Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1996 Aug;87(8):816–823. doi: 10.1111/j.1349-7006.1996.tb02105.x

Equivalent Parental Distribution of Frequently Lost Alleles and Biallelic Expression of the H19 Gene in Human Testicular Germ Cell Tumors

Mutsuki Mishina 1, Osamu Ogawa 1, Hidefumi Kinoshita 1, Hiroya Oka 1, Kazuhiro Okumura 1, Kenji Mitsumori 1, Yoshiyuki Kakehi 1, Anthony E Reeve 2, Osamu Yoshida 1,
PMCID: PMC5921178  PMID: 8797887

Abstract

Epigenetic alterations such as genomic imprinting might play an important role in human tumorigenesis, in addition to specific genetic alterations. To clarify the role of genetic and/or epigenetic alterations in the tumorigenesis of testicular germ cell tumors (GCTs), we analyzed 40 primary and 3 metastatic testicular GCTs with regard to specific chromosomal losses and their parental origin. A high incidence of loss of heterozygosity (LOH) was demonstrated on chromosomes 1p, 3p, 11p, and 17p: 9/19 (47%), 18/39 (46%), 13/40 (33%) and 20/36 (56%), respectively. However, there was no correlation between the frequency of LOH on any chromosome and clinicopathological features. Regarding the parental origin of the lost allele at these chromosomes, preferential loss was not demonstrated in this study. To clarify the imprinting status in GCTs, we analyzed the allele‐specific expression of the H19 gene, which is paternally imprinted on chromosome 11p. All of 11 tumors without LOH at this locus showed biallelic expression of H19. Based on previous work demonstrating the biallelic expression of H19 in primordial germ cells and spermatogonia in the mouse germ line, these results suggest that the biallelic expression of H19 in testicular GCTs reflects the characteristics of the original germ cells in which the imprinting marking has been erased and not established, rather than loss of imprinting during tumorigenesis. It is also possible that a failure to re‐establish the imprinting might be an initial event which leads to testicular GCTs.

Keywords: Testicular germ cell tumor, Loss of heterozygosity, Parental origin, Imprinting, H19

Full Text

The Full Text of this article is available as a PDF (459.0 KB).

REFERENCE

  • 1.Fearon , E. R. and Vogelstein , B.A genetic model for colorectal tumorigenesis . Cell , 61 , 759 – 767 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 2.Feinberg , A. P. and Vogelstein , B.Hypermethylation distinguishes genes of some human cancers from their normal counterparts . Nature , 301 , 89 – 92 ( 1983. ). [DOI] [PubMed] [Google Scholar]
  • 3.Sakai , T. , Toguchida , J. , Ohtani , N. , Yandell , D. W. , Rapaport , J. M. and Dryja , T. P.Allele‐specific hypermethylation of the retinoblastoma tumor‐suppressor gene . Am. J. Hum. Genet ., 48 , 880 – 888 ( 1991. ). [PMC free article] [PubMed] [Google Scholar]
  • 4.Herman , J. G. , Latif , F. , Weng , Y. , Lerman , M. I. , Zbar , B. , Liu , S. , Samid , D. , Duan , D. S. R. , Gnarra , J. R. , Linehan , W. M. and Baylin , S. B.Silencing of the VHL tumor‐suppressor gene by DNA methylation in renal carcinoma . Proc. Natl. Acad. Sci. USA , 91 , 9700 – 9704 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Merlo , A. , Herman , J. G. , Mao , L. , Lee , D. J. , Gabrielson , E. , Burger , P. C. , Baylin , S. B. and Sidransky , D.5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers . Nat. Med ., 1 , 686 – 692 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 6.Rainier , S. and Feinberg , A. P.Genomic imprinting, DNA methylation, and cancer . J. Natl. Cancer Inst ., 86 , 753 – 759 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 7.Solter , D.Inertia of the embryonic genome in mammals . Trends Genet ., 3 , 23 – 27 ( 1987. ). [Google Scholar]
  • 8.Schroeder , W. T. , Chao , L. Y. , Dao , D. D. , Strong , L. C. , Pathak , S. , Riccardi , V. , Lewis , W. H. and Saunders , G. F.Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors . Am. J. Hum. Genet ., 40 , 413 – 420 ( 1987. ). [PMC free article] [PubMed] [Google Scholar]
  • 9.Scrable , H. , Cavenee , W. , Ghavimi , F. , Lovell , M. , Morgan , K. and Sapienza , C.A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting . Proc. Natl. Acad. Sci. USA , 86 , 7480 – 7484 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Toguchida , J. , Ishizaki , K. , Sasaki , M. S. , Nakamura , Y. , Ikenaga , M. , Kato , M. , Sugimoto , M. , Kotoura , Y. and Yamamuro , T.Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma . Nature , 338 , 156 – 158 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 11.Ogawa , O. , Eccles , M. R. , Szeto , J. , McNoe , L. A. , Yun , K. , Maw , M. A. , Smith , P. J. and Reeve , A. E.Relaxation of insulin‐like growth factor II gene imprinting implicated in Wilms' tumour . Nature , 362 , 749 – 751 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 12.Zhan , S. , Shapiro , D. N. and Helman , L. J.Activation of an imprinted allele of the insulin‐like growth factor II gene implicated in rhabdomyosarcoma . J. Clin. Invest ., 94 , 445 – 448 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Rainier , S. , Dobry , C. J. and Feinberg , A. P.Loss of imprinting in hepatoblastoma . Cancer Res ., 55 , 1836 – 1838 ( 1995. ). [PubMed] [Google Scholar]
  • 14.Hashimoto , K. , Azuma , C. , Koyama , M. , Ohashi , K. , Kamiura , S. , Nobunaga , T. , Kimura , T. , Tokugawa , Y. , Kanai , T. and Saji , F.Loss of imprinting in choriocarcinoma . Nat. Genet ., 9 , 109 – 110 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 15.Kondo , M. , Suzuki , H. , Ueda , R. , Osada , H. , Takagi , K. , Takahashi , T. and Takahashi , T.Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers . Oncogene , 10 , 1193 – 1198 ( 1995. ). [PubMed] [Google Scholar]
  • 16.de Jong , B. , Oosterhuis , J. W. , Castedo , S. M. M. J. , Vos , A. and te Meerman , G. J.Pathogenesis of adult testicular germ cell tumors. A cytogenetic model . Cancer Genet. Cytogenet ., 48 , 143 – 167 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 17.Bosl , G. J. , Dmitrovsky , E. , Reuter , V. E. , Samaniego , F. , Rodriguez , E. , Geller , N. L. and Chaganti , R. S. K.Isochromosome of chromosome 12: clinically useful marker for male germ cell tumors . J. Natl. Cancer Inst ., 81 , 1874 – 1878 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 18.Castedo , S. M. M. J. , de Jong , B. , Oosterhuis , J. W. , Seruca , R. , te Meerman , G. J. , Dam , A. and Koops , H. S.Cytogenetic analysis of ten human seminomas . Cancer Res ., 49 , 439 – 443 ( 1989. ). [PubMed] [Google Scholar]
  • 19.Lothe , R. A. , Hastie , N. , Heimdal , K. , Fosså , S. D. , Stenwig , A. E. and Børresen , A. L.Frequent loss of 11p13 and 11p15 loci in male germ cell tumours . Genes Chrom. Cancer , 7 , 96 – 101 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 20.Looijenga , L. H. J. , Abraham , M. , Gillis , A. J. M. , Saunders , G. F. and Oosterhuis , J. W.Testicular germ cell tumors of adults show deletions of chromosomal bands 11p13 and 11p15.5, but no abnormalities within the zinc‐finger regions and exons 2 and 6 of the Wilms' tumor I gene . Genes Chrom. Cancer , 9 , 153 – 160 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 21.Murty , V. V. V. S. , Bosl , G. J. , Houldsworth , J. , Meyers , M. , Mukherjee , A. B. , Reuter , V. and Chaganti , R. S. K.Allelic loss and somatic differentiation in human male germ cell tumors . Oncogene , 9 , 2245 – 2251 ( 1994. ). [PubMed] [Google Scholar]
  • 22.Mostofi , F. K. and Sobin , L. H.“Histological Typing of Testis Tumours ,” International Histological Classification of Tumours , Vol. 16 ( 1977. ) WHO; , Geneva . [Google Scholar]
  • 23.International Union against Cancer (UICC). “ TNM Classification of Malignant Tumours ,” 3rd Ed. , pp. 227 – 236 ( 1989. ). Springer‐Verlag; , Berlin . [Google Scholar]
  • 24.Ogawa , O. , Kakehi , Y. , Ogawa , K. , Koshiba , M. , Sugiyama , T. and Yoshida , O.Allelic loss at chromosome 3p characterizes clear cell phenotype of renal cell carcinoma . Cancer Res ., 51 , 949 – 953 ( 1991. ). [PubMed] [Google Scholar]
  • 25.Peng , H. Q. , Hogg , D. , Malkin , D. , Bailey , D. , Gallie , B. L. , Bulbul , M. , Jewett , M. , Buchanan , J. and Goss , P. E.Mutations of the p53 gene do not occur in testis cancer . Cancer Res ., 53 , 3574 – 3578 ( 1993. ). [PubMed] [Google Scholar]
  • 26.Ganguly , S. , Murty , V. V. V. S. , Samaniego , F. , Reuter , V. E. , Bosl , G. J. and Chaganti , R. S. K.Detection of preferential NRAS mutations in human male germ cell tumors by polymerase chain reaction . Genes Chrom. Cancer , 1 , 228 – 232 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 27.Kajii , T. and Ohama , K.Androgenetic origin of hydatidiform mole . Nature , 268 , 633 – 634 ( 1977. ). [DOI] [PubMed] [Google Scholar]
  • 28.Linder , D. , McCaw , B. K. and Hecht , F.Parfhenogenic origin of benign ovarian teratomas . N. Engl. J. Med ., 292 , 63 – 66 ( 1975. ). [DOI] [PubMed] [Google Scholar]
  • 29.Szabó , P. E. and Mann , J. R.Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting . Genes Dev ., 9 , 1857 – 1868 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 30.Walsh , C. , Miller , S. J. , Flam , F. , Fisher , R. A. and Ohlsson , R.Paternally derived H19 is differentially expressed in malignant and nonmalignant trophoblast . Cancer Res ., 55 , 1111 – 1116 ( 1995. ). [PubMed] [Google Scholar]
  • 31.van Gurp , R. J. H. L. M. , Oosterhuis , J. W. , Kalscheuer , V. , Mariman , E. C. M. and Looijenga , L. H. J.Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors . J. Natl. Cancer Inst ., 86 , 1070 – 1075 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 32.Hao , Y. , Crenshaw , T. , Moulton , T. , Newcomb , E. and Tycko , B.Tumor‐suppressor activity of H19 RNA . Nature , 365 , 764 – 766 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 33.Zhang , Y. , Shields , T. , Crenshaw , T. , Hao , Y. , Moulton , T. and Tycko , B.Imprinting of human H19: allele‐specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching . Am. J. Hum. Genet ., 53 , 113 – 124 ( 1993. ). [PMC free article] [PubMed] [Google Scholar]
  • 34.Steenman , M. J. C. , Rainier , S. , Dobry , C. J. , Grundy , P. , Horon , I. L. and Feinberg , A. P.Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour . Nat. Genet ., 7 , 433 – 439 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 35.Moulton , T. , Crenshaw , T. , Hao , Y. , Moosikasuwan , J. , Lin , N. , Dembitzer , F. , Hensle , T. , Weiss , L. , McMorrow , L. , Loew , T. , Kraus , W. , Gerald , W. and Tycko , B.Epigenetic lesions at the H19 locus in Wilms' tumour patients . Nat. Genet ., 7 , 440 – 447 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 36.Taniguchi , T. , Sullivan , M. J. , Ogawa , O. and Reeve , A. E.Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor . Proc. Natl. Acad. Sci. USA , 92 , 2159 – 2163 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES