Abstract
One of the resistance mechanisms to folate‐based thymidylate synthase (TS) inhibitors is the increase in TS activity in tumor cells. Human B lymphoblastoid cell line (W1L2) was made resistant to a lipophilic non‐polyglutamatable TS inhibitor (ZM249148), and the subline (W1L2:R179) showed a 20‐fold increase in TS enzyme activity with concomitant overexpression of TS mRNA. To overcome the resistance, we designed a ribozyme that can cleave the CUC sequences in a triple tandemly repeated sequence of TS mRNA. Expression of this ribozyme in W1L2:R179 cells transfected with Epstein Barr virus‐based expression vector resulted in sensitization to TS inhibitors concomitantly with a decrease of TS expression. The ribozyme expressed in transfectants was shown to be functional in cleaving artificial TS RNA in vitro.
Keywords: Hammerhead ribozyme, Thymidylate synthase inhibitor, Drug resistance
Full Text
The Full Text of this article is available as a PDF (544.0 KB).
REFERENCES
- 1. ) Jackman , A. L. , Farrugia , D. C.Gibson , W. , Kimbell , R. and Harrap , K. R.ZD1694 (Tomudex): a new thymidylate synthase inhibitor with activity in colorectal cancer . Eur. J. Cancer , 31A , 1277 – 1282 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Imam , A. M. A. , Crossley , P. H. , Jackman , A. L. and Little , P. F. R.Analysis of thymidylate synthetase gene amplification and of mRNA levels in the cell cycle . J. Biol. Chem. , 262 , 7368 – 7373 ( 1987. ). [PubMed] [Google Scholar]
- 3. ) Danenberg , K. D. and Danenberg , P. V.Activity of thymidylate synthetase and its inhibition by 5‐fluorouracil in highly enzyme overproducing cells resistant to 10‐propargyl‐5,8‐dideazafolate . Mol Pharmacol , 36 , 219 – 223 ( 1989. ). [PubMed] [Google Scholar]
- 4. ) O'Connor , B. M. , Jackman , A. L. , Crossley , P. H. , Freemantle , S. E. , Lunec , J. and Calvert , A. H.Human lymphoblastoid cells with acquired resistance to C2‐desamino‐C2‐methyl‐N10‐propargyl‐5,8‐dideazafolic acid: a novel folate‐based thymidylate synthase inhibitor . Cancer Res. , 52 , 1137 – 1143 ( 1992. ). [PubMed] [Google Scholar]
- 5. ) Jackman , A. L. , Newell , D. R. , Gibson , W. , Jodrell , D. I. , Taylor , G. A. , Bishop , J. A. , Hughes , L. R. and Calvert , A. H.The biochemical pharmacology of the thymidylate synthase inhibitor, 2‐desamino‐2‐methyl‐N10‐propargyl‐5, 8‐dideazafolic acid (ICI 198583) . Biochem. Pharmacol. , 42 , 1885 – 1895 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Jackman , A. L. , Kelland , L. R. , Kimbell , R. , Brown , M. , Gibson , W. , Aherne , G. W. , Hardcastle , A. and Boyle , F. T.Mechanisms of acquired resistance to the quinazoline thymidylate synthase inhibitor, ZD1694 (Tomudex) in one mouse and three human cell lines . Br. J. Cancer , 71 , 914 – 924 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. ) Takemura , Y. , Walton , M. I. , Gibson , W. , Kimbell , R. , Miyachi , H. , Kobayashi , H. and Jackman , A. L.The influence of drug exposure manner on the development of ZD1694‐resistance in cultured human leukemia cells . Proc. Am. Assoc. Cancer Res. , 36 , 318 ( 1995. ). [Google Scholar]
- 8. ) Jackman , A. L. , Alison , D. L. , Calvert , A. H. and Harrap , K. R.Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10‐propargy 1‐5,8‐dideazafolic acid (CB3717): development, characterization, and cross‐resistance studies . Cancer Res. , 46 , 2810 – 2815 ( 1986. ). [PubMed] [Google Scholar]
- 9. ) Skelton , L. A. , Kimbell , R. , Bruton , L. A. , Boyle , F. T. and Jackman , A. L.Lipophilic inhibitors of thymidylate synthase: 2‐pyridyl quinazolines . Br. J. Cancer , 69 ( Suppl. ), 41 ( 1994. ). [Google Scholar]
- 10. ) Ayusawa , D. , Takeishi , K. , Kaneda , S. , Shimizu , K. , Koyama , H. and Seno , T.Isolation of functional cDNA clones for human thymidylate synthase . J. Biol. Chem. , 259 , 14361 – 14364 ( 1984. ). [PubMed] [Google Scholar]
- 11. ) Takeishi , K. , Kaneda , S. , Ayusawa , D. , Shimizu , K. , Gotoh , O. and Seno , T.Nucleotide sequence of a functional cDNA for human thymidylate synthase . Nucleic Acids Res. , 13 , 2035 – 2043 ( 1985. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. ) Kaneda , S. , Nalbantoglu , J. , Takeishi , K. , Shimizu , K. and Gotoh , O.Structural and functional analysis of the human thymidylate synthase gene . J. Biol. Chem. , 265 , 20277 – 20284 ( 1990. ). [PubMed] [Google Scholar]
- 13. ) Takeishi , K. , Kaneda , S. , Ayusawa , D. , Shimizu , K. , Gotoh , O. and Seno , T.Human thymidylate synthase gene: isolation of phage clones which cover a functionally active gene and structural analysis of the region upstream from the translational initiation codon . J. Biochem. , 106 , 575 – 583 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Kobayashi , H. , Takemura , Y. and Ohnuma , T.Relationship between tumor cell density and drug concentration on the cytotoxic effects of doxorubicin or vincristine: mechanism of inoculum effects . Cancer Chemother. Pharmacol , 31 , 6 – 10 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 15. ) Kobayashi , H. , Dorai , T. , Holland , J. F. and Ohnuma , T.Reversal of drug sensitivity in multidrug‐resistant tumor cells by an MDR1 (PGY1) ribozyme . Cancer Res. , 54 , 1271 – 1275 ( 1994. ). [PubMed] [Google Scholar]
- 16. ) Sambrook , J. , Fritsch , E. F. and Maniatis , T.“Molecular Cloning,” pp. 125 – 128 ( 1989. ). Cold Spring Harbor Laboratory Press; , New York . [Google Scholar]
- 17. ) Cech , T. R.Ribozymes and their medical implications . J. Am. Med. Assoc. , 260 , 3030 – 3034 ( 1988. ). [PubMed] [Google Scholar]
- 18. ) Haseloff , J. and Gerlach , W. J.Simple RNA enzymes with new and highly specific endoribonuclease activities . Nature , 334 , 585 – 591 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Ayusawa , D. , Koyama , H. and Seno , T.Resistance to methotrexate in thymidylate synthetase deficient mutants of cultured mouse mammary tumor FM3A cells . Cancer Res. , 41 , 1497 – 1501 ( 1981. ). [PubMed] [Google Scholar]
- 20. ) Cowan , K. H. and Jolivet , J. A.A methotrexate‐resistant human breast cancer cell line with multiple defects, including diminished formation of methotrexate polyglutamates . J. Biol. Chem. , 259 , 10793 – 10800 ( 1984. ). [PubMed] [Google Scholar]
- 21. ) Moran , R. G. , Mulkins , M. and Heidelberger , C.Role of thymidylate synthetase activity in development of methotrexate cytotoxicity . Proc. Natl. Acad. Sci. USA , 76 , 5924 – 5928 ( 1979. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. ) Washtien , W. L.Thymidylate synthetase levels as a factor in 5‐fluorodeoxyuridine and methotrexate cytotoxicity in gastrointestinal tumor cells . Mol. Pharmacol. , 21 , 723 – 728 ( 1982. ). [PubMed] [Google Scholar]
- 23. ) White , J. C. and Goldman , I. D.Methotrexate resistance in an L1210 cell line resulting from increased dihydrofolate reductase, decreased thymidylate synthetase activity, and normal membrane transport . J. Biol. Chem. , 256 , 5722 – 5727 ( 1981. ). [PubMed] [Google Scholar]
- 24. ) Scanlon , K. J. , Jiao , L. , Funato , T. , Wang , W. , Tone , T. , Rossi , J. J. and Kashani‐Sabet , M.Ribozyme‐mediated cleavage of c‐fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein . Proc. Natl. Acad. Sci. USA , 88 , 10591 – 10595 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]