Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1997 Aug;88(8):750–759. doi: 10.1111/j.1349-7006.1997.tb00447.x

Transport Mechanisms of Idarubicin, an Anthracycline Derivative, in Human Leukemia HL60 Cells and Mononuclear Cells, and Comparison with Those of Its Analogs

Kazuki Nagasawa 1, Noriaki Ohnishi 1, Teruyoshi Yokoyama 1,
PMCID: PMC5921500  PMID: 9330607

Abstract

Transport mechanisms of idaruhicin (IDA) in HL60 cells, as leukemia cells, and human mononuclear cells (MNCs), as normal cells, were investigated, and compared with those of its analogs. The uptake of IDA by both cell types was temperature‐ and concentration‐dependent, was inhibited competitively by daunorubicin (DNR) and noncompetitively by adriamycin (ADR), and was stimulated by preloading of the cells with DNR and ADR, indicating the partial involvement of a carrier‐mediated mechanism. On pretreatment of the cells with 2,4‐dinitrophenol, IDA uptake by HL60 cells increased, but that by MNCs decreased, suggesting that IDA was partially taken up into HL60 cells via an energy‐independent carrier system, and into MNCs via an energy‐dependent one. We speculated that in HL60 cells the carrier concerned with IDA uptake was common to DNR and ADR, and that the binding site of IDA on the carrier was the same as that for DNR, but not that for ADR, while in MNCs the carrier system consisted of, at least in part, a carrier for DNR uptake and one for ADR uptake, and the binding site of IDA was identical to that for DNR in the former, but different from that for ADR in the latter. It appeared that the uptake of IDA was greater than those of pirarubicin, DNR and ADR in both HL60 cells and MNCs, and that IDA was incorporated into MNCs more efficiently than into HL60 cells because of the higher uptake efficacy of the carrier(s).

Keywords: Idarubicin, HL60 cell, Human mononuclear cell, Transport mechanism

Full Text

The Full Text of this article is available as a PDF (585.0 KB).

REFERENCES

  • 1. ) Nagasawa , K. , Natazuka , T. , Chihara , K. , Kitazawa , F. , Tsumura , A. , Takara , K. , Nomiyama , M. , Ohnishi , N. and Yokoyaraa , T.Transport mechanism of anthracycline derivatives in human leukemia cell lines: uptake and efflux of pirarubicin in HL60 and pirarubicin‐resistant HL60 cells . Cancer Chemother. Pharmacol , 37 , 297 – 304 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 2. ) Nagasawa , K. , Natazuka , T. , Nomiyama , M. , Ohnishi , N. and Yokoyama , T.Transport mechanism of anthracycline derivatives in human leukemia cell lines: uptake and efflux of daunorubicin and doxorubicin in HL60 and its resistant cells and comparison with those of pirarubicin . Biol. Pharm. Bull , 19 , 100 – 105 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Nagasawa , K. , Tsumura , A. , Nomiyama , M. , Ohnishi , N. and Yokoyama , T.Transport mechanism of pirarubicin in human mononuclear cells . Biol. Pharm. Bull , 19 , 1203 – 1209 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 4. ) Arcamone , F. , Bernardi , L. , Oiardio , P. , Patelli , B. , Di Marco , A. , Casazza , A. M. , Pratesi , G. and Reggiani , P.Synthesis and antitumor activity of 4‐demethoxydaunoru‐bicin, 4‐demethoxy‐7,9‐diepidaunorubicin, and their beta anomers . Cancer Treat. Rep. , 60 , 829 – 834 ( 1979. ). [PubMed] [Google Scholar]
  • 5. ) Casazza , A. M. , Experimental evaluation of anthracycline analogs . Cancer Treat. Rep , 63 , 835 – 844 ( 1979. ). [PubMed] [Google Scholar]
  • 6. ) Casazza , A. M. , Praziella , G. , Giuliani , F. and Di Marco , A.Antileukemic activity of 4‐demethoxydaunorubicin in mice . Tumori , 66 , 549 – 564 ( 1980. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Kuffel , M. J. , Reid , J. M. and Ames , M. M.Anthracyclines and their C‐13 alcohol metabolites: growth inhibition and DNA damage following incubation with human tumor cells in culture . Cancer Chemother. Pharmacol. , 30 , 51 – 57 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 8. ) Tsuruo , T. , Oh‐hara , T. , Sudo , Y. and Naito , M.Anti‐tumor activity of idarubicin, a derivative of daunorubicin, against drug sensitive and resistant P388 leukemia . Anticancer Res. , 13 , 357 – 362 ( 1993. ). [PubMed] [Google Scholar]
  • 9. ) Fukushima , T. , Ueda , T. , Uchida , M. and Nakamura , T.Action mechanism of idarubicin (4‐demethoxydaunorubicin) as compared with daunorubicin in leukemic cells . Int. J. Hematol 57 , 121 – 130 ( 1993. ). [PubMed] [Google Scholar]
  • 10. ) Tidefelt , U. , Prenkert , M. and Paul , C.Comparison of idarubicin and daunorubicin and their main metabolites regarding intracellular uptake and effect on sensitive and multidrug‐resistant HL60 cells . Cancer Chemother. Pharmacol. , 38 , 476 – 480 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Berman , E. , Heller , G. , Santorsa , J. , McKenzie , S. , Gee , T. , Kempin , S. , Gulati , S. , Andreeff , M. , Kolitz , J. , Garbrilove , J. , Reich , L. , Mayer , K. , Keefe , D. , Trainor , K. , Schluger , A. , Penenberg , D. , Raymond , V. , O'Reilly , R. , Than war , S. , Young , C. and Clarkson , B.Results of a randomized trial comparing idarubicin and cytosine arabinoside with daunorubicin and cytosine arabinoside in adult patients with newly diagnosed acute myelogenous leukemia . Blood , 77 , 1666 – 1674 ( 1991. ). [PubMed] [Google Scholar]
  • 12. ) Mandelli , F. , Petti , M. C. , Ardia , A. , Di Pietro , N. , Di Raimondo , F. , Ganzina , F. , Falconi , E. , Geraci , E. , Ladogana , S. , Latagliata , R. , Malleo , C. , Nobile , F. , Petti , N. , Rotoli , B. , Specchia , G. , Tabilio , A. and Resegotti , L.A randomized clinical trial comparing idarubicin and cytarabine in the treatment of acute non‐lymphoid leukemia. A multicentric study from the Italian co‐operative group GIMEMA . Ear. J. Cancer , 27 , 750 – 755 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Wiernik , P. H. , Banks , P. L. C. , Case , D. C. C. , Jr. , Arlin , Z. A. , Penman , P. O. , Todd , M. B. , Ritch , P. S. , Enck , R. E. and Weitberg , A. B.Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukemia . Blood , 79 , 313 – 319 ( 1992. ). [PubMed] [Google Scholar]
  • 14. ) Vogler , W. R. , Velez‐Garcia , E. , Weiner , R. S. , Flaum , M. A. , Bartolucci , A. A. , Omura , G. A. , Gerber , M. C. and Banks , P. L. C.A phase III trial comparing idarubicin and daunorubicin in combination with cytarabine in acute myelogenous leukemia: a southeastern cancer study group study./ Clin. Oncol , 10 , 1103 – 1111 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 15. ) Reiffers , J. , Hugnuet , F. , Stoppa , A.‐M. , Molina , L. , Marit , G. , Altai , M. , Gastaut , J. A. , Michallet , M. , Lepeu , G. , Broustet , A. , Pris , J. , Maraninchi , D. , Hollard , D. , Faberes , C. , Mercier , M. , Hurteloup , P. , Danel , P. , Tellier , Z. and Berthaud , P.A prospective randomized trial of idarubicin vs daunorubicin in combination chemotherapy for acute myelogenous leukemia of the age group 55 to 75 , Leukemia , 10 , 389 – 395 ( 1996. ). [PubMed] [Google Scholar]
  • 16. ) Berman , E. and McBride , M.Comparative cellular pharmacology of daunorubicin and idarubicin in human multi‐drug‐resistant leukemia cells . Blood , 79 , 3267 – 3273 ( 1992. ). [PubMed] [Google Scholar]
  • 17. ) Michieli , M. , Damiani , D. , Michelutti , A. , Candoni , A. , Masolini , P. , Scaggiante , B. , Quadrifoglio , F. and Baccarani , M.Restoring uptake and retention of daunorubicin and idarubicin in P170‐related multidrug resistance cells by low concentration D‐verapamil, cyclosporin‐A and SDZ PSC 833 . Haematologica , 79 , 500 – 507 ( 1994. ). [PubMed] [Google Scholar]
  • 18. ) Toffoli , G. , Simine , F. , Gigante , M. and Boiocchi , M.Comparison of mechanisms responsible for resistance to idarubicin and daunorubicin in multidrug resistant LoVo cell lines . Biochem. Pharmacol , 48 , 1871 – 1881 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 19. ) Hargrave , R. M. , Davey , M. W. , Davey , R. A. and Kidman , A. D.Development of drug resistance is reduced with idarubicin relative to other anthracyclines . AntiCancer Drugs , 6 , 432 – 437 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Ross , D. D. , Doyle , L. A. , Yang , W. , Tong , Y. and Cornblatt , B.Susceptibility of idarubicin, daunorubicin, and their C‐13 alcohol metabolites to transport‐mediated multidrug resistance . Biochem. Pharmacol , 50 , 1673 – 1683 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 21. ) Consoli , U , Priebe , W. , Ling , Y.‐H. , Mahadevia , R. , Griffin , M. , Zhao , S. , Petez‐Soler , R. and Andreeff , M.The novel anthracycline annamycin is not affected by P‐glycoprotein‐related multidrug resistance: comparison with idarubicin and doxorubicin in HL‐60 leukemia cell lines . Blood , 88 , 633 – 644 ( 1996. ). [PubMed] [Google Scholar]
  • 22. ) Tarasiuk , J. , Foucrier , J. and Garnier‐Suillerot , A.Cell cycle dependent uptake and release of anthracycline by drug‐resistant and drug‐sensitive human leukaemic K562 cells . Biochem. Pharmacol , 45 , 1801 – 1808 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Nagasawa , K. , Yokoyama , T. , Ohnishi , N. , Iwakawa , S. , Okumura , K. , Kosaka , Y. , Sano , K. , Murakami , R. and Nakamura , H.Pharmacokinetics of pirarubicin in pediatric patients . J. Pharmacobio-Dyn. , 14 , 222 – 230 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Nagasawa , K. , Nomiyama , M. , Ohnishi , N. , Yokoyama , T. , Iwakawa , S. and Okumura , K.Transport mechanism of anthracycline derivatives in rat polymorphonuclear leukocytes: uptake and efflux of pirarubicin . Biol, Pharm. Bull , 17 , 696 – 700 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Yamaoka , K. , Tanigawara , Y. , Nakagawa , T. and Uno , T.A pharmacokinetic analysis program (MULTI) for microcomputer . J. Pharmacobio-Dyn. , 4 , 879 – 885 ( 1981. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Nagasawa , K. , Takara , K. , Nomiyama , M. , Ohnishi , N. and Yokoyama , T.Transport mechanisms of anthracycline derivatives in human leukemia cell lines: uptake of pirarubicin, daunorubicin and doxorubicin by K562 and multidrug‐resistant K562/ADM cells . Biol Pharm. Bull , 19 , 971 – 976 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Rivory , L. P. , Avent , K. M. and Pond , S. M.Effects of lipophilicity and protein binding on the hepatocellular uptake and hepatic disposition of two anthracyclines, doxorubicin and iododoxorubicin . Cancer Chemother. Pharmacol , 38 , 439 – 445 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 28. ) Terasaki , T. , Iga , T. , Sugiyama , Y. and Hanano , M.Experimental evidence of characteristic tissue distribution of adriamycin. Tissue DNA concentration as a determinant . J. Pharm. Pharmacol , 34 , 597 – 600 ( 1982. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Terasaki , T. , Iga , T. , Sugiyama , Y. and Hanano , M.Interaction of doxorubicin with nuclei isolated from rat liver and kidney . J. Pharm. Scl , 73 , 524 – 528 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Terasaki , T. , Iga , T. , Sugiyama , Y. and Hanano , M.Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin: interorgan and interspecies variation of tissue‐to‐plasma partition coefficients in rats, rabbits, and guinea pigs . J. Pharm. Scl , 73 , 1359 – 1363 ( 1984. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Weaver , J. L. , Pine , P. S. , Aszalos , A. , Schoenlein , P. V. , Currier , S. J. , Padmanabhan , R. and Gottesman , M. M.Laser scanning and confocal microscopy of daunorubicin, and rhodamine 123 in multidrug resistant cells . Exp. Cell Res. , 196 , 323 – 329 ( 1991. ). [DOI] [PubMed] [Google Scholar]
  • 32. ) Slapak , C. A. , Lecerf , J.‐M. , Daniel , J. C. and Levy , S. B.Energy‐dependent accumulation of daunorubicin into sub‐cellular compartments of human leukemia cells and cytoplasts . J. Biol. Chem. , 267 , 10638 – 10644 ( 1992. ). [PubMed] [Google Scholar]
  • 33. ) Rutherford , A. V. and Willingham , M. C.Ultrastructural localization of daunomycin in multidrug‐resistant cultured cells with modulation of the multidrug transporter . J. Histochem. Cytochem. , 41 , 1573 – 1577 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Gieseler , F. , Biersack , H. , Briden , T. , Manderscheid , J. and Nufiler , V.Cytotoxicity of anthracyclines: correlation with cellular uptake, intracellular distribution and DNA binding . Ann. Hematol , 69 , S13 – S17 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Seidel , A. , Hasmann , M. , Loser , R. , Bunge , A. , Schaefer , B. , Herzig , I. , Steidtmann , K. and Dietel , M.Intracellular localization, vesicular accumulation and kinetics of daunorubicin in sensitive and multidrug‐resistant gastric carcinoma EPG85‐257 cells . Virchows Arch. , 426 , 249 – 256 ( 1995. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES