Abstract
The mechanism of resistance to 5‐fluorouracil (5‐FU) was studied with NUGC‐3/5FU/L, a human stomach cancer cell line which had acquired resistance as a consequence of repeated 5‐day exposures to stepwise‐increasing concentrations of 5‐FU in vitro. NUGC‐3/5FU/L was 200‐fold and over 16‐fold resistant to 96‐h and 1‐h exposures to 5‐FU, respectively. NUGC‐3/5FU/L incorporated less 5‐FU into RNA, indicating resistance to the RNA‐directed action of 5‐FU. On the other hand, NUGC‐3/5FU/L also showed resistance to in situ thymidylate synthase (TS) inhibition by 5‐FU. Polymerase chain reaction‐single‐strand conformation polymorphism analysis of TS cDNA and a FdUMP ligand binding assay showed that quantitative and qualitative alterations of TS are not responsible for this resistance. In contrast, the ability to metabolize 5‐FU to its active metabolites, FUTP and FdUMP, was reduced in NUGC‐3/5FU/L. We found that not only the activities of uridine phosphorylase/kinase and orotate phosphoribosyl‐transferase (OPRT), but also the level of phosphoribosyl pyrophosphate, a cosubstrate for OPRT, were significantly lower in NUGC‐3/5FU/L than in the parent NUGC‐3. These results indicated that resistance to 5‐FU in NUGC‐3/5FU/L is due to reduced activities of 5‐FU‐anabolizing enzymes, but not to an alteration of TS. 2′‐Deoxyinosine effectively enhanced TS inhibition by 5‐FU in the resistant cells, thus markedly sensitizing them to 5‐FU.
Keywords: 5‐Fluorouracil, Mechanism of resistance, Human stomach cancer line, Anabolizing enzyme, 2′‐Deoxyinosine
Full Text
The Full Text of this article is available as a PDF (539.2 KB).
REFERENCES
- 1).Bapat , A. R. , Zarow , C. and Danenberg , P. V.Human leukemic cells resistant to 5‐fluoro‐2′‐deoxyuridine contain a thymidylate synthetase with lower affinity for nucleotides . J. Biol. Chem. 258 , 4130 – 4136 ( 1983. ). [PubMed] [Google Scholar]
- 2).Fernandes , D. J. and Cranford , S. K.Resistance of CCRF‐CEM cloned sublines to 5‐fluorodeoxyuridine associated with enhanced phosphatase activities . Biochem. Pharmacol. 34 , 125 – 132 ( 1985. ). [DOI] [PubMed] [Google Scholar]
- 3).Sobrero , A. F. , Moir , R. D. , Bertino , J. R. and Handschumacher , R. E.Defective facilitated diffusion of nucleosides, a primary mechanism of resistance to 5‐fluoro‐2′‐deoxyuridine in the HCT‐8 human carcinoma line . Cancer Res. 45 , 3155 – 3160 ( 1985. ). [PubMed] [Google Scholar]
- 4).Sobrero , A. F. , Handschumacher , R. E. and Bertino , J. R.Highly selective drug combination for human colon cancer cells resistant in vitro to 5‐fluoro‐2′‐deoxyuridine . Cancer Res. 45 , 3161 – 3163 ( 1985. ). [PubMed] [Google Scholar]
- 5).Berger , S. H. , Jenh , C.‐H. , Johnson , L. F. and Berger , F. G.Thymidylate synthase overproduction and gene amplification in fluorodeoxyuridine‐resistant human cells . Mol. Pharmacol. 28 , 461 – 467 ( 1985. ). [PubMed] [Google Scholar]
- 6).Berger , S. H. and Berger , F. G.Thymidylate synthase as a determinant of 5‐fluoro‐2′‐deoxyuridine response in human colonic tumor cell lines . Mol. Pharmacol. 34 , 474 – 479 ( 1988. ). [PubMed] [Google Scholar]
- 7).Berger , S. H. , Barbour , K. W. and Berger , F. G.A naturally occurring variation in thymidylate synthase structure is associated with a reduced response to 5‐fluoro‐2′‐deoxyuridine in a human colon tumor cell line . Mol. Pharmacol. 34 , 480 – 484 ( 1988. ). [PubMed] [Google Scholar]
- 8).Canman , C. E. , Tang , H.‐Y. , Normolle , D. P. , Lawrence , T. S. and Maybaum , J.Variations in patterns of DNA damage induced in human colorectal tumor cells by 5‐fluorodeoxyuridine: implications for mechanisms of resistance and cytotoxicity . Proc. Natl. Acad. Sci. USA 89 , 10474 – 10478 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9).Barbour , K. W. , Hoganson , D. K. , Berger , S. H. and Berger , F. G.A naturally occurring tyrosine to histidine replacement at residue 33 of human thymidylate synthase confers resistance to 5‐fluoro‐2′‐deoxyuridine in mammalian and bacterial cells . Mol. Pharmacol. 42 , 242 – 248 ( 1992. ). [PubMed] [Google Scholar]
- 10).Zhang , Z.‐G. , Malmberg , M. , Yin , M.‐B. , Slocum , H. K. and Rustum , Y. M.Isolation and characterization of a human ileocecal carcinoma cell line (HCT‐8) subclone resistant to fluorodeoxyuridine . Biochem. Pharmacol. 45 , 1157 – 1164 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 11).Davis , S. T. and Berger , S. H.Variation in human thymidylate synthase is associated with resistance to 5‐fluoro‐2′‐deoxyuridine . Mol. Pharmacol. 43 , 702 – 708 ( 1993. ). [PubMed] [Google Scholar]
- 12).Parker , W. B. and Cheng , Y. C.Metabolism and mechanism of action of 5‐fluorouracil . Pharmacol. Ther. 48 , 381 – 395 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 13).Aschele , C. , Sobrero , A. , Faderan , M. A. and Bertino , J. R.Novel mechanism(s) of resistance to 5‐fluorouracil in human colon cancer (HCT‐8) sublines following exposure to two different clinically relevant dose schedules . Cancer Res. 52 , 1855 – 1864 ( 1992. ). [PubMed] [Google Scholar]
- 14).Copur , S. , Aiba , K. , Drake , J. C. , Allegro , C. A. and Chu , E.Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5‐fluorouracil . Biochem. Pharmacol. 49 , 1419 – 1426 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 15).Houghton , J. A. , Maroda , S. J. , Jr. , Phillips , J. O. and Houghton , P. J.Biochemical determinants of responsiveness to 5‐fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice . Cancer Res. 41 , 144 – 149 ( 1981. ). [PubMed] [Google Scholar]
- 16).Houghton , J. A. , Weiss , K. D. , Williams , L. G. , Torrance , P. M. and Houghton , P. J.Relationship between 5‐fluoro‐2′‐deoxyuridylate, 2′‐deoxyuridylate, and thymidylate synthase activity subsequent to 5‐fluorouracil administration, in xenografts of human colon adenocarcinomas . Biochem. Pharmacol. 35 , 1351 – 1358 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 17).Spears , C. P. , Gustavsson , B. G. , Berne , M. , Frösing , R. , Bernstein , L. and Hayes , A. A.Mechanisms of innate resistance to thymidylate synthase inhibition after 5‐fluorouracil . Cancer Res. 48 , 5894 – 5900 ( 1988. ). [PubMed] [Google Scholar]
- 18).Johnston , P. G. , Lenz , H.‐J. , Leichman , C. G. , Danenberg , K. D. , Allegra , C. J. , Danenberg , P. V. and Leichman , L.Thymidylate synthase gene and protein expression correlate and are associated with response to 5‐fluorouracil in human colorectal and gastric tumors . Cancer Res. 55 , 1407 – 1412 ( 1995. ). [PubMed] [Google Scholar]
- 19).Akiyama , S. , Amo , H. , Watanabe , T. , Matsuyama , M. , Sakamoto , J. , Imaizumi , M. , Ichihashi , H. , Kondo , T. and Takagi , H.Characteristics of three human gastric cancer cell lines, NU‐GC‐2, NU‐GC‐3 and NU‐GC‐4 . Jpn. J. Surg. 18 , 438 – 446 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 20).Monks , A. , Scudiero , D. , Hose , C. , Langley , J. , Cronise , P. , Vaigro‐Wolff , A. , Gray‐Goodrich , M. , Campbell , H. , Mayo , J. and Boyd , M.Feasibility of a high‐flux anticancer drug screen using a diverse panel of cultured human tumor cell lines . J. Natl. Cancer Inst. 83 , 757 – 766 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 21).Inaba , M. , Mitsuhashi , J. and Ozawa , S.Kinetic analysis of 5‐fluorouracil action against various cancer cells . Jpn. J. Cancer Res. 81 , 1039 – 1044 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22).Chomczynski , P. and Sacchi , N.Single‐step method of RNA isolation by acid guanidinium thiocyanate‐phenol‐chloroform extraction . Anal. Biochem. 162 , 156 – 159 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 23).Yalowich , J. C. and Kalman , T. I.Rapid determination of thymidylate synthase activity and its inhibition in intact L1210 leukemia cells in vitro . Biochem. Pharmacol. 34 , 2319 – 2324 ( 1985. ). [DOI] [PubMed] [Google Scholar]
- 24).Orita , M. , Iwahana , H. , Kanazawa , H. , Hayashi , K. and Sekiya , T.Detection of polymorphisms of human DNA by gel electrophoresis as single‐strand conformation polymorphisms . Proc. Natl. Acad. Sci. USA 86 , 2766 – 2770 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25).Saiki , R. K. , Gelfand , D. H. , Stoffel , S. , Scharf , S. J. , Higuchi , R. , Horn , G. T. , Mullis , K. B. and Erlich , H. A.Primer‐directed enzymatic amplification of DNA with a thermostable DNA polymerase . Science 239 , 487 – 491 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 26).Kaneda , S. , Nalbantoglu , J. , Takeishi , K. , Shimizu , K. , Gotoh , O. , Seno , T. and Ayusawa , D.Structural and functional analysis of the human thymidylate synthase gene . J. Biol. Chem. 265 , 20277 – 20284 ( 1990. ). [PubMed] [Google Scholar]
- 27).Spears , C. P. , Shahinian , A. H. , Moran , R. G. , Heidelberger , C. and Corbett , T. H.In vivo kinetics of thymidylate synthetase inhibition in 5‐fluorouracil‐sensitive and ‐resistant murine colon adenocarcinomas . Cancer Res. 42 , 450 – 456 ( 1982. ). [PubMed] [Google Scholar]
- 28).Grem , J. L. and Fischer , P. H.Alteration of fluorouracil metabolism in human colon cancer cells by dipyridamole with a selective increase in fluorodeoxyuridine monophosphate levels . Cancer Res. 46 , 6191 – 6199 ( 1986. ). [PubMed] [Google Scholar]
- 29).Peters , G. J. , Laurensse , E. , Leyva , A. , Lankelma , J. and Pinedo , H. M.Sensitivity of human, murine, and rat cells to 5‐fluorouracil and 5′‐deoxy‐5‐fluorouridine in relation to drug‐metabolizing enzymes . Cancer Res. 46 , 20 – 28 ( 1986. ). [PubMed] [Google Scholar]
- 30).Berman , A. M. and Human , L.Regulation of 5‐phospho‐ribosyl 1‐pyrophosphate and of hypoxanthine uptake and release in human erythrocytes by oxypurine cycling . J. Biol. Chem. 265 , 6562 – 6568 ( 1990. ). [PubMed] [Google Scholar]
- 31).Inaba , M. and Mitsuhashi , J.Flow cytometric analysis of cell‐killing actions of 5‐fluorouracil in human colorectal cancer cells . Oncol. Res. 6 , 303 – 309 ( 1994. ). [PubMed] [Google Scholar]
- 32).Houghton , P. J. , Rahman , A. , Will , C. L. , Dolnick , B. J. and Houghton , J. A.Mutation(s) of the thymidylate synthase gene of human adenocarcinoma cells cause a thymidylate synthase‐negative phenotype that can be attenuated by exogenous folates . Cancer Res. 52 , 558 – 565 ( 1992. ). [PubMed] [Google Scholar]
