrophages . J. Biochem. , 104 , 587 – 591 ( 1988. ). [PubMed] [Google Scholar]
  • 11. ) Haltiwanger , R. S. and Hill , R. L.The isolation of a rat alveolar macrophage lectin . J. Biol. Chem. , 261 , 7440 – 7444 ( 1986. ). [PubMed] [Google Scholar]
  • 12. ) Wileman , T. E. , Lennartz , M. R. and Stahl , P. D.Identification of the macrophage mannose receptor as a 175‐kDa membrane protein . Proc. Natl. Acad. Sci. USA , 83 , 2501 – 2505 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. ) Hoyle , G. W. and Hill , R. L.Structure of the gene for a carbohydrate‐binding receptor unique to rat Kupffer cells . J. Biol. Chem. , 266 , 1850 – 1857 ( 1991. ). [PubMed] [Google Scholar]
  • 14. ) Cherayil , B. J. , Weiner , S. J. and Pilial , S.The Mac‐2 antigen is a galactose‐specific lectin that binds IgE . J. Exp. Med. , 170 , 1959 – 1972 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. ) Cherayil , B. J. , Chaitovitz , S. , Wong , C. and Pillai , S.Molecular cloning of a human macrophage lectin specific for galactose . Proc. Natl. Acad. Sci. USA , 87 , 7324 – 7328 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. ) Crocker , P. R. , Kelm , S. , Dubois , C. , Martin , B. , McWilliam , A. S. , Shotton , D. M. , Paulson , J. C. and Gordon , S.Purification and properties of sialoadhesin, a sialic acid‐binding receptor of murine tissue macrophages . EMBO J. , 10 , 1661 – 1669 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. ) Nagata , K. , Todoroki , N. , Katagiri , Y. , Tanoue , K. , Yamazaki , H. , Hanai , N. , Tsuji , T. and Irimura , T.Activated platelets induce superoxide anion release by monocytes and neutrophils through P‐selectin (CD62) . J. Immunol. , 151 , 3267 – 3273 ( 1993. ). [PubMed] [Google Scholar]
  • 18. ) Pohajdak , B. , Lee , K. , Sugawara , I. , Miller , V. , Wright , J. A. A. and Greenberg , H.Comparative analysis of natural killer cell and macrophage recognition of concanavalin A‐resistant Chinese hamster ovary cells: role of membrane oligosaccharides . J. Natl. Cancer Inst. , 2 , 257 – 267 ( 1986. ). [PubMed] [Google Scholar]
  • 19. ) Gjoen , T. , Seljelid , R. and Kolset , S. O.Binding of metastatic colon carcinoma cells to liver macrophages . J. Leukocyte Biol. , 45 , 362 – 369 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Brunda , M. J. , Woldrout , R. H. , Holden , H. T. and Varesio , L.Selective inhibition by monosaccharides of tumor cell cytotoxicity mediated by mouse macrophages, macrophage‐like cell lines, and natural killer cells . Int. J. Cancer , 31 , 373 – 379 ( 1983. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Mercurio , A. M.Disruption of oligosaccharide processing in murine tumor cells inhibits their susceptibility to lysis by activated mouse macrophages . Proc. Natl. Acad. Sci. USA , 83 , 2609 – 2613 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. ) Huard , T. K. , Baney , J. L. , Wood , J. F. B. and Wicha , S. M.A potential role for the extracellular matrix glycoprotein laminin in macrophage‐tumor cell interactions . Int. J. Cancer , 36 , 511 – 517 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Hathaway , H. and Shur , B. D.Cell surface β1,4‐galactosyltransferase functions during neural crest cell migration and neurulation in vivo . J. Cell Biol. , 117 , 369 – 382 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. ) Eggens , I. , Fenderson , B. , Toyokuni , T. , Dean , B. , Stroud , M. and Hakomori , S.Specific interaction between Lex and Lex determinants . J. Biol. Chem. , 264 , 9476 – 9484 ( 1989. ). [PubMed] [Google Scholar]
  • 25. ) Springer , G. F.Tn epitope (N‐acetyl‐D‐galactosamine α‐O‐serine/threonine) density in primary breast carcinoma: a functional predictor of aggressiveness . Mol. Immunol. , 26 , 1 – 5 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Warren , L. , Buck , C. A. and Tuszynski , G. P.Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behavior . Biochim. Biophys. Acta , 516 , 97 – 127 ( 1978. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Ogata , S. , Muramatsu , T. and Kobata , A.New structural characteristic of the large glycopeptides from transformed cells . Nature , 259 , 580 – 582 ( 1976. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Kiess , W. , Blickenstaff , G. D. , Sklar , M. M. , Thomas , C. L. , Nissley , S. P. and Sahagian , G. G.Biochemical evidence that the type II insulin‐like growth factor receptor is identical to the cation‐independent nannose 6‐phosphate receptor . J. Biol. Chem. , 263 , 9339 – 9344 ( 1988. ). [PubMed] [Google Scholar]
  • 29. ) Kiess , W. , Thomas , C. L. , Greenstein , L. A. , Lee , L. , Sklar , M. M. , Rechler , M. M. , Sahagian , G. G. and Nissley , S. P.Insulin‐like growth factor‐II (IGF‐II) inhibits both the cellular uptake of beta‐galactosidase and the binding of beta‐galactosidase to purified IGF‐II/mannose 6‐phosphate receptor . J. Biol. Chem. , 264 , 4710 – 4714 ( 1989. ). [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES