Abstract
The expression of glutathione S‐transferase (GST)‐π and four oncogene products, c‐Jun, c‐Fos, c‐H‐Ras, and c‐Myc, in human squamons cell carcinomas of the head and neck was investigated immunohistochemically before and after radiation therapy, to examine whether these oncogene products might be involved in GST‐π expression, and also to examine the relationship between their expression and therapeutic response. Clinical response to radiation was evaluated in terms of both tumor regression and relapse over two‐year follow‐up periods. The overall positive rates in 83 carcinoma specimens before therapy were 60.2% for GST‐π and 28.9–51.8% for the individual oncogene products, the positive rates for the oncogene products being higher in GST‐π‐positive than in GST‐π‐negative cancers. c‐Jun was most highly correlated with GST‐π expression. Following radiation, the expression of GST‐π and the oncogene products was altered in about a half of 30 patients. Eleven of the 18 patients who exhibited prior positivity for GST‐π showed negative conversion, while 4 of the 12 patients with prior negativity demonstrated positive conversion. In most cases, changes in c‐Jun staining coincided with those in GST‐π. Regarding clinical response to radiation therapy, the positive rates for GST‐π and c‐Jun before radiation were higher in the residual cancer or relapse cases than in the group showing complete response without relapse. Examination of 26 patients with laryngeal cancer revealed that relapse occurred more frequently in cases exhibiting positive reactions for GST‐π,c‐Jun, or c‐H‐Ras. These results suggest a direct link between c‐Jun and GST‐π in head and neck cancers before and after radiation. Although GST‐π and the oncogene products can be influenced by radiation, GST‐π and c‐H‐Ras expression may be a risk factor for relapse of laryngeal cancer.
Keywords: Glutathione S‐transferase, c‐Jun, Oncogene, Radiation therapy, Head and neck cancer
Full Text
The Full Text of this article is available as a PDF (712.6 KB).
REFERENCES
- 1. ) Mannervik , B. and Danielson , U. H.Glutathione transferases–structure and catalytic activity . Crit, Rev, Biochem. Mol. Biol , 23 , 283 – 337 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Mannervik , B. , Awasthi , Y. C. , Board , P. G‐ , Hayes , J. D. , Di Ilio , C. , Ketterer , B. , Listowsky , I. , Morgenstern , R. , Muramatsu , M. , Pearson , W. R. , Pickett , C. B. , Sato , K. , Widersten , M. and Wolf , C. R.Nomenclature for human glutathione transferases . Biochem. J. , 282 , 305 – 306 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. ) Kodate , C. , Fukushi , A. , Narita , T. , Kudo , H. , Soma , Y. and Sato , K.Human placental form of glutathione S‐transferase (GST‐φ) as a new immunohistochemical marker for human colonic carcinoma . Jpn. J. Cancer Res . ( Gann ), 77 , 226 – 229 ( 1986. ). [PubMed] [Google Scholar]
- 4. ) Batist , G. , Tulpule , A. , Sinha , B. K. , Katki , A. G. , Meyers , C. E. and Cowan , K. H.Overexpression of a novel anionic glutathione transferase in multidrug‐resistant human breast cancer cells . J Biol. Chem. , 261 , 15544 – 15549 ( 1986. ). [PubMed] [Google Scholar]
- 5. ) Waxman , D. J.Glutathione S‐transferases: role in alkylating agent resistance and possible target for modulation chemotherapy – a review . Cancer Res. , 50 , 6449 – 6454 ( 1990. ). [PubMed] [Google Scholar]
- 6. ) Tsuchida , S. and Sato , K.Glutathione transferases and cancer . Crit. Rev. Biochem. Mol. Biol. , 27 , 337 – 384 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 7. ) Cowell , I. G. , Dixon , K. H. , Pemble , S. E. , Ketterer , B. and Taylor , J. B.The structure of the human glutathione S‐transferase π gene . Biochem. J. , 255 , 79 – 83 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. ) Morrow , C. S. , Goldsmith , M. E. and Cowan , K. H.Regulation of human glutathione S‐transferase π gene transcription: influence of 5′‐flanking sequences and transactivating factors which recognize AP‐1 binding site . Gene , 88 , 215 – 225 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Xia , C. L. , Cowell , I. G. , Dixon , K. H. , Pemble , S. E. , Ketterer , B. and Taylor , J. B.Glutathione transferase π Its minimal promoter and downstream cis‐acting element . Biochem. Biophys. Res. Commun. , 176 , 233 – 240 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Moffat , G. J. , McLaren , A. W. and Wolf , C. R.Involvement of Jun and Fos proteins in regulating transcriptional activation of the human pi class glutathione S‐transferase gene in multidrug‐resistant MCF7 breast cancer cells . J. Biol. Chem. , 269 , 16397 – 16402 ( 1994. ). [PubMed] [Google Scholar]
- 11. ) Tanita , J. , Tsuchida , S. , Hozawa , J. and Sato , K.Expression of glutathione S‐transferase‐π in human squamous cell carcinomas of the pharynx and larynx. Loss after radiation therapy . Cancer , 72 , 569 – 576 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Nakagawa , K. , Saijo , N. , Tsuchida , S. , Sakai , M. , Tsunokawa , Y. , Yokota , J. , Muramatsu , M. , Sato , K. , Terada , M. and Tew , K. D.Glutathione‐S‐transferase π as a determinant of drug resistance in transfectant cell lines . J. Biol. Chem. , 2654296 – 4301 ( 1990. ). [PubMed] [Google Scholar]
- 13. ) Berns , E. M. J. J , Klijn , J. G. M , van Putten , W. L. J , van Staveren , I. L. , Portengen , H. and Foekens , J. A.c‐myc Amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer . Cancer Res. , 52 , 1107 – 1113 ( 1992. ). [PubMed] [Google Scholar]
- 14. ) Ling , C. C. and Endlich , B.Radioresistance induced by oncogenic transformation . Radial Res. , 120 , 267 – 279 ( 1989. ). [PubMed] [Google Scholar]
- 15. ) Sklar , M. D.The ras oncogenes increase the intrinsic resistance of NIH3T3 cells to ionizing radiation . Science , 239 , 645 – 647 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Samid , D. , Miller , A. C. , Rimoldi , D. , Gafner , J. and Clark , E. P.Increased radiation resistance in transformed and nontransformed cells with elevated ras proto‐oncogene expression . Radiat. Res. , 126 , 244 – 250 ( 1991. ). [PubMed] [Google Scholar]
- 17. ) Hermens , A. F. and Bentvelzen , P. A.The influence of the H‐ras oncogene on radiation responses of a raf rhabdomyosarcoma cell line . Cancer Res. , 52 , 3073 – 3082 ( 1992. ). [PubMed] [Google Scholar]
- 18. ) Russel , J. , Khan , M. Z. , Kerr , D. J. and Spandidos , D. A.The effect of transfection with the oncogenes H‐ ras and c‐ myc on the radiosensitivity of a mink epithelial cell line . Radiat Res. , 130 , 113 – 116 ( 1992. ). [PubMed] [Google Scholar]
- 19. ) Rygaard , K. , Slebos , R. J. C. and Spang‐Thomsen , M.Radiosensitivity of small‐cell lung cancer xenografts compared with activity of c‐myc, N‐myc, L‐myc,c‐raf‐1 and K‐ras proto‐oncogenes . Int J. Cancer , 49 , 279 – 284 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Smith , D. B. and Johnson , K. S.Single‐step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S‐transferase . Gene , 67 , 31 – 40 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Sakai , M. , Okuda , A. , Hatayama , I. , Sato , K. , Nishi , S. and Muramatsu , M.Structure and expression of the rat c‐ jun messenger RNA: tissue distribution and increase during chemical hepatocarcinogenesis . Cancer Res. , 49 , 5633 – 5637 ( 1989. ). [PubMed] [Google Scholar]
- 22. ) Miura , K. , Inoue , Y. , Nakamori , H. , Iwai , S. , Ohtsuka , E. , Ikehara , M. , Noguchi , S. and Nishimura , S.Synthesis and expression of a synthetic gene for the activated human c‐Ha‐ras protein . Jpn. J. Cancer Res ( Gann ), 77 , 45 – 51 ( 1986. ). [PubMed] [Google Scholar]
- 23. ) Straaten , F. V. , Muller , R. , Curran , T. , Beveren , C. V. and Verma , I. M.Complete nucleotide sequence of a human c‐onc gene: deduced amino acid sequence of the human c‐fos protein . Proc. Natl. Acad. Sci USA , 80 , 3183 – 3187 ( 1983. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. ) Battey , J. , Moulding , C. , Taub , R. , Murphy , W. , Stewart , T. , Potter , H. , Lenoir , G. and Leder , P.The human c‐ myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma . Cell , 34 , 779 – 787 ( 1983. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Taya , Y. , Hosogai , K. , Hirohashi , S. , Shimosato , Y. , Tsuchiya , R. , Tsuchida , N. , Fushimi , M. , Sekiya , T. and Nishimura , S.A novel combination of K‐ras and myc amplification accompanied by point mutational activation of K‐ras in a human lung cancer . EMBO J. , 3 , 2943 – 2946 ( 1984. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. ) Suzuki , S. , Satoh , K. , Nakano , H. , Hatayama , L , Sato , K. and Tsuchida , S.Lack of correlated expression between the glutathione S‐transferase P‐form and the oncogene products c‐Jun and c‐Fos in rat tissues and preneoplastic hepatic foci . Carcinogenesis. , 16 , 567 – 571 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 27. ) Satoh , K. , Kitahara , A. and Sato , K.Identification of heterogeneous and microheterogeneous subunits of glutathione S‐transferase in rat liver cytosol . Arch. Biochem. Biophys. , 242 , 104 – 111 ( 1985. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Soma , Y. , Satoh , K. and Sato , K.Purification and subunit structural and immunological characterization of five glutathione S‐transferases in human liver, and the acidic form as a hepatic tumor marker . Biochim. Biophys, Acta , 869 , 247 – 258 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 29. ) Tsuchida , S. , Sekine , Y. , Shineha , R. , Nishihira , T. and Sato , K.Elevation of the placental glutathione S‐transferase form (GST‐π) in tumor tissues and the levels in sera of patients with cancer . Cancer Res. , 49 , 5225 – 5229 ( 1989. ). [PubMed] [Google Scholar]
- 30. ) Shiratori , Y. , Soma , Y. , Maruyama , H. , Sato , S. , Takano , A. and Sato , K.Immunohistochemical detection of glutathione S‐transferase placental form (GST‐π) in dysplastic and neoplastic human uterine cervix lesions . Cancer Res. , 47 , 6806 – 6809 ( 1987. ). [PubMed] [Google Scholar]
- 31. ) Miller , A. B. , Hoogstraten , B. , Staquet , M. and Winkler , A.Reporting results of cancer treatment . Cancer , 47 , 207 – 214 ( 1981. ). [DOI] [PubMed] [Google Scholar]
- 32. ) Sheng , Z. M. , Barrois , M. , Klijanienko , J. , Micheau , C. , Richard , J. M. and Riou , G.Analysis of the c‐Ha‐ras‐1 gene for deletion, mutation, amplification and expression in lymph node metastases of human head and neck carcinomas . Br. J. Cancer , 62 , 398 – 404 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. ) Field , J. K. , Spandidos , D. A. , Stell , P. M. , Vaughan , E. D. , Evan , G. I. and Moore , J. P.Elevated expression of the c‐ myc oncoprotein correlates with poor prognosis in head and neck squamous cell carcinoma . Oncogene , 4 , 1463 – 1468 ( 1989. ). [PubMed] [Google Scholar]
- 34. ) Kawano , S. H. , Okamura , K. and Hashimoto , N.Immunohistochemical localization of c‐ myc oncogene product and EGF receptor in oral squamous cell carcinoma . J. Oral Pathol. Med. , 19 , 1 – 4 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 35. ) Field , J. K.Oncogenes and tumour‐suppressor genes in squamous cell carcinoma of the head and neck . Oral Oncol. Eur. J. Cancer , 28B , 67 – 76 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 36. ) Magrisso , I. J. , Richmond , R. E. , Carter , J. H. , Press , C. B. , Gilfillen , R. A. and Carter , H. W.Immunohistochemical detection of RAS, JUN, FOS, and p53 oncoprotein expression in human colorectal adenomas and carcinomas . Lab. Invest , 69 , 674 – 681 ( 1993. ). [PubMed] [Google Scholar]
- 37. ) Melhem , M. F. , Meisler , A. I. , Finley , G. G. , Bryce , W. H. , Jones , M. O. , Tribby , I.I. , Pipas , J. M. and Koski , R. A.Distribution of cells expressing myc proteins in human colorectal epithelium, polyps, and malignant tumors . Cancer Res. , 52 , 5853 – 5864 ( 1992. ). [PubMed] [Google Scholar]
- 38. ) Hunter , T. and Karin , M.The regulation of transcription by phosphorylation . Cell , 70 , 375 – 387 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 39. ) Vandromme , M. , Gauthier‐Roouviere , C. , Lamb , N. and Fernandez , A.Regulation of transcription factor localization: fine‐tuning of gene expression . Trends Biochem. Sei , 21 , 59 – 64 ( 1996. ). [PubMed] [Google Scholar]
- 40. ) Ransonne , L. J. and Verma , I. M.Nuclear oncogenes fos and jun . Annu. Rev. Cell Rial , 52 , 5853 – 5864 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 41. ) Landschulz , W. H. , Johnson , P. F. and Mcknight , S. L.The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins . Science , 240 , 1759 – 1764 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 42. ) Angel , P. , Allegretto , E. A. , Okino , S. T. , Hattori , K. , Boyle , W. J. , Hunter , T. and Karin , M.Oncogene jun encodes a sequence‐specific trans‐activator similar to AP‐1 . Nature , 332 , 166 – 171 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 43. ) Schutte , J. , Minna , J. P. and Birrer , M. J.Deregulated expression of human c‐ jun transforms primary rat embryo cells in cooperation with an activated c‐Ha‐ras gene and transforms rat 1‐A cells as a single gene . Proc. Natl. Acad. Sci. USA , 86 , 2257 – 2261 ( 1989. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. ) Daum , G. , Eisenmann‐Tappe , I. , Fries , H. W. , Troppmair , J. and Rapp , U. F.The ins and outs of Raf kinases . Trends Biochem. Sci. , 19 , 474 – 480 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 45. ) Tidefelt , U. , Elmhorn‐Rosenborg , A. , Paul , C. , Hao , X. Y. , Mannervik , B. and Eriksson , L. C.Expression of glutathione transferase Pi as a predictor for treatment results at different stages of acute nonlymphoblastic leukemia . Cancer Res. , 52 , 3281 – 3285 ( 1992. ). [PubMed] [Google Scholar]