Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1996 Dec;87(12):1259–1262. doi: 10.1111/j.1349-7006.1996.tb03141.x

Presence in Pieris rapae of Cytotoxic Activity against Human Carcinoma Cells

Kotaro Koyama 1, Keiji Wakabayashi 1,, Mitsuko Masutani 1, Kazunori Koiwai 2, Masahiko Watanabe 1, Shigeru Yamazaki 1, Takuo Kono 1, Keizaburo Miki 2, Takashi Sugimura 1
PMCID: PMC5921024  PMID: 9045961

Abstract

Cytotoxic activity in extracts of pupae and adults of various kinds of butterflies and moths was tested in vitro against the human gastric carcinoma cell line, TMK‐1, which was chosen as an example of human carcinoma cells. Among the species examined, cytotoxicity was limited to Pieris rapae, Pieris napi and Pieris brassicae. Activity was found down to a dilution of 1/104, while with the other butterflies and moths no activity was observed, even at 1/102. When the cytotoxicity of the three developmental stages, larvae, pupae and adults, of Pieris rapae was compared, the pupae showed the strongest activity, the IC50 against TMK‐1 cells being at the 1/106 dilution. For larvae and adults, the respective IC50 values were at the 1/105 and 5/105 dilutions. The active principle in the pupae of Pieris rapae was found to be heat‐labile and not extractable with organic solvents, but precipitated with ammonium sulfate and digested by proteases, suggesting that it is a protein. This cytotoxic factor was named pierisin.

Keywords: Cytotoxicity, Gastric carcinoma cell line, Butterfly, Pieris rapae, Pierisin

Full Text

The Full Text of this article is available as a PDF (391.6 KB).

REFERENCES

  • 1. ) Boman , H. G. and Hultmark , D.Cell‐free immunity in insects . Ann. Rev. Microbiol. , 41 , 103 – 126 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) van Hofsten , P. , Faye , I. , Kockum , K. , Lee , J.‐Y. , Xanthopoulos , K. G. , Boman , I. A. , Boman , H. G. , Engstrom , Å. , Andreu , D. and Merrifield , R. B.Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Haylophom cecropia . Proc. Natl. Acad. Set. USA , 82 , 2240 – 2243 ( 1985. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. ) Hultmark , D. , Engstrom , Å. , Bennich , H. , Kapur , R. and Boman , H. G.Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae . Eur. J. Biochem. , 127 , 207 – 217 ( 1982. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Steiner , H. , Hultmark , D. , Engstrom , Å. , Bennich , H. and Boman , H. G.Sequence and specificity of two antibacterial proteins involved in insect immunity . Nature , 292 , 246 – 248 ( 1981. ). 7019715 [Google Scholar]
  • 5. ) Dickinson , L. , Russell , V. and Dunn , P. E.A family of bacteria‐regulated, cecropin D‐like peptides from Manduca sexta . J. Biol. Chem. , 263 , 19424 – 19429 ( 1988. ). [PubMed] [Google Scholar]
  • 6. ) Kylsten , P. , Samakovlis , C. and Hultmark , D.The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection . EMBO J. 9 , 217 – 224 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. ) Fujiwara , S. , Imai , J. , Fujiwara , M. , Yaeshima , T. , Kawashima , T. and Kobayashi , K.A potent antibacterial protein in royal jelly . J. Biol. Chem. , 265 , 11333 – 11337 ( 1990. ). [PubMed] [Google Scholar]
  • 8. ) Lambert , J. , Keppi , E. , Dimarcq , J.‐L. , Wicker , C. , Reichhart , J.‐M. , Dunbar , B. , Lepage , P. , Dorsselaer , A. V. , Hoffmann , J. , Fothergill , J. and Hoffmann , D.Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides . Proc. Natl. Acad. Sci. USA , 86 , 262 – 266 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. ) Matsuyama , K. and Natori , S.Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina . J, Biol. Chem. , 263 , 17117 – 17121 ( 1988. ). [PubMed] [Google Scholar]
  • 10. ) Komano , H. , Nozawa , R. , Mizuno , D. and Natori , S.Measurement of Sarcophaga peregrina lectin under various physiological conditions by radioimmunoassay , J. Biol. Chem. , 258 , 2143 – 2147 ( 1983. ). [PubMed] [Google Scholar]
  • 11. ) Natori , S.Dual function of insect immunity proteins in defense and development . Res. Immunol. , 141 , 938 – 939 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Kubo , T. and Natori , S.Purification and some properties of a lectin from the hemolymph of Periplaneta americana (American cockroach) . Eur. J. Biochem. , 168 , 75 – 82 ( 1987. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Lackie , A. M. and Vasta , G. R.The role of galactosyl‐binding lectin in the cellular immune response of the cockroach Periplaneta americana (Dictyoptera) . Immunology , 64 , 353 – 357 ( 1988. ). [PMC free article] [PubMed] [Google Scholar]
  • 14. ) Itoh , A. , Iizuka , K. and Natori , S.Antitumor effect of Sarcophaga lectin on murine transplanted tumors . Jpn. J. Cancer Res. , 76 , 1027 – 1033 ( 1985. ). [PubMed] [Google Scholar]
  • 15. ) Ochiai , A. , Yasui , W. and Tahara , E.Growth‐promoting effect of gastrin on human gastric carcinoma cell line TMK‐1 . Jpn. J. Cancer Res. (Gann) , 76 , 1064 – 1071 ( 1985. ). [PubMed] [Google Scholar]
  • 16. ) Koyama , K. , Akiyama , K. , Kawahara , H. , Egashira , A. and Murakami , H.Alloimmunization with cultured human stomach cancer cell lines and the establishment of human‐human hybridomas producing monoclonal antibodies . Jpn. J. Cancer Res. , 81 , 967 – 970 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES