Abstract
To examine in vivo the validity of the results of experiments in vitro, we analyzed the relationship between p53 gene status and apoptotic cell death of human gastric intestinal‐type adenocarcinomas. Surgical specimens were classified into two categories: 18 gastric cancers with nuclear p53 protein (A), and 17 gastric cancers without nuclear p53 protein (B). Polyraerase chain reaction‐single strand conformation polymorphism disclosed a shifted band that corresponded to a mutation in the p53 gene in 13 cases (72%) in category A and 3 cases (18%) in category B, the frequency being significantly higher in the former (P<0.05). Apoptotic cells were identified from routinely stained sections and by terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick end labeling (TUNEL). The TUNEL index [TI: (the number of TUNEL‐positive apoptotic cells/the total number of tumor cells) X100] was 3.8 ±1.4% in category A and 4.9 ±1.2% in category B, the value being significantly lower in the former (P< 0.05). The proliferating cell nuclear antigen index, defined similarly to the TI, was 56.4±16.3% in category A, and it was significantly higher than that in category B (P<0.05). The immunohistochemically detected expression of P21CIP1/WAF1 did not differ between the two categories, while Bax‐positive tumor cells were more frequently detected in category A. These results indicate that (1) expression of a mutated p53 gene attenuates apoptotic cell death of gastric cancer, in accordance with the previous in vitro finding that p53 gene mutation provides a possible selective advantage for tumor cell proliferation, and (2) apoptosis is related not only to expression of p53 and the stage of the cell cycle, but also to p53‐independent and cell cycle‐independent events.
Keywords: Gastric carcinoma, Apoptosis, p53 TUNEL, PCR‐SSCP
Full Text
The Full Text of this article is available as a PDF (664.4 KB).
REFERENCES
- 1. ) Stemmermann , G. , Heffelfinger , S. C. , Noffsinger , A. , Hui , Y. Z. , Miller , M. A. and Fenoglio , C. M.The molecular biology of esophageal and gastric cancer and their precursors: oncogenes, tumor suppressor genes, and growth factors . Hum. Pathol. , 25 , 968 – 981 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Yokozaki , H. , Kuniyasu , H. , Kitadai , Y. , Nishimura , K. , Todo , H. , Ayhan , A. , Yasui , W. , Ito , H. and Tahara , E.p53 point mutations in primary human gastric carcinomas . J. Cancer Res. Clin. Oncol , 119 , 67 – 70 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Tamura , G. , Kihana , T. , Nomura , K. , Terada , M. , Sugimura , T. and Hirohashi , S.Detection of frequent p53 gene mutations in primary gastric cancer by cell sorting and polymerase chain reaction single‐strand conformation polymorphism analysis . Cancer Res. , 51 , 3056 – 3058 ( 1991. ). [PubMed] [Google Scholar]
- 4. ) Kim , J. H. , Takahashi , T. , Chiba , I. , Park , J. G. , Birrer , M. J. , Roh , J. K. , De Lee , H. , Kim , J. P. , Minna , J. D. and Gazdar , A. F.Occurrence of p53 gene abnormalities in gastric carcinoma tumors and cell lines . J. Natl. Cancer Inst. , 83 , 938 – 943 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Motozaki , T. , Sakamoto , C. , Matsuda , K. , Suzuki , T. , Konda , Y. , Naakano , O. , Wada , K. , Uchida , T. , Nishisaki , H. and Nagao , M.Missense mutations and a deletion of the p53 gene in human gastric cancer . Biochem. Siophys. Res. Commun. , 182 , 215 – 223 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Sano , T. , Tsujino , T. , Yoshida , K. , Nakayama , H. , Haruma , K. , Ito , H. , Nakamura , Y. , Kajiyama , O. and Tahara , E.Frequent loss of heterozygosity on chromosomes Iq, 5q, and 17p in human gastric carcinomas . Cancer Res. , 51 , 2926 – 2931 ( 1991. ). [PubMed] [Google Scholar]
- 7. ) Gomyo , Y. , Osaki , M. , Kaibara , N. and Ito , H.Numerical aberration and point mutation of p53 gene in human gastric intestinal metaplasia and well‐differentiated adenocarcinoma: analysis by fluorescence in situ hybridization (FISH) . Int. J. Cancer , 66 , 594 – 599 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Uchino , S. , Noguchi , M. , Ochiai , A. , Saito , T. , Kobayashi , M. and Hirohashi , S.p53 mutation in gastric cancer: a genetic model for carcinogenesis is common to gastric and colorectal cancer . Int. J. Cancer , 22 , 759 – 764 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Yamada , Y. , Yoshida , T. , Hayashi , K. , Sekiya , T. , Yokota , J. , Hirohashi , S. , Nakatani , K. , Nakano , H. , Sugimura , T. and Terada , M.p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases . Cancer Res. , 51 , 5800 – 5805 ( 1991. ). [PubMed] [Google Scholar]
- 10. ) Uchino , S. , Tsuda , H. , Noguchi , M. , Yokota , J. , Terada , M. , Saito , T. , Kobayashi , M. , Sugimura , T. and Hirohashi , S.Frequent loss of heterozygosity at the DCC locus in gastric cancer . Cancer Res. , 52 , 3099 – 3102 ( 1992. ). [PubMed] [Google Scholar]
- 11. ) Starzynska , T. , Bromley , M. , Ghosh , A. and Stern , P. L.Prognostic significance of p53 overexpression in gastric and colorectal carcinoma . Br. J. Cancer , 66 , 558 – 562 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. ) Kakeji , Y. , Korenaga , D. , Tsujitani , S. , Baba , H. , Anai , H. , Maehara , Y. and Sugimachi , K.Gastric cancer with p53 overexpression has high potential for metastasising to lymph nodes . Br. J. Cancer , 67 , 589 – 593 ( 1993. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. ) Lowe , S. W. , Ruley , H. E. , Jack , T. and Housman , D. E.p53‐dependent apoptosis modulates the cytotoxicity of anticancer agents . Cell , 74 , 957 – 967 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Lowe , S. W. , Schmitt , E. M. , Smith , S. W. , Osborne , B. A. and Jacks , T.p53 is required for radiation‐induced apoptosis in mouse thymocytes . Nature , 362 , 847 – 849 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 15. ) Clarke , A. R. , Purdie , C. A. , Harrison , D. J. , Morris , R. G. , Bird , C. C. , Hooper , M. L. and Wyllie , A. H.Thymocyte apoptosis induced by p53‐dependent and independent pathways . Nature , 362 , 849 – 852 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Symonds , H. , Krall , L. , Remington , L. , Saenz Robles , M. , Lowe , S. , Jacks , T. and van Dyke , T.p53‐dependent apoptosis suppresses tumor growth and progression in vivo . Cell , 78 , 703 – 711 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Bardeesy , N. , Beckwith , J. B. and Pelletier , J.Clonal expression and attenuated apoptosis in Wilms' tumors are associated with p53 gene mutations . Cancer Res. , 55 , 215 – 219 ( 1995. . [PubMed] [Google Scholar]
- 18. ) Lauren , P.The two histological main types of gastric carcinoma: diffuse and so‐called intestinal‐type carcinoma. An attempt at a histo‐clinical classification . Ada Pathol Microbiol. Scand. , 64 , 31 – 49 ( 1965. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Grundmann , E. and Schlake , W.Histological classification of gastric cancer from initial to advanced stage . Pathol Res. Pract. , 173 , 260 – 274 ( 1982. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Gavrieli , Y. , Sherman , Y. and Ben‐Sasson , S. A.Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation . J. Cell Biol , 119 , 493 – 501 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. ) Mattar , R. , Yokozaki , H. , Yasui , W. , Ito , H. and Tahara , E.p53 gene mutations in gastric cancer cell lines . Oncology , 11 , 7 – 12 ( 1992. ). [Google Scholar]
- 22. ) Tahara , E.Carcinogenesis and progression of human gastric cancer . Proc. Jpn. Soc. Pathol , 81 , 21 – 49 ( 1992. ). [Google Scholar]
- 23. ) Baas , I. O. , Mulder , J.‐W. R. , Ofterhaus , G. J. A. , Vogelstein , B. and Hamilton , S.An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms . J. Pathol , 172 , 5 – 12 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Kikuchi‐Yanoshita , R. , Konishi , M. , Ito , S. , Seki , M. , Tanaka , K. , Maeda , Y. , Lino , H. , Fukayama , M. , Koike , M. and Mori , T.Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non‐familial adenomatous polyposis patients . Cancer Res. , 52 , 3965 – 3971 ( 1992. ). [PubMed] [Google Scholar]
- 25. ) Tsuda , H. and Hirohashi , S.Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer . Int. J. Cancer , 57 , 498 – 503 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Esrig , D. , Spruck , C. H.3d. , Nichols , P. W. , Chaiwun , B. , Steven , K. , Groshen , S. , Chen , S. C. , Skinner , D. G. , Jones , P. A. and Cote , R. J.p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer . Am. J. Pathol , 143 , 1389 – 1397 ( 1993. ). [PMC free article] [PubMed] [Google Scholar]
- 27. ) Lane , D. P. and Benchimol , S.p53: oncogene or antioncogene ? Genes Dev. , 4 , 1 – 8 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Finlay , C. A. , Hinds , P. W. , Tan , T. H. , Eliyahu , D. , Oren , M. and Levine , A. J.Activating mutations for transformation by p53 produce a gene product that forms an hsc70‐p53 complex with an altered half‐life . Mol. Cell. Biol , 8 , 531 – 539 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. ) ĎAndrea , E. , Baffa , R. , Menin , C. , Montagna , M. , Rugge , M. and Chieco‐Bianchi , L.TP53 gene mutations in gastric carcinoma detected by polymerase chain reaction/single‐strand conformation polymorphism analysis of archival material . J. Cancer Res. Clin. Oncol , 121 , 79 – 83 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 30. ) Hayashi , K. and Yandell , D. W.How sensitive is PCRSSCP ? Hum. Mutat , 2 , 338 – 346 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 31. ) Shiao , Y.‐H. , Rugge , M. , Correa , P. , Lehmann , H. P. and Scheer , W. D.p53 alteration in gastric precancerous lesions . Am. J. Pathol , 144 , 511 – 517 ( 1994. ). [PMC free article] [PubMed] [Google Scholar]
- 32. ) Zhan , Q. , Lord , K. A. , Alamo , I.Jr. , Hollander , M. C. , Carrier , F. , Ron , D. , Kohn , K. W. , Hoffman , B. , Liebermann , D. A. and Fornace , A. J.Jr.The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth . Mol. Cell. Biol , 14 , 2361 – 2371 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. ) Canman , C. E. , Gilmer , T. M. , Coutts , S. B. , Kasta , M. B.Growth factor modulation of p53‐mediated growth arrest versus apoptosis . Genes Dev. , 9 , 600 – 611 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 34. ) Lowe , S. W. , Jacks , T. , Housman , D. E. and Ruley , H. E.Abrogation of oncogene‐associated apoptosis allows transformation of p53‐deficient cells . Proc, Natl. Acad. Sci. USA , 91 , 2026 – 2030 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. ) Lane , D.P. p53, guardian of the genome . Nature , 358 , 15 – 16 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 36. ) Lowe , S. W. , Bodis , S. , McClatchey , A. , Remington , L. , Ruley , H. E. , Fisher , D. E. , Housman , D. E. and Jacks , T.p53 status and the efficacy of cancer therapy in vivo . Science 266 , 807 – 810 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 37. ) Kobayashi , M. , Watanabe , H. , Ajioka , Y. , Yoshida , M. , Hitomi , Y. and Asakura , H.Correlation of p53 protein expression with apoptotic incidence in colorectal neoplasia . Virchows Arch. , 427 , 27 – 32 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 38. ) Waldmann , T. , Kinzler , K. W. and Vogelstein , B.p21 is necessary for the p53‐mediated G1 arrest in human cancer cells . Cancer Res. , 55 , 5187 – 5190 ( 1995. ). [PubMed] [Google Scholar]
- 39. ) El‐Deiry , W. S. , Harper , J. W. , O'Connor , P. M. , Veolculescu , V. E. , Canman , C. E. , Jackman , J. , Pietenpol , J. A. , Burrell , M. , Hill , D. E. , Wang , Y. , Wiman , K. G. , Mercer , W. E. , Kastan , M. B. , Kohn , K. W , Elledge , S. J. , Kinzler , K. W. and Vogelstein , B.WAF1/CIP1 is induced in p53‐mediated G1 arrest and apoptosis . Cancer Res. , 54 , 1169 – 1174 ( 1994. ). [PubMed] [Google Scholar]
- 40. ) Jiang , H. , Lin , J. , Su , Z.‐Z. , Collart , F. R. , Huberman , E. and Fisher , P. B.Induction of differentiation in human promyelocytic HL‐60 leukemia cells activates p21, WAF1/ CIP1, expression in the absence of p53 . Oncogens , 93397 – 3406 ( 1994. ). [PubMed] [Google Scholar]
- 41. ) Steinman , R. A. , Hoffman , B. , Iro , A. , Guillouf , C. , Liebermann , D. A. and El‐Houseini , M. E.Induction of p21 (WAF1/CIP1) during differentiation . Oncogene , 9 , 3389 – 3396 ( 1994. ). [PubMed] [Google Scholar]
- 42. ) Michieli , P. , Chedid , M. , Lin , D. , Pierce , J. H. , Mercer , W. E. and Givol , D.Induction of WAF1/CIP1 by a p53‐independent pathway . Cancer Res. , 54 , 3391 – 3395 ( 1994. ). [PubMed] [Google Scholar]
- 43. ) Sato , T. , Hanada , M. , Bodrug , S. , Irie , S. , Iwama , N. , Boise , L. H. , Thompson , C. B. , Golemis , E. , Fong , L. , Wang , H.‐G. and Reed , J. C.Interactions among members of the Bcl‐2 protein family analyzed with a yeast two‐hybrid system . Proc. Natl. Acad. Sci. USA 91 , 9238 – 9242 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]