Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1994 Sep;85(9):972–977. doi: 10.1111/j.1349-7006.1994.tb02977.x

CPT‐11: Population Pharmacokinetic Model and Estimation of Pharmacokinetics Using the Bayesian Method in Patients with Lung Cancer

Nobuyuki Yamamoto 1, Tomohide Tamura 1, Atsuya Karato 2, Kazunori Uenaka 3, Kenji Eguchi 1, Tetsu Shinkai 1, Yuichiro Ohe 1, Fumihiro Oshita 1, Hitoshi Arioka 1, Hajime Nakashima 1, Jun‐ichi Shiraishi 1, Minoru Fukuda 1, Shun Higuchi 3, Nagahiro Saijo 1
PMCID: PMC5919593  PMID: 7961128

Abstract

In this study, we aimed to develop a population pharmacokinetic model for CPT‐11 and to use the Bayesian method to estimate CPT‐11 pharmacokinetic parameters in each of 43 patients who received combined therapy consisting of CPT‐11 and etoposide. The group was divided into first and second data sets of 30 and 13 patients, respectively. We developed a population pharmacokinetic model of CPT‐11 based on the first data set. The individual pharmacokinetic parameters [area under the concentration curve (AUC) and clearance (CD] were subsequently estimated by using the Bayesian method on the second data set. Plasma CPT‐11 concentrations were measured by high‐performance liquid chromatography, and compartmental pharmacokinetic models were fitted by the Bayesian method. The population pharmacokinetic model was developed by using the nonlinear mixed effect model. We selected the volume of the central compartment (Vc), CL, and distribution rate constants (K12, K21) as population pharmacokinetic parameters. The population mean values (CV%) of Vc, CL, K12, and K21 were, respectively, 31.8 (15.7%) liter/m2,14.1 (27.8%) liter/h/m2,1.1 (8.4%)/h, and 0.41 (30.3%)/h. Residual intraindivirtual variability was 22.9%. The optimal sampling regime for estimation of the AUC and CL in using the Bayesian method was the two time points of 1 and 8 h post infusion. The mean predictive error, the mean absolute predictive error, and the root mean squared error were ‐3.3, 9.4, 3.2% (AUC) and 6.3, 10.0, 3.5% (CL), respectively. We concluded that the AUC and CL of CPT‐11 could be estimated from plasma concentrations at two times by using the Bayesian method.

Keywords: CPT‐11, Population pharmacokinetics, Bayesian method, Lung cancer

Full Text

The Full Text of this article is available as a PDF (345.7 KB).

REFERENCES

  • 1. ) Hsiang , Y. H. , Hertzberg , R. , Hechit , S. and Liu , L. F.Camptothecin induces protein‐linked DNA breaks via mammalian DNA topoisomerase I . J. Biol. Chem , 260 , 14873 – 14878 ( 1985. ). [PubMed] [Google Scholar]
  • 2. ) Hsiang , Y. H. and Liu , L. F.Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug Camptothecin . Cancer Res , 48 , 1722 – 1736 ( 1988. ). [PubMed] [Google Scholar]
  • 3. ) Hertzberg , R. P. , Caranfa , M. J. and Hechit , S. M.On the mechanism of topoisomerase I inhibition by Camptothecin: evidence for binding to an enzyme‐DNA complex . Biochemistry , 28 , 4629 – 4638 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Kunimoto , T. , Nitta , K. , Tanaka , T. , Uehara , N. , Baba , H. , Takeuchi , M. , Yokokura , T. , Sawada , S. , Miyasaka , T. and Murai , M.Antitumor activity of 7‐ethyl‐10‐[4‐(l‐piperidino)‐l‐piperidino]carbonyloxycamptothecin, a novel water‐soluble derivative of camptothecin, against murine tumors . Cancer Res , 47 , 5944 – 5947 ( 1987. ). [PubMed] [Google Scholar]
  • 5. ) Matsuzaki , T. , Yokokura , T. , Murai , M. and Tsuruo , T.Inhibition of spontaneous and experimental metastasis by a new derivative of Camptothecin, CPT‐11, in mice . Cancer Chemother. Pharmacol , 21 , 308 – 312 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Ohno , R. , Okada , K. , Masaoka , T. , Kuramoto , A. , Arima , T. , Yoshida , Y. , Ariyoshi , H. , Ichimaru , M. , Sakai , Y. , Oguro , M. , Ito , Y. , Morishima , Y. , Yokomaku , S. and Ota , K.An early phase II study of CPT‐11: a new derivative of camptothecin, for the treatment of leukemia and lymphoma . J. Clin. Oncol , 8 , 1907 – 1912 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Masuda , N. , Fukuoka , M. , Kusunoki , Y. , Matsui , K. , Takifuji , N. , Kudoh , S. , Negoro , S. , Nishioka , M. , Nakagawa , K. and Takada , M.CPT‐11: a new derivative of camptothecin for the treatment of refractory or relapsed small‐cell lung cancer . J. Clin. Oncol , 10 , 1225 – 1229 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Fukuoka , M. , Niitani , H. , Suzuki , A. , Motomiya , M. , Hasegawa , K. , Nishiwaki , Y. , Kuriyama , T. , Ariyoshi , Y. , Negoro , S. , Masuda , N. , Nakajima , S. and Taguchi , T.Phase II study of CPT‐I1, a new derivative of camptothecin, for previously untreated non‐small‐cell lung cancer , J. Clin. Oncol , 10 , 16 – 20 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Shimada , Y. , Yoshino , M. , Wakui , A. , Nakao , I. , Futatsuki , K. , Sakata , Y. , Kambe , M. , Taguchi , T.and CPT‐11 gastrointestinal cancer study group. Phase II study of CPT‐11, new camptothecin derivative, in the patients with metastatic colorectal cancer . Proc. Am. Soc. Clin. Oncol , 10 , 135 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Takeuchi , S. , Takamizawa , H. , Takeda , Y. , Okada , T. , Tamaya , T. , Noda , K. , Sugawa , T. , Sekiba , K. , Yakushiji , M. , Taguchi , T.and CPT‐11 study group on gynecologic malignancy. Clinical study of CPT‐11, a camptothecin derivative, on gynecological malignancy . Proc. Am. Soc. Clin. Oncol , 10 , 189 ( 1991. ). [Google Scholar]
  • 11. ) Sasaki , Y. , Morita , M. , Miya , T. , Shinkai , T. , Eguchi , K. , Tamura , T. , Ohe , Y. and Saijo , N.Pharmacokinetic (PK) and pharmacodynamic (PD) analysis of CPT‐11 and its active metabolite SN‐38 . Proc. Am. Soc. Clin. Oncol , 11 , 111 ( 1992. ). [Google Scholar]
  • 12. ) Ohe , Y. , Sasaki , Y. , Shinkai , T. , Eguchi , K. , Tamura , T. , Kojima , A. , Kunikane , H. , Okamoto , H. , Karato , A. , Omatsu , H. , Kanzawa , F. and Saijo , N.Phase I study and pharmacokinetics of CPT‐11 with 5‐day continuous infusion . J. Natl. Cancer. Inst , 84 , 972 – 973 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Peck , C. C. and Rodman , J. H.Analysis of clinical pharmacokinetics data for individualizing drug dosage regimen . In“Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring,” ed Evans W. E. , Schentag J. J. and Jusko W. J. , pp. 55 ( 1986. ). Applied Therapeutics, Inc. , Spokane , WA . [Google Scholar]
  • 14. ) Karato , A. , Sasaki , Y. , Eguchi , K. , Tamura , T. , Ohe , Y. , Ohita , F. , Nishio , M. , Kunikane , H. , Arioka , H. , Ohmatsu , H. , Nakajima , H. , Shiraishi , J. and Saijo , N.Phase I study of CPT‐11 and etoposide in patients with refractory solid tumors . J. Clin. Oncol , 11 , 2030 – 2035 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Kaneda , N. , Nagata , H. , Furuta , T. and Yokokura , T.Metabolism and pharmacokinetics of the camptothecin analogue CPT‐11 in the mouse . Cancer Res , 50 , 1715 – 1720 ( 1990. ). [PubMed] [Google Scholar]
  • 16. ) Yamaoka , K. and Tanigawara , Y.Program of automated pharmacokinetic analysis system . In“Introduction of Pharmacokinetic Analysis,” pp. 141 ( 1983. ). Nankodo; , Tokyo ( in Japanese ). [Google Scholar]
  • 17. ) Beal , S. L. and Sheiner , L. B.“NONMEM Users Guide Part I: Users Basic Guide” ( 1979. ). University of California; , San Francisco . [Google Scholar]
  • 18. ) Higuchi , S. , Aoyama , T. and Horioka , M.PEDA: A microcomputer program for parameter estimation and dosage adjustment in clinical practice . J. Pharmacobio-Dyn , 10 , 703 – 718 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Sheiner , L. B. and Beal , S. L.Some suggestions for measuring predictive performance . J. Pharmacokinet, Biopharm , 9 , 503 – 512 ( 1981. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Conley , B. A. , Forrest , A. , Egorin , M. J. , Zuhowski , E. G. , Sinibaldi , V. and Van Echo , D. A.Phase I trial using adaptive control dosing of hexamethylene bisacetamide (NSC 95580) . Cancer Res , 49 , 3436 – 3440 ( 1989. ). [PubMed] [Google Scholar]
  • 21. ) Scher , H. I. , Jodrell , D. I. , Iversen , J. M. , Curley , T. , Tong , W. , Egorin , M. J. and Forrest , A.Use of adaptive control with feedback to individualize suramin dosing . Cancer Res , 52 , 64 – 70 ( 1992. ). [PubMed] [Google Scholar]
  • 22. ) Rodman , J. H. , Furman , W. L. , Sunderland , M. , Rivera , G. and Evans , W. E.Escalating teniposide systemic exposure to increase dose intensity for pediatric cancer patients . J. Clin. Oncol , 11 , 287 – 293 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Ratain , M. J. , Staubus , A.E. , Schilsky , R. L. and Malspeis , L.Limited sampling models for amonafide (NSC 308847) pharmacokinetics . Cancer Res , 48 , 4127 – 4130 ( 1988. ). [PubMed] [Google Scholar]
  • 24. ) Ratain , M. J. , Robert , J. and van der Vijgh , W. J. F.Limited sampling models for doxorubicin pharmacokinetics . J. Clin. Oncol. , 9 , 871 – 876 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Egorin , M. J. , Forrest , A. , Belani , C. P. , Ratain , M. J. , Abrams , J. S. and Van Echo , D. A.A limited sampling strategy for cyclophosphamide pharmacokinetics . Cancer Res , 49 , 3129 – 3133 ( 1989. ). [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES