Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1997 Nov;88(11):1108–1116. doi: 10.1111/j.1349-7006.1997.tb00336.x

Photodynamic Effect of Polyethylene Glycol–modified Fullerene on Tumor

Yasuhiko Tabata 1, Yoshiyuki Murakami 1, Yoshito Ikada 1,
PMCID: PMC5921311  PMID: 9439687

Abstract

Fullerene (Cm) efficiently generates singlet oxygen when irradiated with light, and thus should have a photodynamic effect on tumors, if it is accumulated in the tumor tissue. To explore tumor targeting of CU, we chemically modified the water–insoluble C60 with polyethylene glycol (PEG), not only to make it soluble in water, but also to enlarge its molecular size. When injected intravenously into mice carrying a tumor mass in the hack sulicutis, the C60–PEG conjugate exhibited higher accumulation and more prolonged retention in the tumor tissue than in normal tissue. The conjugate was excreted without being accumulated in any specific organ. Following intravenous injection of CorPEG conjugate or Photofrin® to tumor–bearing mice, coupled with exposure of the tumor site to visible light, the volume increase of the tumor mass was suppressed and the C60 conjugate exhibited a stronger suppressive effect than Photofrin. Histological examination revealed that conjugate injection plus light irradiation strongly induced tumor necrosis without any damage to the overlying normal skin. The antitumor effect of the conjugate increased with increasing irradiation power and Cm dose, and cures were achieved by treatment with a dose of 424 μg/kg at an irradiation power of 107 J/cm2. These findings indicate that PEG–modified cm is a candidate agent for photodynamic tumor therapy.

Keywords: Fullerene, Polyethylene glycol, Chemical conjugation, Photodynamic effect, Tumor

Full Text

The Full Text of this article is available as a PDF (595.5 KB).

REFERENCES

  • 1. ) Foote , C. S. , Wexler , S. and Ando , S.Chemistry of singlet molecular oxygen . J. Am. Chem. Soc. , 90 , 975 – 981 ( 1968. ). [Google Scholar]
  • 2. ) Arbogast , J. W. , Darmanyan , A. P. , Foote , C. S. , Rubin , Y. , Diedrich , F. N. , Alvarez , M. M. , Anz , S. J. and Whetten , R. L.Photophysical properties of C60 J. Phys. Chem. , 95 , 11 – 12 ( 1991. ). [Google Scholar]
  • 3. ) Matsumura , Y , and Maeda , H.A new concept for macro–molecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumoragentSmancs . Cancer Res. , 46 , 6387 – 6392 ( 1986. ). [PubMed] [Google Scholar]
  • 4. ) Maeda , H. and Matsumura , Y.Tumoritropic and lymphotropic principles of macromolecular drugs . Crit. Rev. Ther, Drug Carrier Syst. , 6 , 193 – 210 ( 1989. ). [PubMed] [Google Scholar]
  • 5. ) Seymour , L. W.Passive tumor targeting of soluble macromolcules and drug conjugates . Crit. Rev. Ther. Drug Carrier Syst , 9 , 135 – 187 ( 1992. ). [PubMed] [Google Scholar]
  • 6. ) Heuser , L. S. and Miller , F. N.Differential macromolecular leakage from the vasculature of tumors . Cancer , 57 , 461 – 464 ( 1986. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Dvorak , H. F. , Nagy , J.A. , Dvorak , J. T. and Dvorak , A. M.Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macro–molecules . Am. J. Pathol. 133 , 95 – 109 ( 1988. ). [PMC free article] [PubMed] [Google Scholar]
  • 8. ) Sung , C. , Youle , R. J. and Dedrick , R. L.Pharmacokinetic analysis of immunotoxin uptake in solid tumors: role of plasma kinetics, capillary permeability, and binding . Cancer Res. , 50 , 7382 – 7392 ( 1990. ). [PubMed] [Google Scholar]
  • 9. ) Gabizin , A. and Papahadjopoulos , D.Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors . Proc. Natl. Acad. Sci. USA , 85 , 6949 – 6953 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. ) Liu , D. , Mori , A. and Huang , L.Role of liposome size and RES blockage in controlling biodistribution and tumor uptake of GM1–containing liposomes . Biochim. Biophys. Acta. 1104 , 95 – 101 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Uchiyama , K. , Nagayasu , A. , Yamagiwa , Y. , Nishida , T. , Harashima , H. and Kiwada , H.Effect of the size and fluidity of liposomes on their accumulation in tumors: a presumptionof their interactionwith tumors . Int. J. Pharm. , 121 , 195 – 203 ( 1995. ). [Google Scholar]
  • 12. ) Katre , N. V.The conjugation of proteins with polyethylene glycol and other polymers. Altering, properties of proteins to enhance their therapeutic potential . Adv. Drug Delivery Rev. , 10 , 91 – 114 ( 1993. ). [Google Scholar]
  • 13. ) Tsutsumi , Y. , Kihira , T. , Tsunoda , S. , Kubo , K. , Miyake , M. , Kanamori , T. , Nakagawa , S. and Mayumi , T.Intravenous administration of polyethylene glycol–modified tumor necrosisfactor–acompletelyregressedsolidtumorin Meth–A murine sarcoma model . Jpn. J. Cancer Res. , 85 , 1185 – 1188 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. ) Cunningham‐Rundles , C. , Kazbay , K. , Zhou , Z. and Mayer , L.Immunologic effects of low–dose polyethylene glycol–conjugatedrecombinanthumaninterleukin–2 in common variable immunodeficiency . J. Interferon Cyto–kine Res. 15 , 269 – 276 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Yamakoshi , Y. , Yagami , T. , Fukuhara , K. , Sueyoshi , S. and Miyata , N.Solubilization of fullerene into water with polyvinylpyrrolidone applicable to biological tests . J. Chem. Soc. Chem. Commun , 35 , 517 – 518 ( 1994. ). [Google Scholar]
  • 16. ) Chiang , L. Y. and Wang , L. Y.Polyhydroxylated C60: new synthetic opportunities towards dendritic polymers and conducting IPN elastomers . Trend Polym. Sci. , 4 , 298 – 306 ( 1996. ). [Google Scholar]
  • 17. ) Nakajima , N. , Nishi , C. , Li , F.M. and Ikada , Y.Photo–induced cytotoxicity of water–soluble fullerene . Fullerene Sci. Chem. , 4 , 1 – 19 ( 1996. ). [Google Scholar]
  • 18. ) Manolova , N. , Rashkov , L , Beguin , F. and Damme , H. V.Amphiphilic derivatives of fullerenes formed by polymer modification . J. Chem. Soc, Chem. Commun. , 34 , 1725 – 1727 ( 1993. ). [Google Scholar]
  • 19. ) Yamaoka , T. , Yabata , Y. and Ikada , Y.Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice . J. Pharm. Sci. , 83 , 601 – 606 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Winn , H. J.The immune response and the homograft reaction . Natl. Cancer Inst. Monogr , 2 , 113 – 138 ( 1959. ). [PubMed] [Google Scholar]
  • 21. ) Nakajima , S.The tumor–localizing properties of porphyrin derivatives . J.Photochem.Photobiol. , B7 , 189 – 194 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Friedman , S. H. , Decamp , D. L. , Sijbesma , R. P. , Srdanov , Q. , Wudl , F. and Kenyon , G. L.Inhibition of the HIV–1 protease by fullerene derivatives. Model–building studies and experimental verification . J. Am.Chem. Soc. , 115 , 6506 – 6509 ( 1993. ). [Google Scholar]
  • 23. ) Schinazi , R. F. , Sijbesma , R. , Sradanov , G. , Hill , C. L. and Wudl , F.Synthesis and virucidal activity of a water–soluble, configurationally stable, derivatized C6Q fullerene . Antimiviro. Agents Chemo. , 37 , 1707 – 1710 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. ) Tokuyama , H. , Yamago , S. , Nakamura , E. , Shiraki , T. and Sugiura , Y.Photo–induced biochemical activity of fullerene carboxylic acid . J. Am. Chem. Soc. , 115 , 7918 – 7919 ( 1993. ). [Google Scholar]
  • 25. ) Toniolo , C. , Bianco , A. , Maggini , M. , Scorrano , G. , Prato , M. , Marastoni , M. , Tomatis , R. , Spisani , S. , Palu , G. and Blair , E. D.A bioactive fullerene peptide . J. Med, Chem. , 37 , 4558 – 4562 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Boutorine , A. S. , Tokuyama , H. , Takasugi , M. , Isobe , H. , Nakamura , E. and Helene , C.Fullerene–oligonucleotide conjugates. Photo–induced sequence–specific DNA cleavage . Angew. Chem. Int. Ed. Engl , 33 , 2462 – 2465 ( 1994. ). [Google Scholar]
  • 27. ) Yamago , S. , Tokuyama , H. , Nakamura , E. , Kikuchi , K. , Kananishi , S. , Sueki , K. , Nakahara , H. , Enomoto , S. and Ambe , F.In vivo biological behavior of a water–miscible fullerene: 14C–labeled, adsorption, distribution, excretion and acute toxicity . Chem. Biol , 2 , 385 – 389 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Murakami , Y. , Tabata , Y. and Ikada , Y.Tumor accumulation of poly(ethylene glycol) with different molecular weights after intraveous injection . Drug Delivery , 4 , 23 – 31 ( 1997. ). [Google Scholar]
  • 29. ) Svaasand , L. O.Optical dosimetry for direct and interstitial photoradiation therapy of malignant tumors . In “ Porphyrin Localization and Treatment of Tumors ,” ed. Doiron D. R. and Gomer C. J. , pp. 91 – 114 ( 1984. ). Alan R. Liss; , New York . [PubMed] [Google Scholar]
  • 30. ) Dougherty , T. J. , Cooper , M. T. and Mang , T. S.Cutaneous phototoxic occurrences in patients receiving Photofrin . Lasers Surg. Med. , 10 , 485 – 488 ( 1990. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES