Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1995 Dec;86(12):1143–1149. doi: 10.1111/j.1349-7006.1995.tb03307.x

Absence of ras Mutations and Low Incidence of p53 Mutations in Renal Cell Carcinomas Induced by Ferric Nitrilotriacetate

Takashi Akiyama 1, Shuji Hamazaki 2,, Shigeru Okada 1
PMCID: PMC5920661  PMID: 8636002

Abstract

Renal cell carcinomas induced in male Wistar rats by iron chelate of nitrilotriacetate (Fe‐NTA) were examined for mutations in ras oncogenes and p53 tumor suppressor gene. Fourteen primary tumors and two metastatic tumors from 11 animals were evaluated. Exons 1 and 2 of the H‐, K‐, and N‐ras genes were amplified by polymerase chain reaction (PCR), and the presence of mutations was examined by direct sequencing. Exon 5 through exon 7 of p53 gene, including the 3’half of the conserved region II and the entire conserved region III through V, were surveyed for point mutations by PCR‐single stranded conformation polymorphism (SSCP) analysis. Direct sequencing of the ras genes showed no mutations in codon 12, 13, or 61 among the tumors evaluated. SSCP analysis of p53 gene exon 6 indicated conformational changes in two primary tumors. One tumor had a CCG‐to‐CTG transition at codon 199, and the other had an ATC‐to‐ATT transition at codon 229 and two nonsense C‐to‐T transitions. These results suggest that neither ras genes nor p53 gene play a major role in the development of renal cell carcinomas induced by Fe‐NTA.

Keywords: Chemical carcinogenesis, Nitrilotriacetate, ras gene, p53 gene, Single strand conformation polymorphism

Full Text

The Full Text of this article is available as a PDF (598.5 KB).

REFERENCES

  • 1. ) Bos , J. L.Ras oncogenes in human cancer: a review . Cancer Res. , 49 , 4682 – 4689 ( 1989. ). [PubMed] [Google Scholar]
  • 2. ) Hollstein , M , Sidransky , D. , Vogelstein , B. and Harris , C. C.p53 mutations in human cancers . Science , 253 , 49 – 53 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Greenblatt , M. S. , Bennet , W. P. , Hollstein , M. and Harris , C. C.Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis . Cancer Res. , 54 , 4855 – 4878 ( 1994. ). [PubMed] [Google Scholar]
  • 4. ) Jones , R. F. , Matuszyk , J. , Debiec‐Rychter , M. and Wang , C.‐Y.Mutation and altered expression of p53 genes in experimental rat bladder tumor cells . Mol. Carcinog. , 9 , 95 – 104 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Tokusashi , Y. , Fukuda , I. and Ogawa , K.Absence of p53 mutations and various frequencies of Ki‐ras exon 1 mutations in rat hepatic tumors induced by different carcinogens . Mol. Carcinog. , 10 , 45 – 51 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Ronai , Z. A. , Gradia , S. , El‐Bayoumy , K. , Amin , S. and Hecht , S. S.Contrasting incidence of ras mutations in rat mammary and mouse skin tumors induced by anti‐benzo [c] phenanthrene‐3,4‐diol‐l,2‐epoxide . Carcino-genesis , 15 , 2113 – 2116 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Ohgaki , H. , Furukawa , F. , Takahashi , M. and Kleihues , P. KKras mutations are frequent in pulmonary squamous cell carcinomas but not in adenocarcinomas of WBN/Kob rats induced by N‐nitrosobis (2‐oxopropyl) amine . Carcino-genesis , 14 , 1471 – 1473 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Lozano , J.‐C , Nakazawa , H. , Cros , M.‐P. , Cabral , R. and Yamasaki , H. G.A mutations in p53 and Ha‐ras genes in esophageal papillomas induced by N‐nitrosomethyl‐benzylamine in two strains of rats . Mol. Carcinog. , 9 , 33 – 39 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Nanus , D. M. , Mentle , I. R. , Motzer , R. J. , Bander , N. H. and Albino , A. P.Infrequent ras oncogene point mutations in renal cell carcinoma . J. Urol , 143 , 175 – 178 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Uchida , T. , Wada , C. , Wang , C. , Egawa , S. , Ohtani , H. and Koshiba , K.Genomic instability of microsatellite repeats and mutations of H‐, K‐, and N‐ras, and p53 genes in renal cell carcinoma . Cancer Res. , 54 , 3682 – 3685 ( 1994. ). [PubMed] [Google Scholar]
  • 11. ) Matsumoto , K. , Tsuda , H. , Iwase , T. , Ito , M. , Nishida , Y. , Oyama , F. , Titani , K. , Ushijima , T. , Nagao , M. and Hirono , I.Absence of ras family point mutations at codons 12, 13 and 61 in N‐ethyl‐N‐hydroxyethylnitros‐amine‐ or N‐nitrosomorpholine‐induced renal cell tumors in rats . Jpn. J. Cancer Res. , 83 , 933 – 936 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. ) Ohgaki , H. , Kleihues , P. and Hard , G. C.Ki‐ras mutations in spontaneous and chemically induced renal tumors of the rat . Mol. Carcinog. , 4 , 455 – 459 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Matsumoto , K. , Tsuda , H. , Nishida , Y. , Iwase , T. , Hirono , I. , Makino , H. and Nagao , M.Lack of p53 mutations in rat renal cell tumors . Proc. Jpn. Cancer Assoc., 52nd Annu. Meet. , 134 ( 1992. ) ( in Japanese ). [Google Scholar]
  • 14. ) Okada , S. , Hamazaki , S. , Ebina , Y. , Fujioka , M. and Midorikawa , O.Nephrotoxicity and induction of the renal adenocarcinoma by ferric‐nitrilotriacetate (Fe‐NTA) in rats . In“Function of Iron Storage and Transport Proteins ,” ed. Urushizaki I. , Aisen P. , Listowsky I. and Drysdale J. W. , pp. 473 – 478 ( 1983. ). Elsevier; , New York . [Google Scholar]
  • 15. ) Ebina , Y. , Okada , S. , Hamazaki , S. , Ogino , K , Li , J.‐L. and Midorikawa , O.Nephrotoxicity and renal cell carcinoma after use of iron‐ and aluminum‐nitrilotriacetate complexes in rats . J. Natl. Cancer Inst. , 76 , 107 – 113 ( 1986. ). [PubMed] [Google Scholar]
  • 16. ) Toyokuni , S. , Okada , S. , Hamazaki , S. , Mmamiyama , Y. , Yamada , Y. , Liang , P. , Fukunaga , Y. and Midorikawa , O.Combined histochemical and biochemical analysis of sex hormone dependence of ferric nitrilotriacetate induced renal lipid peroxidation in ddY mice . Cancer Res. , 50 , 5574 – 5580 ( 1990. ). [PubMed] [Google Scholar]
  • 17. ) Liu , M. and Okada , S.Induction of free radicals and tumors in the kidneys of Wistar rats by ferric ethylene‐diamine‐N.N'‐diacetate . Carcinogenesis , 15 , 2817 – 2821 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Aust , S. D. , Morehouse , L. A. and Thomas , C. E.Role of metals in oxygen radical reaction . J. Free Radicals Biol. Med. , 1 , 3 – 25 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Higinbotham , K. G. , Rice , J. M. , Diwan , B. A. , Kasprzak , K. S. , Reed , C. D. and Perantoni , A. O.GGT to GTT transversions in codon 12 of the K‐ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA . Cancer Res. , 52 , 4747 – 4751 ( 1992. ). [PubMed] [Google Scholar]
  • 20. ) Nickell‐Brady , C. , Hahn , F. F. , Finch , G. L. and Belinsky , S. A.Analysis of K‐ras, p53 and c‐raf‐1 mutations in beryllium‐induced rat lung tumors . Carcinogenesis , 15 , 257 – 262 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Halliwell , B. and Aruoma , O. I.DNA damage by oxygen‐derived species; its mechanism and measurement in mammalian systems . FEBS Lett. , 281 , 9 – 19 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Koshiba , M. , Ogawa , K. , Hamazaki , S. , Sugiyama , T. , Ogawa , O. and Kitajima , T.The effect of formalin fixation on DNA and the extraction of high‐molecular‐weight DNA from fixed and embedded tissue . Pathol. Res. Pract. , 189 , 66 – 72 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Tsutsumi , M. , Murakami , Y. , Kondoh , S. , Tsujiuchi , T. , Hohnoki , K. , Horiguchi , K. , Noguchi , O. , Kobayashi , E. , Okita , S. , Sekiya , T. and Konishi , Y.Comparison of K.‐ras oncogene activation in pancreatic duct carcinomas and cholangiocarcinomas induced in hamsters by N‐nitrosobis‐(2‐hydroxypropyl)amine . Jpn. J. Cancer Res. , 84 , 956 – 960 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. ) van Kranen , H. J. , van Steeg , H. , Schoren , L. , Faessen , P. , de Vries , A. , van Iersel , P. W. C. and van Kreijl , C. F.The rat N‐ras gene; interference of pseudogenes with the detection of activating point mutations . Carcinogenesis , 15 , 307 – 311 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Hulla , J. E. and Schneider , R. P.Structure of the rat p53 tumor suppressor gene . Nucleic Acids Res. , 21 , 713 – 717 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. ) Orita , M. , Iwahara , H. , Kanazawa , H. , Hayashi , K. and Sekiya , T.Detection of polymorphisms of human DNA by gel electrophoresis as single‐strand conformation polymorphism . Proc. Natl. Acad. Sci. USA , 86 , 2766 – 2770 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. ) Habuchi , T. , Takahashi , R. , Yamada , H. , Ogawa , O. , Kakehi , Y. , Ogura , K. , Hamazaki , S. , Toguchida , J. , Ishizaki , K. , Fujita , J. , Sugiyama , T. and Yoshida , O.Influence of cigarette smoking and schistosomiasis on p53 gene mutation in urothelial cancer . Cancer Res. , 53 , 3795 – 3799 ( 1993. ). [PubMed] [Google Scholar]
  • 28. ) Kanjilal , S. , Pierceall , W. E. , Cummings , K. K. , Kripke , M. L. and Anathaswamy , H. N.High frequency of p53 mutations in ultraviolet radiation‐induced murine skin tumors: evidence for strand bias and tumor heterogeneity . Cancer Res. , 53 , 2961 – 2964 ( 1993. ). [PubMed] [Google Scholar]
  • 29. ) Yamakawa , K. , Morita , R. , Takahashi , E. , Hori , T. , Ishikawa , J. and Nakamura , Y. Adetailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma . Cancer Res. , 51 , 4707 – 4711 ( 1991. ). [PubMed] [Google Scholar]
  • 30. ) Morita , R. , Saito , S. , Ishikawa , J. , Ogawa , O. , Yoshida , O. , Yamakawa , K. and Nakamura , Y.Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma . Cancer Res. , 51 , 5817 – 5820 ( 1991. ). [PubMed] [Google Scholar]
  • 31. ) Lubinski , J. , Hadaczek , P. , Podolski , J. , Toloczko , A. , Sikorski , A. , McCue , P. , Druck , T. and Huebner , K.Common regions of deletion in chromosome regions 3pl2 and 3pl4.2 in primary clear cell renal carcinoma . Cancer Res. , 54 , 3710 – 3713 ( 1994. ). [PubMed] [Google Scholar]
  • 32. ) Shuin , T. , Kondo , K. , Torigoe , S. , Kishida , T. , Kubota , Y. , Hosaka , M. , Nagashima , Y. , Kitamura , H. , Latif , F. , Zbar , B. , Lerman , M. I. and Yao , M.Frequent somatic mutations and loss of heterozygosity of the von Hippel‐Lindau tumor suppressor gene in primary human renal cell carcinoma . Cancer Res. , 54 , 2852 – 2855 ( 1994. ). [PubMed] [Google Scholar]
  • 33. ) Hino , O. , Kobayashi , T. , Tsuchiya , H. , Kikuchi , Y. , Kobayashi , E. , Mitani , H. and Hirayama , Y.The predisposing gene of the Eker rat inherited cancer syndrome is tightly linked to the tuberous sclerosis (TSC2) gene . Biochem. Biophys. Res. Commun. , 203 , 1302 – 1308 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Kobayashi , T. , Hirayama , Y. , Kobayashi , E. , Kubo , Y. and Hino , O.A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer . Nature Genet. , 9 , 70 – 74 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Kasai , H. and Nishhnura , S.Hydroxylation of deoxy‐guanosine at the C‐8 position by ascorbic acid and other reducing agents . Nucleic Acids Res. , 12 , 2137 – 2145 ( 1984. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. ) Kasai , H. , Nishimura , S. , Kurokawa , Y. and Hayashi , Y.Oral administration of the renal carcinogen, potassium bromate, specifically produces 8‐hydroxydeoxyguanosine in rat target organ DNA . Carcinogenesis , 8 , 1959 – 1961 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 37. ) Umemura , T. , Sai , K. , Takagi , A. , Hasegawa , R. and Kurokawa , Y.Formation of 8‐hydroxydeoxyguanosine (8‐OH‐dG) in rat kidney DNA after intraperitoneal administration of ferric nitrilotriacetate (Fe‐NTA) . Carcino-genesis , 11 , 345 – 347 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 38. ) Shibutani , S. , Takeshita , M. and Grollman , A. P.Insertion of specific bases during DNA synthesis past the oxidation‐damaged base 8oxodG . Nature , 349 , 431 – 434 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 39. ) Kamiya , H. , Murata‐Kamiya , N. , Fujimoto , M. , Kido , K. , Inoue , H. , Nishimura , S. , Masutani , C. , Hanaoka , F. and Ohtsuka , E.Comparison of incorporation and extension of nucleotides in vitro opposite 8‐hydroxyguanine (7,8‐dihydro‐8‐oxoguanine) in hot spots of the c‐Ha‐ras gene . Jpn. J. Cancer Res. , 86 , 270 – 276 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. ) Kamiya , H. , Miura , K. , Ishikawa , H. , Inoue , H. , Nishimura , S. and Ohtsuka , E.c‐Ha‐ras containing 8‐hydroxyguanine at codon 12 induces point mutations at the modified and adjacent positions . Cancer Res. , 52 , 3483 – 3485 ( 1992. ). [PubMed] [Google Scholar]
  • 41. ) McBride , T. J. , Preston , B. D. and Loeb , L. A.Mutagenic spectrum resulting from DNA damage by oxygen radicals . Biochemistry , 30 , 207 – 213 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 42. ) Reid , T. M. and Loeb , L. A.Tandem double CC × TT mutations are produced by reactive oxygen species . Proc. Natl. Acad. Sci. USA , 90 , 3904 – 3907 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES