Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1996 Jan;87(1):5–9. doi: 10.1111/j.1349-7006.1996.tb00192.x

Disturbance of the Cell Cycle with Colchicine Enhances the Growth Advantage of Diethylnitrosamine‐initiated Hepatocytes in Rats

Masahiro Tsutsumi 1, Kazuo Ohashi 1, Toshifumi Tsujiuchi 1, Eisaku Kobayashi 1, Kunihiko Kobitsu 1, Hiromichi Kitada 1, Toshimitu Majima 1, Eijiro Okajima 1, Takehiro Endoh 1, Kiyohiko Hasegawa 1, Toshio Mori 2, Yoichi Konishi 1
PMCID: PMC5920972  PMID: 8609048

Abstract

The effect of cell cycle disturbance due to colchicine on the induction of enzyme‐altered foci during liver regeneration in rats was studied. For initiation, diethylnitrosamine (DEN) at a dose of 10 mg/ kg was injected intraperitoneally and partial hepatectomy (PH) was performed 4 h thereafter. Colchicine at doses of 0, 0.1, 0.25 and 0.5 mg/kg was injected intraperitoneally 1 and 3 days after the initiation, followed by application of selection pressure consisting of 2‐acetylaminofluorene (AAF) and carbon tetrachloride (CCl4) administration. As end point lesions, γ–glutamyltransferase (GGT)‐positive enzyme‐altered foci were assayed at week 5. There was no significant effect of colchicine on numbers of foci. However, a significant, dose‐dependent increase in the area of GGT‐positive lesions in the groups treated with colchicine was observed. Bromodeoxyuridine labeling indices were higher in foci induced in colchicine‐treated rats than in the untreated rats. In a separate experiment, serum glutamic pyruvic transaminase was not increased significantly after DEN and colchicine treatment, and the mitotic index at 6 days after PH was increased in the liver of colchicine‐treated rats. These results suggest that the cell cycle disturbance induced by colchicine causes more pronounced selective growth of cells initiated by DEN and colchicine, and this experimental model may be useful for analyzing the mechanisms underlying that growth advantage and the effects of cell cycle abnormalities in liver carcinogenesis.

Keywords: Colchicine, Cell cycle, Carcinogenesis, Rat, Liver

Full Text

The Full Text of this article is available as a PDF (295.0 KB).

REFERENCES

  • 1. ) Murray , A. W. . Creative blocks: cell‐cycle checkpoints and feedback controls . Nature , 359 , 599 – 604 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) El‐Deiry , W. S. , Tokino , T. , Velculescu , V. E. , Levy , D. B. , Paarsons , R. , Trent , J. M. , Lin , D. , Mercer , W. E. , Kinzler , K. W. and Vogelstein , B. . Waf1, a potential mediator of p53 tumor suppression . Cell , 75 , 817 – 825 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Hinds , P. W. , Dowdy , S. F. , Eaton , E. N. , Arnold , A. and Weinberg , R. A. . Function of a human cyclin gene as an oncogene . Proc. Natl. Acad. Sci. USA , 91 , 709 – 713 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. ) Kamb , A. , Gruis , N. A. , Weaver‐Feldhaus , J. , Liu , Q. , Harshman , S. , Tavtigian , S. V. , Stockert , E. , Day , R. S. , III , Johnson , B. E. and Skolnick , M. H. . A cell cycle regulator potentially involved in genesis of many tumor types . Science , 264 , 436 – 440 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Hartung , E. F. . Colchicine and its analogs in gout . Arthritis Rheum. , 4 , 18 – 32 ( 1961. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Harris , M. . Polyploid series of mammalian cells . Exp. Cell Res. , 66 , 329 – 336 ( 1971. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Rizzoni , M. and Palitti , F. . Regulatory mechanism of cell division . Exp. Cell Res. , 77 , 450 – 458 ( 1973. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) DeWald , M. G. , Scarma , R. C. , Kung , A. W. , Wong , H. E. , Sherwood , S. W. and Schimke , R. T. . Heterogeneity in the mitotic checkpoint control of BALB/3T3 cells and a correlation with gene amplification propensity . Cancer Res. , 54 , 5064 – 5070 ( 1994. ). [PubMed] [Google Scholar]
  • 9. ) Higgins , G. M. and Anderson , R. M. . Experimental pathology of the liver. 1. Restoration of the liver of the white rat following partial surgical removal . Arch. Pathol. Lab. Med. , 12 , 1186 – 1202 ( 1931. ). [Google Scholar]
  • 10. ) Cayama , E. , Tsuda , H. , Sarma , D. S. R. and Farber , E. . Initiation of chemical carcinogenesis requires cell proliferation . Nature , 275 , 60 – 61 ( 1978. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Rutenberg , A. M. , Kim , H. , Fishbein , J. W. , Hanker , J. S. , Wasserkrug , H. K. and Seligman , A. J. . Histochemical and ultrastructural demonstration of gamma‐glutamyltrans‐peptidase activity . J. Histochem. Cytochem. , 17 , 517 – 526 ( 1969. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Hsu , S. M. , Raine , L. and Fanger , H. . Use of avidin‐biotin‐peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures . J. Histochem. Cytochem. , 29 , 577 – 580 ( 1981. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Saka , Y. , Fantes , P. , Sutsni , T. , McInerny , C. , Creanor , J. and Yanagida , M. . Fission yeast cut5 links nuclear chromatin and M phase regulator in the replication checkpoint control . EMBO J. , 13 , 5319 – 5329 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. ) Takahashi , K. , Yamada , H. and Yanagida , M. . Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality . Mol. Biol. Cell. , 5 , 1145 – 1158 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. ) Harper , J. W. , Adami , J. W. , Wei , N. , Keyomarsi , K. and Elledge , S. J. . The p21 cdk‐interacting protein cip1 is a potent inhibitor of G1 cyclin‐dependent kinases . Cell , 75 , 805 – 816 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 16. ) Nobori , T. , Miura , K. , Wu , D. J. , Lois , A. , Takabayashi , K. and Carson , D. A. . Deletions of the cyclin‐dependent kinase‐4 inhibitor gene in multiple human cancers . Nature , 368 , 753 – 756 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) Cross , S. M. , Sanchez , C. A. , Morgan , C. A. , Schimke , M. K. , Ramel , S. , Idzerda , R. L. , Raskind , W. H. and Reid , B. J. . A p53‐dependent mouse spindle checkpoint . Science , 267 , 1353 – 1356 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Livingstone , L. R. , White , A. , Sprouse , J. , Livanos , E. , Jacks , T. and Tlsty , T. D. . Altered cell cycle arrest and gene amplification potential accompany loss of wild‐type p53 . Cell , 70 , 923 – 935 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Yin , Y. , Tainsky , M. A. , Bischoff , F. Z. , Strong , L. C. and Wahl , G. M. . Wild‐type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles . Cell , 70 , 937 – 948 ( 1992. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES