Abstract
The role of the adhesion molecule CD44H in the peritoneal adhesion and invasion of cancer cells was assessed using cell lines with low and high peritoneal seeding ability, OCUM‐2M (2M) and OCUM‐2MD3 (2MD3), respectively. The in vitro binding ability to peritoneal components (mesothelial cells, fibroricetin and type I collagen) and invasive ability of 2MD3 cells were higher than those of 2M cells. The expression level of CD44H on 2MD3 cells was higher than that on 2M cells as determined by western blot analysis and flow cytometry. The adhesiveness of 2MD3 cells to hyaluronic acid, which is expressed on the surfaces of mesothelial cells, was greater than that of 2M cells. The binding ability of 2MD3 cells to mesothelial cells was inhibited in the presence of anti‐CD44H monoclonal antibody, but that of 2M cells was not. These results suggested that the 2MD3 cell binding to mesothelial cells is regulated by the CD44‐hyaluronic acid dependent system. The in vitro binding to submesothelial components and the invasiveness of 2MD3 cells were also inhibited in the presence of anti‐CD44H antibody. The in vivo inoculation of 2MD3 cells treated with an anti‐CD44H antibody resulted in a significant prolongation of survival time as compared with control mice that were inoculated with 2MD3 cells alone. In conclusion, CD44H was associated with attachment not only to hyaluronic acid on mesothelial cells, but also to peritoneal stromal components. Thus, CD44H may play an important role in cancer cell binding and invasion in the peritoneal dissemination of scirrhous gastric cancer cells.
Keywords: Peritoneal dissemination, Scirrhous gastric cancer, Mesothelial cell, Adhesion, CD44H
Full Text
The Full Text of this article is available as a PDF (597.2 KB).
REFERENCES
- 1. ) Tahara , E.Growth factors and oncogenes in human gastrointestinal carcinomas . J. Cancer Res. Clin. Oncol. , 116 , 121 – 131 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Sowa , M. , Kato , Y. , Nishimura , M. , Yoshino , H. , Kubo , T. and Umeyama , K.Clinicohistochemical studies on type 4 carcinoma of the stomach — with special reference to mucopolysaccharides and sialic acid in tumor tissue . Jpn. J. Surg. , 19 , 153 – 162 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Birbeck , M. S. C. and Wheatley , D. N.An electron microscopic study of the invasion of ascites tumor cells into the abdominal wall . Cancer Res. , 25 , 490 – 497 ( 1965. ). [PubMed] [Google Scholar]
- 4. ) Kimura , A. , Koga , S. , Kudoh , H. and Iitsuka , Y.Peritoneal mesothelial cell injury factors in rat cancerous ascites . Cancer Res. , 45 , 4330 – 4333 ( 1985. ). [PubMed] [Google Scholar]
- 5. ) Kiyasu , Y. , Kaneshima , S. and Koga , S.Morphogenesis of peritoneal dissemination in human gastric cancer . Cancer Res. , 41 , 1236 – 1239 ( 1981. ). [PubMed] [Google Scholar]
- 6. ) Kaneshima , S. , Kudo , H. , Kosaka , H. , Iitsuka , Y. , Kimachi , H. , Takeuchi , T. and Koga , S.A scanning electron microscopic study on implantation of Ehrlich ascites tumor cells in the peritoneal layer . Yonago Acta Med. , 20 , 101 – 107 ( 1976. ). [PubMed] [Google Scholar]
- 7. ) Cannistra , S. A. , Kansas , G. S. , Niloff , J. , DeFranzo , B. , Kim , Y. and Ottensmeier , C.Binding of ovarian cancer cells to peritoneal mesothelium in vivo is partly mediated by CD44H . Cancer Res. , 53 , 3830 – 3838 ( 1993. ). [PubMed] [Google Scholar]
- 8. ) Hamura , Y. , Ito , A. , Okada , Y. and Mori , Y.Hyaluronic acid metabolism in inflamed mesenterium of guinea pig . Res. Commun. Chem. Pathol. Pharmacol. , 66 , 311 – 327 ( 1989. ). [PubMed] [Google Scholar]
- 9. ) Leak , L. V.Interaction of the peritoneal cavity to intraperitoneal stimulation. A peritoneal model system to monitor cellular and extracellular events in the formation of granulation tissue . Am. J. Anat. , 173 , 171 – 183 ( 1985. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Jalkanen , S. , Bargatze , R. F. , de Los Toyos , J. and Butcher , E. C.Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85‐95kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells . J. Cell Biol. , 105 , 983 – 990 ( 1987. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. ) Hoffman , M. , Rudy , W. , Zoller , M. , Tolg , C. , Ponta , H. , Herrlich , P. and Gunther , U.CD44 splice variants confer metastatic behavior in rats; homologous sequences are expressed in human tumor cell lines . Cancer Res. , 51 , 5292 – 5297 ( 1991. ). [PubMed] [Google Scholar]
- 12. ) Thomas , L. , Byers , H.R. , Vink , J. and Stamenkovic , I.CD44H regulates tumor cell migration on hyaluronate‐coated substrate . J. Cell Biol. , 118 , 971 – 977 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. ) Yashiro , M. , Chung , Y. S. , Nishimura , S. , Inoue , T. and Sowa , M.Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice . Clin. Exp. Metastasis , 14 , 43 – 54 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Yashiro , M. , Chung , Y. S. , Nishimura , S. and Sowa , M.Establishment of two new scirrhous gastric cancer cell lines: analysis of factors associated with disseminated metastasis . Br. J. Cancer , 72 , 1200 – 1210 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. ) Laemmli , U. K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Nature , 227 , 680 – 685 ( 1970. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Jonjic , N. , Peri , G. , Bernasconi , S. , Sciacca , F. L. , Colotta , F. , Pelicci , P. G. , Lanfrancone , L. and Mantovani , A.Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells . J. Exp. Med. , 176 , 1165 – 1174 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. ) Rice , G. E. , Munro , J. M. and Bevilacqua , P. B.Inducible cell adhesion molecule 110 (INCAM‐110) is an endothelial receptor for lymphocytes. A CD11/CD18‐independent adhesion mechanism . J. Exp. Med. , 171 , 1369 – 1374 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. ) Dustin , M. L. , Rothlein , R. , Bhan , A. K. , Dinarello , C. A. and Springer , T. A.Induction by IL 1 and interferon‐γ: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM‐1) . J. Immunol. , 137 , 245 – 254 ( 1986. ). [PubMed] [Google Scholar]
- 19. ) Stupack , D. G. , Stewart , S. , Carter , W. G. , Wayner , E. A. and Wilkins , J. A.B lymphocyte fibronectin receptors: expression and utilization . Scand. J. Immunol. , 34 , 761 – 769 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Kleinman , H. K. , McGarvey , M. L. , Hassell , J. R. , Star , V. L. , Cannon , F. B. , Laurie , G. W. and Martin , G. R.Basement membrane complexes with biological activity . Biochemistry , 25 , 312 – 318 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Albini , A. , Iwamoto , Y. , Kleinman , H. K. , Martin , G. R. , Aaronson , S. A. , Kozlowski , J. M. and McEwan , R. N.A rapid in vitro assay for quantitating the invasive potential of tumor cells . Cancer Res. , 47 , 3239 – 3245 ( 1987. ). [PubMed] [Google Scholar]
- 22. ) Washington , K. , Gottfried , M. R. and Telen , M. J.Expression of the cell adhesion molecule CD44 in gastric adenocarcinomas . Hum. Pathol. , 25 , 1043 – 1049 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Gunthert , U. , Hoffman , M. , Rudy , W. , Reber , S. , Zoller , M. , Haussmann , I. , Matzku , S. , Wenzel , A. , Ponta , H. and Herrlich , P.A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells . Cell , 65 , 13 – 25 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Stamenkovic , I. , Aruffo , A. , Amiot , M. , and Seed , B.The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate‐bearing cells . EMBO J. , 10 , 343 – 348 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. ) Screaton , G.R. , Bell , M. V. , Jackson , D. G. , Cornelis , F. B. , Gerth , U. and Bell , J. I.Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons . Proc. Natl. Acad. Sci. USA , 89 , 12160 – 12164 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. ) Merzak , A. , Koocheckpour , S. and Pilkington , G. J.CD44 mediates human glioma cell adhesion and invasion in vitro . Cancer Res. , 54 , 3988 – 3992 ( 1994. ). [PubMed] [Google Scholar]
- 27. ) Cooper , D. L. , Dougherty , G. , Harn , H. J. , Jackson , S. , Baptist , E. W. , Byers , J. , Datta , A. , Phillips , G. and Isola , N. R.The complex CD44 transcriptional unit; alternative splicing of three internal exons generates the epithelial form of CD44 . Biochem. Biophys. Res. Commun. , 182 , 569 – 578 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Heider , K. H. , Hofmann , M. , Hors , E. , van den Berg , F. , Ponta , H. , Herrlich , P. and Pals , S. T.A human homologue of the rat metastasis‐associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps . J. Cell Biol. , 120 , 227 – 233 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. ) Tanabe , K. K. , Ellis , L. M. and Saya , H.Expression of CD44R1 adhesion molecule in colon carcinomas and metastasis . Lancet , 341 , 725 – 726 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 30. ) Jalkanen , S. and Jalkanen , M.Lymphocyte CD44 binds the COOH‐terminal heparin‐binding domain of flbronectin . J. Cell Biol. , 116 , 817 – 825 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. ) Faassen , A. E. , Mooradian , D. L. , Tranquillo , R. T. , Dickinson , R. B. , Letourneau , P. C. , Oegema , T. R. and McCarthy , J. B.Cell surface CD44‐related chondroitin sulfate proteoglycan is required for transforming growth factor‐β‐stimulated mouse melanoma cell motility and invasive behavior on type I collagen . J. Cell Sci. , 105 , 501 – 511 ( 1993. ). [DOI] [PubMed] [Google Scholar]