Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1995 Nov;86(11):1041–1048. doi: 10.1111/j.1349-7006.1995.tb03018.x

Quantitative Detection of Ultraviolet Light‐induced Photoproducts in Mouse Skin by Immunohistochemistry

Xiusheng Qin 1, Shaomin Zhang 1, Hideaki Oda 1, Yoko Nakatsuru 1, Seiichiro Shimizu 1, Yukari Yamazaki 1, Osamu Nikaido 2, Takatoshi Ishikawa 1,
PMCID: PMC5920636  PMID: 8567394

Abstract

UVB‐induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine‐pyrimidone (6‐4)photoproducts [(6‐4)photoproducts] in mouse skin DNA were quantitatively measured using an immunohistochemical approach with a computer‐aided color image analyzer. The skins of the C3H/HeN mice were irradiated with ultraviolet B (UV‐B, 280‐320 nm), and processed to give conventional formalin‐fixed, paraffin‐embedded histologic sections. Routine immunohistochemistry clearly demonstrated a dosedependent induction of both photoproducts. CPDs were detectable at doses ġ 125 J/m2, while for (6‐4)photoproducts, the minimal dose at which they were detectable was 250 J/m1 in the present study. A time course study showed that the repair of (6‐4)photoproducts was more rapid than that of CPDs, and that epidermal cells bad a higher capacity for their removal than dermal cells. About half of the (6‐4)photoproducts were excised within the first 24 h after the irradiation, and the process was essentially complete by 72 h. In contrast, there was no apparent removal (less than 10%) of CPDs in the first 24 h and they only completely disappeared from the epidermal cells at 120 h after irradiation. The effect of DNA dilution due to increased turnover of epidermal cells after UV‐B irradiation was evaluated by quantitative immunohistochemical measurement of the time course of bromodeoxyuridine (BrdUrd) incorporated into nuclei at 2 days post irradiation when the proliferation reaches a peak. The removal of photoproducts was more marked than the decrease in BrdUrd staining. Our results suggest that mouse skin cells can repair both (6‐4)photoproducts and CPDs, but with considerably lower efficiency, especially in the latter case, than human or monkey skin cells.

Keywords: Immunohistochemistry, UV‐photoproduct DNA repair, Mouse skin

Full Text

The Full Text of this article is available as a PDF (679.3 KB).

REFERENCES

  • 1. ) Cleaver , J. E.Defective repair replication of DNA in xeroderma pigmentosum . Nature , 218 , 652 – 656 ( 1966. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Moan , J. and Peak , M. J.Effects of UV radiation on cells . J. Photochem. Photobiol B: Biol. , 4 , 21 – 34 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Setlow , R. B.The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis . Proc. Natl. Acad. Sci. USA , 71 , 3363 – 3366 ( 1974. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. ) Sunlight, ultraviolet radiation, and the skin . Natl. Inst. Health Consensus Dev. Conf. Statement , 7 , 1 – 10 ( 1989. ). [PubMed] [Google Scholar]
  • 5. ) Hart , R. W. , Setlow , R. B. and Woodhead , A. D.Evidence that pyrimidine dimers in DNA can give rise to tumors . Proc. Natl. Acad. Sci. USA , 74 , 5574 – 5578 ( 1977. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. ) Mitchell , D. L. and Nairn , R. S.The biology of the (6–4)photoproduct Photochem . Photobiol. , 49 , 805 – 819 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Zdzienicka , M. Z. , Venema , J. , Mitchell , D. L. , Hoffen , A. V. , van Zealand , A. A. , Vrieling , H. , Muflenders , L. H. F. , Lohman , P. H. M. and Simons , J. W. I. M.(6–4)Photoproducts and not cyclobutane pyrimidine dimers are the main UV‐induced mutagenic lesions in Chinese hamster cells . Mutat. Res. , 273 , 73 – 83 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Muramatsu , T. , Kobayashi , N. , Tada , H. , Yamaji , M. , Shirai , T. , Mori , T. and Ohnishi , T.Induction and repair of UVB‐induced cyclobutane pyrimidine dimer and (6–4)photoproducts in organ‐cultured normal human skin . Arch. Dermatol. Res. , 284 , 232 – 237 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Taichroan , L. B. and Setlow , R. B.Repair of ultraviolet light damage to the DNA of cultured human epidermal keratinocytes and fibroblasts . J. Invest. Dermatol. , 73 , 217 – 219 ( 1979. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Reusch , M. K. , Meager , B. S. , Leadon , S. A. and Hanawalt , P. C.Comparative removal of pyrimidine dimers from human epidermal keratinocytes in vivo and in vitro . J. Invest. Dermatol. , 91 , 349 – 352 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Freeman , S. E.Variation in excision repair of UVB‐induced pyrimidine dimers in DNA of human skin in situ . J. Invest. Dermatol. , 90 , 814 – 817 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Mitchell , D. L. , Cleaver , J. E. and Epstein , J. H.Repair of pyrimidine (6–4)pyrimidone photoproducts in mouse skin . J. Invest. Dermatol. , 95 , 55 – 59 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Bowden , G. T. , Hohneck , G. and Fusenig , N. E.DNA excision repair in ultraviolet‐irradiated normal and malignantly transformed mouse epidermal cell cultures . Cancer Res. , 37 , 1611 – 1617 ( 1977. ). [PubMed] [Google Scholar]
  • 14. ) Hart , R. W. and Setlow , R. B.Correlation between deoxyribonucleic acid excision‐repair and life‐span in a number of mammalian species . Proc. Natl. Acad. Sci. USA , 71 , 2169 – 2173 ( 1974. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. ) Peleg , L. , Raz , E. and Ben‐Ishaei , R.Changing capacity for DNA excision repair in mouse embryonic cells in vitro . Exp. Cell Res. , 104 , 301 – 307 ( 1976. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Bowden , G. T. , Trosko , J. E. , Shapas , B. G. and Boutwell , R. K.Excision of pyrimidine dimers from epidermal DNA and nonsemiconservative epidermal DNA synthesis following ultraviolet irradiation of mouse skin . Cancer Res. , 35 , 3599 – 3607 ( 1977. ). [PubMed] [Google Scholar]
  • 17. ) Ley , R. D. , Sedita , B. A. , Grube , D. D. and Fry , R. J. M.Induction and persistence of pyrimidine dimers in the epidermal DNA of two strains of hairless mice . Cancer Res. , 37 , 3243 – 3248 ( 1977. ). [PubMed] [Google Scholar]
  • 18. ) Yarosh , D. B. and Yee , V.SKH1 Hairless mice repair UV‐induced pyrimidine dimers in epidermal DNA . J. Photochem. Photobiol. B , 7 , 173 – 179 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Vink , A. A. , Berg , R. J. W. , De Gruijl , F. R. , Roza , L. and Baan , R. A.Induction, repair and accumulation of thymine dimers in the skin of UV‐B‐irradiated hairless mice . Carcinogenesis , 12 , 861 – 864 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Vink , A. A. , Bergen Henegouwen , J. B. A. , Nikaido , O. , Baan , R. A. and Roza , L.Removal of UV‐induced DNA lesions in mouse epidermis soon after irradiation . J. Photochem. Photobiol, B , 24 , 25 – 31 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Ruven , H. J. T. , Berg , R. J. W. , Seelen , C. M. J. , Dekkers , J. A. J. M. , Lohman , P. H. M. , Mullenders , L. H. F. and van Zeeland , A. A.Ultraviolet‐induced cyclobutane pyrimidine dimers are selectively removed from transcriptionally active genes in the epidermis of the hairless mouse . Cancer Res. , 53 , 1642 – 1645 ( 1993. ). [PubMed] [Google Scholar]
  • 22. ) Qin , X. , Zhang , S. , Nakatsuru , Y. , Oda , H. , Yamazaki , Y. , Suzuki , T. , Nikaido , O. and Ishikawa , T.Detection of active UV‐photoproduct repair in monkey skin In vivo by quantitative immunohistochemistry . Cancer Lett. , 83 , 291 – 298 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Mori , T. , Nakane , M. , Hattori , T. , Matsunaga , T. , Ihara , M. and Nikaido , O.Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6–4)photoproduct from the same mouse immunized with ultraviolet‐irradiated DNA . Photochem. Photobiol , 54 , 225 – 232 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Hsu , S. M. , Raine , L. and Fanger , H.Use of avidin‐biotin‐peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedure . J. Histochem. Cytochem. , 29 , 577 – 580 ( 1981. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Wani , A. A. , ĎAmbrosio , S. M. and Alvi , N. K.Quantitation of pyrimidine dimers by immunoslot blot following sublethal UV‐irradiation of human cells . Pkotochem. Photobiol. , 46 , 477 – 482 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Sutherland , B. M. , Runge , P. and Sutherland , J. C.DNA photoreactivating enzyme from placental mammals. Origin and characteristics . Biochemistry , 13 , 4710 – 4715 ( 1974. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Ley , R. D. , Sedita , B. A. and Grube , D. D.Absence of photoreactivation of pyrimidine dimers in the epidermis of hairless mice following exposure to ultraviolet light . Photochem. Photobiol. , 27 , 483 – 485 ( 1978. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) McCready , S. and Cox , B.Repair of (6–4)photoproducts in Saccharomyces cerevisiae . Mutat. Res. , 293 , 233 – 240 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Mitchell , D. L. , Nguyen , T. D. and Cleaver , J. E.Nonrandom induction of pyrimidme‐pyrimidone (6–4)photoproducts in ultraviolet‐irradiated human chromatin . J. Biol Chem. , 265 , 5353 – 5356 ( 1990. ). [PubMed] [Google Scholar]
  • 30. ) Gale , J. M. and Smerdon , M. J.UV induced (6–4)photoproducts are distributed differently than cyclobutane dimers in nucleosomes . Photochem. Photobiol. , 51 , 411 – 417 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Galloway , A. M. , Liuzzi , M. and Paterson , M. C.Metabolic processing of cyclobutyl pyrimidine dimers and (6–4)photoproducts in UV‐treated human cells, evidence for distinct excision‐repair pathways . J. Biol. Chem. , 269 , 974 – 980 ( 1994. ). [PubMed] [Google Scholar]
  • 32. ) Hill , H. Z. and Setlow , R. B.Postreplication repair in three murine melanomas, a mammary carcinoma, and a normal mouse lung fibroblast line . Cancer Res. , 40 , 1867 – 1872 ( 1980. ). [PubMed] [Google Scholar]
  • 33. ) Kusewitt , D. F. , Budge , C. L. , Nolla , H. A. , Edwards , B. S. and Ley , R. D.Cell cycle progression in denV‐transfected murine fibroblasts exposed to ultraviolet radiation . Mutat. Res. , 274 , 163 – 176 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Olsen , W. M.Early cell kinetic effects of a single dose of monochromatic ultraviolet B irradiation on hairless mouse epidermis . J. Invest. Dermatol. , 91 , 585 – 589 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Olsen , W. M.Ultraviolet B irradiation induces epidermal regeneration with rapidly cycling cells . Cell Tissue Kinet. , 23 , 453 – 462 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 36. ) Arfellini , G. , Prodi , G. and Grilli , S.Removal of 5‐bromo‐2‐deoxyuridine incorporated in DNA of regenerating rat liver . Nature , 265 , 377 – 379 ( 1977. ). [DOI] [PubMed] [Google Scholar]
  • 37. ) Nakatsuru , Y. , Oda , H. , Ishikawa , T. and Tanaka , K.Carcinogen sensitive XPAC gene deficient mouse . Proc. Jpn. Cancer Assoc., 52nd Annu. Meet. , 27 ( 1993. ).
  • 38. ) Kodama , K. , Ishikawa , T. and Takayama , S.Dose response, wavelength dependence, and time course of ultraviolet radiation‐induced unscheduled DNA synthesis in mouse skin in vivo . Cancer Res. , 44 , 2150 – 2154 ( 1984. ). [PubMed] [Google Scholar]
  • 39. ) Ishikawa , T. , Kodama , K. , Ide , F. and Takayama , S.Demonstration of in vivo DNA repair synthesis in mouse skin exposed to various chemical carcinogens . Cancer Res. , 42 , 5216 – 5221 ( 1982. ). [PubMed] [Google Scholar]
  • 40. ) Nakagawa , K. , Nakatsuru , Y. and Ishikawa , T.Immunohistochemical detection of carcinogen‐DNA adducts and DNA repair in mouse skin . J. Invest. Dermatol. , 92 , 275S – 279S ( 1989. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES