Abstract
Although glucuronidation catalyzed by uridine 5′‐diphosphoglucuronosyltransferase (UGT) is a major pathway of drug inactivation in humans, glucuronidation in malignant cells has received little attention as a cause of anti‐cancer drug resistance. In this study, we tried to elucidate the role of SN‐38 glucuronidation in the CPT‐11‐resistant human lung cancer cell line PC‐7/CPT. PC‐7/CPT cells possessed an increased activity to glucuronidate SN‐38 compared to the parent cells, PC‐7, Furthermore, sensitivity of PC‐7/CPT cells to SN‐38 was improved by inhibiting UGT activity. Western and northern blot analyses demonstrated that this increased activity was due to increased levels of UGT protein and mRNA. These results not only imply that npregulation of UGT activity in PC‐7/CPT cells may contribute in part to SN‐38 resistance, hut also illustrate the importance of drug metabolism within malignant cells themselves, as a cause of drug resistance
Keywords: UDP‐glucuronosyltransferase, Drug resistance, CPT‐11, SN‐38, Lung cancer
Full Text
The Full Text of this article is available as a PDF (441.8 KB).
The names of UDP glucuronosyltransferase forms are those recommended by a subcommittee of the IUBMB‐IUPHAR Nomenclature Committee and supported by participants at the 8th International Workshop on Glucurouidation and the UDP Glucnronosyltransferases held in Iowa City, Iowa, May, 1996.
REFERENCES
- 1. ) Burchell , B. , Nebert , D. W. , Nelson , D. R. , Bock , K. W. , lyanagi , T. , Jansen , P. L. M. , Lancet , D. , Mulder , G. J. , Chowdhury , J. R. , Siest , G. , Tephly , T. R. and Mackenzie , P. I.The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence . DNA CellBiol. , 10 , 487 – 494 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Miners , J. O. and Mackenzie , P. I.Drug glucuronidation in humans . Pharmacol. Ther. , 51 , 347 – 369 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Clarke , D. J. and Burchell , B.The uridine diphosphate glucuronosyltransferase multigene family: function and regulation . In “ Handbook of Experimental Pharmacology ” ed. Kaufman F. C. , 112 , pp. 3 – 43 ( 1994. ). Springer Verlag; , Heidelberg . [Google Scholar]
- 4. ) Gessner , T. , Vaughan , L. A. , Beehler , B. C. , Bartels , C. J. and Baker , R. M.Elevated pentose cycle and glucuronyl‐transferase in daunorubicin‐resistant P388 cells . Cancer Res. , 50 , 3921 – 3927 ( 1990. ). [PubMed] [Google Scholar]
- 5. ) Franklin , T. J. , Jacobs , V. , Jones , G. , Pie , P. and Bruneau , P.Glucuronidation associated with intrinsic resistance to mycophenolic acid in human colorectal carcinoma cells . Cancer Res. , 56 , 984 – 987 ( 1996. ). [PubMed] [Google Scholar]
- 6. ) Lavelle , F. , Bissery , M. C. , Andre , A. , Roquet , F. and Riou , J. F.Preclinical evaluation of CPT‐11 and its active metabolite SN‐38 . Semin. Oncol. , 23 ( Suppl. 3 ), 11 – 20 ( 1996. ). [PubMed] [Google Scholar]
- 7. ) Dancey , J. and Eisenhauer , E. A.Current perspectives on camptothecins in cancer treatment . Br. J. Cancer , 74 , 327 – 338 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. ) Rivory , L. P. , Bowles , M. R. , Robert , J. and Pond , S.Conversion of irinotecan (CPT‐11) to its active metabolite, 7‐ethyl‐10‐hydroxycamptothecin (SN‐38), by human liver carboxylesterase . Biochem. Pharmacol. , 52 , 1103 – 1111 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Kawato , Y. , Aonuma , M. , Hirota , Y. , Kuga , H. and Sato , K.Intracelluar roles of SN‐38, a metabolite of the camp‐tothecin derivative CPT‐11, in the antitumor effect of CPT‐11 . Cancer Res. , 51 , 4187 – 4191 ( 1991. ). [PubMed] [Google Scholar]
- 10. ) Atsumi , R. , Suzuki , W. and Hakusui , H.Identification of the metabolites of irinotecan, a new derivative of campto‐thecin, in rat bile and its biliary excretion . Xenobiotica , 21 , 1159 – 1169 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Lokiec , F. , Du Sorbier , B. M. and Sanderink , G. J.Irinotecan (CPT‐11) metabolism in human bile and urine . Clin. Cancer Res. , 2 , 1943 – 1949 ( 1996. ). [PubMed] [Google Scholar]
- 12. ) Haaz , M. C. , Rivory , L. P. and Robert , J.Metabolism of irinotecan (CPT‐11) by human hepatic microsomes: participation of cytochrome p‐450 3A (CYP3A) and drug interaction . Proc. Am. Asso. Cancer Res. , 38 , 17 ( 1997. ). [PubMed] [Google Scholar]
- 13. ) Pommier , Y. , Tanizawa , A. , Okada , K. and Andoh , T.Cellular determinants of sensitivity and resistance to camptothecins . In “ Camptothecins: New Anticancer Agents ” ed. Potmesil M. and Pinedo H. , pp. 123 – 138 ( 1995. ). CRC Press; , Boca Raton . [Google Scholar]
- 14. ) Iyer , L. , King , C. , Tephly , T. and Ratain , M. J.UGT isoform 1.1 (UGT★ 1.1) glucuronidates SN‐38, the active metabolite of irinotecan . Proc. Am. Soc. Clin. Oncol. , 16 , 201a ( 1997. ). [Google Scholar]
- 15. ) Kanzawa , F. , Sugimoto , Y. , Minato , K. , Kasahara , K. , Bungo , M. , Nakagawa , K. , Fujiwara , Y. , Liu , L. F. and Saijo , N.Establishment of a camptothecin analogue (CPT‐1 l)‐resistant cell line of human non‐small cell lung cancer: characterization and mechanism of resistance . Cancer Res. , 50 , 5919 – 5924 ( 1990. ). [PubMed] [Google Scholar]
- 16. ) Kubota , N. , Kanzawa , F. , Nishio , K. , Takeda , Y. , Ohmori , T. , Fujiwara , Y. , Terashima , Y. and Saijo , N.Detection of topoisomerase I gene point mutation in CPT‐11 resistant lung cancer cell line . Biochem. Biophys. Res. Commun. , 188 , 571 – 577 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Yokoi , T. , Narita , M. , Nagai , E. , Hagiwara , H. , Aburada , M. and Kamataki , T.Inhibition of UDP‐glucuronosyl‐transferase by aglycons of natural glucuronides in kampo medicines using SN‐38 as a substrate . Jpn. J. Cancer Res. , 86 , 985 – 989 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. ) Sumiyoshi , H. , Fujiwara , Y. , Ohune , T. , Yamaoka , N. and Yamakido , M.High‐performance liquid chromatographic determination of irinotecan (CPT‐11) and its active metabolite (SN‐38) in human plasma . J. Chromatogr. B , 670 , 309 – 316 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Kanzawa , F. , Nishio , K. , Kubota , N. and Saijo , N.Antitumor activities of a new indolocarbazole substance, NB‐506, and establishment of NB‐506‐resistant cell lines, SBC‐3/NB . Cancer Res. , 55 , 2806 – 2813 ( 1995. ). [PubMed] [Google Scholar]
- 20. ) Mackenzie , P. L , Gonzalez , F. J. and Owens , I. S.Cloning and characterization of DNA complementary to rat liver UDP‐glucuronosyltransferase mRNA . J. Biol Chem. , 259 , 12153 – 12160 ( 1984. ). [PubMed] [Google Scholar]
- 21. ) Chomczynski , P. and Sacchi , N.Single‐step method of RNA isolation by acid guanidinium thiocyanate‐phenol‐chloroform extraction . Anal. Biochem. , 162 , 156 – 159 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 22. ) Ohashi , N. , Fujiwara , Y. , Yamaoka , N. , Katoh , O. , Satow , Y. and Yamakido , M.No alteration in DNA topoisomerase I gene related to CPT‐11 resistance in human lung cancer . Jpn. J. Cancer Res. , 87 , 1280 – 1287 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. ) Ritter , J. K. , Chen , F. , Sheen , Y. Y. , Tran , H. M. , Kimura , S. , Yeatman , M. T. and Owens , I. S.A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP‐glucuronosyltransferase isozymes with identical carboxy termini . J Biol. Chem. , 259 , 3257 – 3261 ( 1992. ). [PubMed] [Google Scholar]
- 24. ) Sumiyoshi , H. , Fujiwara , Y. , Ohashi , N. , Egusa , Y. , Yamaoka , N. and Yamakido , M.Clinical pharmacological evaluation of CPT‐11 and cisplatin (CDDP) in patients with small cell lung cancer (SCLC). Proc . Am. Soc. Clin. Oncol. , 14 , 457 ( 1995. ). [Google Scholar]
- 25. ) Toussaint , C. , Albin , N. , Massaad , L. , Grunenwald , D. , Parise , O. , Jr. , Morizet , J. , Gouyette , A. and Chabot , G. G.Main drug‐ and carcinogen‐metabolizing enzyme systems in human non‐small cell lung cancer and peritu‐moral tissues . Cancer Res. , 53 , 4608 – 4612 ( 1993. ). [PubMed] [Google Scholar]
- 26. ) Gupta , E. , Lestingi , T. M. , Mick , R. , Ramirez , J. , Vokes , E. E. and Ratain , M. J.Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea . Cancer Res. , 54 , 3723 – 3725 ( 1994. ). [PubMed] [Google Scholar]
- 27. ) Rivory , L. P. and Robert , J.Identification and kinetics of a/3‐glucuronide metabolite of SN‐38 in human plasma after administration of the camptothecin derivative irinotecan . Cancer Chemother. Pharmacol. , 36 , 176 – 179 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Gupta , E. , Mick , R. , Ramirez , J. , Wang , X. , Lestingi , T. M. , Vokes , E. E. and Ratain , M. J.Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients . J. Clin. Oncol. , 15 , 1502 – 1510 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 29. ) Sridhara , R. , Fujiwara , Y. , Egorin , M. J. and Chabot , G. G.Population pharmacokinetics (PK) in two treatment schedules of irinotecan (CPT‐11) and metabolite (SN‐38) . Proc. Am. Soc. Clin. Oncol. , 16 , 206a ( 1997. ). [Google Scholar]
- 30. ) Fujiwara , Y. , Egorin , M. J. , Reyna , S. , Tait , N. , van Echo , D. A. , Yamakido , M. and Sridhara , R.Population pharmacokinetics (PK) of irinotecan (CPT‐11) and metabolites . Proc. Am. Soc. Clin. Oncol. , 16 , 237a ( 1997. ). [Google Scholar]
- 31. ) Jansen , P. L.Genetic diseases of bilirubin metabolism: the inherited unconjugated hyperbilirubinemias . J. Hepatol. , 25 , 398 – 404 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 32. ) Monaghan , G. , Ryan , M. , Seddon , R. , Hume , R. and Burchell , B.Genetic variation in bilirubin UDP‐glucu‐ronosyltransferase gene promoter and Gilbert's syndrome . Lancet , 347 , 578 – 581 ( 1996. ). [DOI] [PubMed] [Google Scholar]