Abstract
This study was conducted to develop a quantitative assay system for use in the in vivo evaluation in mice of angiogenesis induced by human tumor cells. The human epidermoid carcinoma cells, A431 cells, were cultured on microcarriers. Microcarrier‐attached A431 cells (A431‐MC) were micro‐encapsulated with agarose hydrogel to isolate them from the immune system of the C57BL/6 mice after subcutaneous dorsal midline implantation. The agarose hydrogel‐mjcroencapsulated A431 cells (Aga‐A431 cells; diameter=300 (μm) survived for at least 10 days in vitro, and the proliferation profile of the Aga‐A431 cells was indistinguishable from that of non‐microencapsulated A431 cells. The Aga‐A431 cells were subcutaneously injected into mice with an 18‐gauge needle. Ten days later, few vessels had formed at the site implanted with cell‐free agarose beads, whereas notable angiogenesis was observed at the site implanted with Aga‐A431 cells. The degree of angiogenesis was evaluated by measurement of the hemoglobin content in the implanted site using a mouse hemoglobin (mHb) enzyme‐linked immunosorbent assay (ELISA) system. This mHb‐ELISA system has the advantages of great simplicity and reproducibility. The measured mHb content of new blood vessels at the site implanted with agarose beads was in good agreement with the amount of angiogenesis observed under a stereoscopic microscope. This assay system enabled us to evaluate the angiogenesis induced by xenogeneic cells, such as human tumor cells. Thus, our novel method may be useful for the study of the angiogenic potential of various human tumor cells and in research on the anti‐angiogenic properties of various agents.
Keywords: Tumor angiogenesis, A43I cells, Agarose microencapsulation, Mouse hemoglo bin ELISA
Full Text
The Full Text of this article is available as a PDF (818.2 KB).
REFERENCES
- 1. ) Wagner , R. C.Endothelial cell embryology and growth . Adv. Microcirc. , 9 , 45 – 75 ( 1980. ). [Google Scholar]
- 2. ) O'Shea , K. S. and Dixit , V. M.Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo . J. Cell Biol , 107 , 2737 – 2748 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. ) Auerbach , R. , Kubai , L. , Knighton , D. and Folkman , J.A simple procedure for the long‐term cultivation of chicken embryos . Dev. Biol , 41 , 391 – 394 ( 1974. ). [DOI] [PubMed] [Google Scholar]
- 4. ) Gospodarowicz , D. and Thakral , K. K.Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum . Proc. Natl. Acad. Sci. USA , 75 , 847 – 851 ( 1978. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. ) Rone , J. D. and Goodman , A. L.Preliminary characterization of angiogenic activity in media conditioned by cells from luteinized rat . Endocrinology , 127 , 2821 – 2828 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Knighton , D. R. , Silver , I. A. and Hunt , T. K.Regulation of wound‐healing angiogenesis: effect of oxygen gradients and inspired oxygen concentration . Surgery , 90 , 262 – 270 ( 1981. ). [PubMed] [Google Scholar]
- 7. ) Raugi , G. J. , Olerud , J. E. and Gown , A. M.Thrombospondin in early human wound tissue . J. Invest. Dermatol. , 89 , 551 – 554 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Folkman , J.Tumor angiogenesis . Adv. Cancer Res. , 43 , 175 – 203 ( 1985. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Folkman , J.What is the evidence that tumors are angiogenesis dependent ? J. Natl Cancer Inst. , 82 , 4 – 6 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Folkman , J. and Cotran , R.Relation of vascular proliferation to tumor growth . Int. Rev. Exp. Pathol. , 16 , 207 – 248 ( 1976. ). [PubMed] [Google Scholar]
- 11. ) Folkman , J.Tumor angiogenesis: therapeutic implications . N. Engl J. Med. , 285 , 1182 – 1186 ( 1971. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Folkman , J.Anti‐angiogenesis: new concept for therapy of solid tumors . Ann. Surg. , 175 , 409 – 416 ( 1972. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. ) Ausprunk , D. H. and Folkman , J.Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis . Microvasc. Res. , 14 , 53 – 65 ( 1977. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Shing , Y. , Folkman , J. , Haudenschild , C. , Lund , D. , Crum , R. and Klagsbrun , M.Angiogenesis is stimulated by a tumor‐derived endothelial cell growth factor . J. Cell. Biochem. , 29 , 275 – 287 ( 1985. ). [DOI] [PubMed] [Google Scholar]
- 15. ) Folkman , J. and Haudenschild , C.Angiogenesis in vitro . Nature , 288 , 551 – 556 ( 1980. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Vu , M. T. , Smith , C. F. , Burger , P. C. and Klintworth , G. K.An evaluation of methods to quantitate the chick chorioallantoic membrane assay in angiogenesis . Lab. Invest. , 53 , 499 – 508 ( 1985. ). [PubMed] [Google Scholar]
- 17. ) Splawinski , J. , Michna , M. , Palczak , R. , Konturek , S. and Splawinska , B.Angiogenesis: quantitative assessment by the chick chorioallantoic membrane assay . Methods Find. Exp. Clin. Pharmacol. , 10 , 221 – 226 ( 1988. ). [PubMed] [Google Scholar]
- 18. ) Gimbrone , M. A. , Jr. , Cotran , R. S. , Leapman , S. B. and Folkman , J.Tumor growth and neovascularization: an experimental model using the rabbit cornea . J. Natl Cancer Inst. , 52 , 413 – 427 ( 1974. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Polverini , P. J. and Leibovich , S. J.Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor‐associated macrophages . Lab. Invest. , 51 , 635 – 642 ( 1984. ). [PubMed] [Google Scholar]
- 20. ) Masuda , Y. , Yoshitake , Y. and Nishikawa , K.Secretion of DNA synthesis factor (DSF) by A431 cells that can grow in protein‐free medium . Cell Biol. Int. Rep. , 11 , 359 – 365 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Masuda , Y. , Yoshitake , Y. and Nishikawa , K.Growth control of A431 cells in protein‐free medium: secretory products do not affect cell growth . In Vitro Cell. Dev. Biol. , 24 , 893 – 899 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 22. ) Myoken , Y. , Kayada , Y. , Okamoto , T. , Kan , M. , Sato , G. H. and Sato , J. D.Vascular endothelial cell growth factor (VEGF) produced by A‐431 human epidermoid carcinoma cells and identification of VEGF membrane binding sites . Proc. Natl. Acad. Sci. USA , 88 , 5819 – 5823 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. ) Nilsson , K. , Scheirer , W. , Merten , O. W. , östberg , L. , Liehl , E. , Katinger , H. W. D. and Mosbach , K.Entrapment of animal cells for production of monoclonal antibodies and other biomolecules . Nature , 302 , 629 – 630 ( 1983. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Nilsson , K. , Scheirer , W. , Katinger , H. W. D. and Mosbach , K.Entrapment of animal cells . Methods Enzymol. , 135 , 399 – 410 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Mosmann , T.Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays . J. Immunol. Methods , 65 , 55 – 63 ( 1983. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Huntsman , R. G.Red blood cell hemolysate preparation . CRC Crit. Rev. Clin. Lab. Sci. , 5 , 34 – 36 ( 1974. ). [Google Scholar]
- 27. ) Laemmli , U.K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Nature , 227 , 680 – 685 ( 1970. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Fotsis , T. , Zhang , Y. , Pepper , M. S. , Adlercreuts , H. , Montesano , R. , Nawroth , P. P. and Schweigerer , L.The endogenous oestrogen metabolite 2‐methoxyoestradiol in hibits angiogenesis and suppresses tumour growth . Nature , 368 , 237 – 239 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 29. ) Thompson , J. A. , Anderson , K. D. , DiPietro , J. M. , Zwiebel , J. A. , Zametta , M. , Anderson , W. F. and Maciag , T.Site‐directed neovessel formation in vivo. Science , 241 , 1349 – 1352 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 30. ) Passaniti , A. , Taylor , R. M. , Pili , R. , Quo , Y. , Long , P. V. , Haney , J. A. , Pauly , R. R. , Grant , D. S. and Martin , Q. RA simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor . Lab. Invest. , 67 , 519 – 528 ( 1992. ). [PubMed] [Google Scholar]
- 31. ) Plunkett , M. L. and Hailey , J. A.An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate . Lab. Invest. , 62 , 510 – 517 ( 1990. ). [PubMed] [Google Scholar]
- 32. ) Robertson , N. E. , Discafani , C. M. , Downs , E. C. , Hailey , J. A. , Sarre , O. , Runkle , R. L. , Jr. , Popper , T. L. and Plunkett , M. L.A quantitative in vivo mouse model used to assay inhibitors of tumor‐induced angiogenesis . Cancer Res. , 51 , 1339 – 1344 ( 1991. ). [PubMed] [Google Scholar]
