Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1995 Jun;86(6):546–554. doi: 10.1111/j.1349-7006.1995.tb02433.x

A Specific Chromosome Change and Distinctive Transforming Genes Are Necessary for Malignant Progression of Spontaneous Transformation in Cultured Chinese Hamster Embryo Cells

Takahisa Shimizu 1, Mituo V Kato 1,, Osamu Nikaido 1, Fumio Suzuki 1,
PMCID: PMC5920869  PMID: 7622419

Abstract

Chinese hamster embryo (CHE) cell strains, each initiated from a separate cell stock obtained from different mothers, were transferred successively at intervals of 3 days and the changes in growth properties and karyotypes at various passages were examined. All nine cell strains proliferated at varying growth rates for 60 passages but only 2 (designated CHE A1 and CHE A2) of them expressed malignant phenotypes. The acquisition of tumorigenicity in nude mice was observed in CHE A1 and CHE A2 cells at passages 40 and 10, respectively. After 5 passages, 8 of 9 cell strains contained one or two common additional chromosomes, chromosome 3q and/or chromosome 5, although one cell strain (designated CHE A3) maintained a normal diploid karyotype for 60 passages. Trisomy of chromosome 3q was observed in all tumorigenic CHE A1 and A2 cells. One or two 3q chromosomes were detected in all tumor‐derived cell lines established from tumors produced by these tumorigenic cells. DNA from tumorigenic cells and tumor‐derived cell lines exhibited a high ability to transform mouse NIH3T3 cells, but we could not detect any activation of Ha‐ras, Ki‐ras, hst, erbB‐2, mos, met or raf in any of the transformed NIH3T3 cells. These results suggest that even though cultured CHE cells can transform spontaneously, without any specific chromosome change, to immortal cells, activation of unknown oncogene(s) in addition to a specific chromosome change may be required for their malignant progression. Our results suggest that trisomy of chromosome 3q is this specific chromosome change.

Keywords: Transformation, Chinese hamster cell, Trisomy, DNA transfection

Full Text

The Full Text of this article is available as a PDF (513.7 KB).

REFERENCES

  • 1. ) Foulds , L. “ Neoplastic Development ,” Vol. 2 , pp. 1 – 15 and 321 – 339 ( 1975. ). Academic Press. Inc. , New York . [Google Scholar]
  • 2. ) Bishop , J. M.Molecular themes in oncogenesis . Cell , 64 , 235 – 248 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Fearon , E. R. and Vogelstein , B.A genetic model for colorectal tumorigenesis . Cell , 61 , 759 – 767 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Bloch‐Shtacher , N. and Sachs , L.Identification of a chromosome that controls malignancy in Chinese hamster cells . J. Cell. Physiol. , 93 , 205 – 212 ( 1977. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Barrett , J. C. and Ts'o , P. O. P.Evidence for the progressive nature of neoplastic transformation in vitro . Proc. Natl. Acad. Sci. USA , 75 , 3761 – 3765 ( 1978. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. ) Barrett , J. C.A preneoplastic stage in the spontaneous neoplastic transformation of Syrian hamster embryo cells in culture . Cancer Res. , 40 , 91 – 94 ( 1980. ). [PubMed] [Google Scholar]
  • 7. ) Smith , B. L. and Sager , R.Multistep origin of tumorforming ability in Chinese hamster embryo fibroblast cells . Cancer Res. , 42 , 389 – 396 ( 1982. ). [PubMed] [Google Scholar]
  • 8. ) Kraemer , P. M. , Travis , G. L. , Ray , F. A. and Cram , L. S.Spontaneous neoplastic evolution of Chinese hamster cells in culture: multistep progression of phenotype . Cancer Res. , 43 , 4822 – 4827 ( 1983. ). [PubMed] [Google Scholar]
  • 9. ) Cram , L. S. , Bartholdi , M. F. , Ray , F. A. , Travis , G. L. and Kraemer , P. M.Spontaneous neoplastic evolution of Chinese hamster cells in culture: multistep progression of karyotype . Cancer Res. , 43 , 4828 – 4837 ( 1983. ). [PubMed] [Google Scholar]
  • 10. ) Stenman , G. and Sager , R.Genetic analysis of tumorigenesis: a conserved region in the human and Chinese hamster genomes contains genetically identified tumorsuppressor genes . Proc. Natl. Acad. Sci. USA , 84 , 9099 – 9102 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. ) Craig , R. W. , Gadi , I. K. and Sager , R.Genetic analysis of tumorigenesis. XXXI: Retention of short arm of chromosome 3 in suppressed CHEF cell hybrids containing c‐Ha‐ras (EJ) gene . Somat. Cell Mol. Genet. , 14 , 41 – 53 ( 1988. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Suzuki , K. , Suzuki , F. , Watanabe , M. and Nikaido , O.Multistep nature of X‐ray‐induced neoplastic transformation in golden hamster embryo cells: expression of transformed phenotypes and stepwise changes in karyotypes . Cancer Res. , 49 , 2134 – 2140 ( 1989. ). [PubMed] [Google Scholar]
  • 13. ) Hunter , T.Cooperation between oncogenes . Cell , 64 , 249 – 270 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Oshimura , M. , Gilmer , T. M. and Barrett , J. C.Nonrandom loss of chromosome 15 in Syrian hamster tumours induced by v‐Ha‐ras plus v‐myc oncogenes . Nature , 316 , 636 – 639 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Parada , L. F. and Weinberg , R. A.Presence of a Kirstein murine sarcoma virus ras oncogene in cells transformed by 3‐methylcholanthrene . Mol. Cell. Biol. , 3 , 2298 – 2301 ( 1983. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. ) Suzuki , F. , Nakao , N. , Nikaido , O. and Kondo , S.High resistance of cultured Mongolian gerbil cells to X‐ray‐induced killing and chromosome aberrations . Radiat. Res. , 131 , 290 – 296 ( 1992. ). [PubMed] [Google Scholar]
  • 17. ) Kitchin , P. M. and Sager , R.Genetic analysis of tumorigenesis: V. Chromosomal analysis of tumorigenic and non‐tumorigenic diploid Chinese hamster cell lines . Somat. Cell Genet. , 6 , 75 – 87 ( 1980. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Sambrook , J. , Fritsch , F. F. and Maniatis , T. “ Analysis and cloning of eukaryotic genomic DNA ,” 2nd Edition , ed. Ford N. , Nolan C. and Ferguson M. , pp. 9.2 – 9.62 ( 1989. ). Cold Spring Harbor Laboratory Press; , New York . [Google Scholar]
  • 19. ) Southern , E. M.Detection of specific sequences among DNA fragments separated by gel electrophoresis . J. Mol. Biol. , 98 , 503 – 517 ( 1975. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Sakamoto , H. , Mori , M. , Taire , M. , Yoshida , T. , Matsukawa , S. , Shimizu , K. , Sekiguchi , M. , Terada , M. and Sugimura , T.Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa . Proc. Natl. Acad. Sci. USA , 83 , 3997 – 4001 ( 1986. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. ) Ray , F. A. , Bartholdi , M. F. , Kraemer , P. M. and Cram , L. S.Spontaneous in vitro neoplastic evolution: recurrent chromosome changes of newly immortalized Chinese hamster cells . Cancer Genet. Cytogenet. , 21 , 35 – 51 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Conway , K. and Costa , M.Nonrandom chromosomal alterations in nickel‐transformed Chinese hamster embryo cells . Cancer Res. , 49 , 6032 – 6038 ( 1989. ). [PubMed] [Google Scholar]
  • 23. ) Klein , C. B. , Conway , K. , Wang , X. W. , Bhamra , R. K. , Lin , X. , Cohen , M. D. , Annab , L. , Barrett , J. C. and Costa , M.Senescence of nickel‐transformed cells by an X chromosome: possible epigenetic control . Science , 251 , 796 – 799 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Dofuku , R. , Biedler , J. I. , Spangler , B. A. and Old , L. J.Trisomy of chromosome 15 in spontaneous leukemia of AKR mice . Proc. Natl. Acad. Sci. USA , 72 , 1515 – 1517 ( 1975. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. ) Spira , J. , Wiener , F. , Ohno , S. and Klein , G.Is trisomy cause or consequence of murine T‐cell leukemia development? Studies on Robertsonian translocation mice . Proc. Natl. Acad. Sci. USA , 76 , 6619 – 6621 ( 1979. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. ) Oshimura , M. , Fitzgerald , D. J. , Kitamura , H. , Nettesheim , P. and Barrett , J. C.Cytogenetic changes in rat tracheal epithelial cells during early stages of carcinogen‐induced neoplastic progression . Cancer Res. , 48 , 702 – 708 ( 1988. ). [PubMed] [Google Scholar]
  • 27. ) Suzuki , K. , Yasuda , N. , Suzuki , F. , Nikaido , O. and Watanabe , M.Trisomy of chromosome 9q: specific chromosome change associated with tumorigenicity during the process of X‐ray‐induced neoplastic transformation in golden hamster embryo cells . Int. J. Cancer , 44 , 1057 – 1061 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Watanabe , M. , Suzuki , K. and Kodama , S.Karyotypic changes with neoplastic conversion in morphologically transformed golden hamster embryo cells induced by X‐rays . Cancer Res. , 50 , 760 – 765 ( 1990. ). [PubMed] [Google Scholar]
  • 29. ) Klein , G.The role of gene dosage and genetic transpositions in carcinogenesis . Nature , 294 , 313 – 318 ( 1981. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Koprowski , H. , Herlyn , M. , Balaban , G. , Parmiter , A. , Ross , A. and Nowell , P.Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma . Somat. Cell Mol. Genet. , 11 , 297 – 302 ( 1985. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Borek , C. , Ong , A. and Mason , H.Distinctive transforming genes in X‐ray‐transformed mammalian cells . Proc. Natl. Acad. Sci. USA , 84 , 794 – 798 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES