Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1997 Dec;88(12):1199–1204. doi: 10.1111/j.1349-7006.1997.tb00349.x

Nitric Oxide Generation from Hydroxyurea via Copper‐catalyzed Peroxidation and Implications for Pharmacological Actions of Hydroxyurea

Keizo Sato 1, Takaaki Akaike 2, Tomohiro Sawa 2, Yoichi Miyamoto 2, Moritaka Suga 1, Masayuki Ando 1, Hiroshi Maeda 1,
PMCID: PMC5921347  PMID: 9473738

Abstract

We investigated the generation of nitric oxide (NO) by H2O2dependent peroxidation of hydroxyurea in the presence of copper‐containing proteins such as Cu, Zn‐snperoxide dismutase (Cu, Zn‐SOD) or ceruloplasmin as a catalyst. In the reaction mixture of hydroxyurea, Cu, Zn‐SOD, and H2O2, “NO generation was identified by measuring the specific electron spin resonance (ESR) signal of 2‐phenyl‐4,4,5,5‐tetramethylimidazoline‐l‐oxyl 3‐oxide (PTIO). The ESR signal of the NO‐hemoglobin adduct was also detected in human red blood cells during copper‐catalyzed pcroxidation of hydroxyurea. The‘NO production during peroxidation of hydroxyurea was quantified as NO2 formation, measured by using the Griess assay, and the amount of NO2 was dependent on the concentration of hydroxyurea of the reaction mixture. ESR spin trapping with 5,5‐dimethyl‐l‐pyrroline JV‐oxide (DMPO) showed hydroxy radical COH) generation in the reaction of H2O2 with either Cu, Zn‐SOD or ceruloplasmin. Several “OH scavengers, such as ethanol, thiourea, DMPO, and dimethylsulfoxide, and the metalchelating agent diethylenetriaminepentaacetic acid significantly inhibited‘NO generation from hydroxyurea. This indicates that‘NO release from hydroxyurea may be mediated by‘OH derived from the copper‐catalyzed Fenton‐like reaction. Incubation of hydroxyurea and Cu, Zn‐SOD with xanthine oxidase and hypoxanthine in a system forming O2→ H2O2 also resulted in appreciable‘NO production. These results suggest that‘NO production from hydroxyurea catalyzed by copper‐containing proteins may be the molecular basis of the pharmacological and antitumor action of hydroxyurea.

Keywords: Hydroxyurea, Nitric oxide, Superoxide dismutase, Ceruloplasmin, Free radicals

Full Text

The Full Text of this article is available as a PDF (373.5 KB).

REFERENCES

  • 1. ) Bolin , R. R. , Robinson , W. A. , Sutherland , J. and Hamman , R. F.Busulfan versus hydroxyurea in long‐term therapy of chronic myelogenous leukemia . Cancer , 50 , 1683 – 1686 ( 1982. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Horowitz , R. and Wadler , S.Modulation of 5‐FU/alphainterferon with high dose continuous infusion hydroxyurea. J . Infus. Chemother. , 5 , 212 – 214 ( 1995. ). [PubMed] [Google Scholar]
  • 3. ) Levin , V. A.Chemotherapy of primary brain tumors . Neurol. Clin. , 3 , 855 – 866 ( 1985. ). [PubMed] [Google Scholar]
  • 4. ) Schecheter , A. N. and Rodgers , G. P.Sickle cell anemia – basic research reaches the clinic . N. Engl. J. Med. , 332 , 1372 – 1374 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 5. ) Nyholm , S. , Thelander , L. and Graslund , A.Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea . Biochemistry , 32 , 11569 – 11574 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Kwon , N. S. , Stuher , D. J. and Nathan , C. F.Inhibition of tumor cell ribonucleotide reductase by macrophage‐derived nitric oxide . J. Exp. Med. , 174 , 761 – 767 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. ) Sato , K. , Akaike , T. , Kohno , M. , Ando , M. and Maeda , H.Hydroxyl radical production by H2O2 plus Cu, Zn‐superoxide dismutase reflects the activity of free copper released from the oxidatively damaged enzyme . J. Biol. Chem. , 267 , 25371 – 25377 ( 1992. ). [PubMed] [Google Scholar]
  • 8. ) Akaike , T. , Yoshida , M. , Miyamoto , Y. , Sato , K. , Kohno , M. , Sasamoto , K. , Miyazaki , K. , Ueda , S. and Maeda , H.Antagonistic action of imidazolineoxyl N‐oxides against endothelium‐derived relaxing factor/NO through a radical reaction . Biochemistry , 32 , 827 – 832 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Sato , K. , Akaike , T. , Kojima , Y. , Ando , M. , Nagao , M. and Maeda , H.Evidence of direct generation of oxygen free radicals from heterocyclic amines by NADPH/cytochrome P‐450 reductase in vitro . Jpn. J. Cancer Res. , 83 , 1204 – 1209 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. ) Akaike , T. , Sato , K. , Ijiri , S. , Miyamoto , Y. , Kohno , M. , Ando , M. and Maeda , H.Bactericidal activity of alkyl peroxyl radicals generated by heme‐iron‐catalyzed decomposition of organic peroxides . Arch, Biochem. Biophys. , 294 , 55 – 63 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Westenberger , U. , Thanner , S. , Ruf , H. , Gersonde , K. , Sutler , G. and Trents , O.Formation of free radicals and nitric oxide derivative of hemoglobin in rats during shock syndrome . Free Radical Res. Commun. , 11 , 167 – 178 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Kosaka , H. , Sawai , Y. , Sakaguchi , H. , Kumura , E. , Harada , N. , Watanabe , M. and Shiga , T.ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine‐treated rats . Am. J. Physiol. 266 , C1400 – C1405 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Green , L. C. , Wagner , D. A. , Glogowski , J. , Skipper , P. L. , Wishnok , J. S. and Tannenbaum , S. R.Analysis of nitrate, nitrite, and [l5N]nitrate in biological fluids . Anal. Biochem. , 126 , 131 – 138 ( 1982. ). [DOI] [PubMed] [Google Scholar]
  • 14. ) Fukuto , J. M. , Wallace , G. C. , Hszieh , R. and Chaudhuri , G.Chemical oxidation of N‐hydroxyguanidine compounds – release of nitric oxide, nitrosyl and possible relationship to the mechanism of biological nitric oxide generation . Biochem. Pharmacol , 43 , 607 – 613 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Jiang , J. , Jordan , S. J. , Barr , D. P. , Gunther , M. R. , Maeda , H. and Mason , R. P.In vivo production of nitric oxide in rats following administration of hydroxyurea . Mol. Pharmacol , 52 ( 1997. ), in press . [DOI] [PubMed] [Google Scholar]
  • 16. ) Pacelli , R. , Taira , J. , Cook , J. A. , Wink , D. A. and Krishna , M. C.Hydroxyurea reacts with heme proteins to generate nitric oxide . Lancet , 347 , 900 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 17. ) Rubbo , H. , Darley‐Usmar , V. and Freeman , B. A.Nitric oxide regulation of tissue free radical injury . Chem. Res. Toxicol , 9 , 809 – 820 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Lepoivre , M. , Fieschi , F. , Coves , J. , Thelander , L. and Fontecave , M.Inactivation of ribonucleotide reductase by nitric oxide . Biochem. Biophys. Res. Commun. , 179 , 442 – 448 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Lepoivre , M. , Flaman , J.‐M. , Bobe , P. , Lemaire , G. and Henry , Y.Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide . J. Biol. Chem. , 269 , 21891 – 21897 ( 1994. ). [PubMed] [Google Scholar]
  • 20. ) Moncada , S. and Higgs , A.The L‐arginine‐nitric oxide pathway . N. Engl. J. Med. , 329 , 2002 – 2012 ( 1993. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES