Abstract
Our previous study showed that treatment of highly invasive rat ascites hepatoma (LC‐AH) cells with α‐difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, decreased both their intracellular level of putrescine and their in vitro invasion of a monolayer of calf pulmonary arterial endothelial (CPAE) cells, and that both these decreases were completely reversed by exogenous putrescine, but not spermidine or spermine. Here we show that all adhering control (DFMO‐untreated) cells migrated beneath CPAE monolayer with morphological change from round to cauliflower‐shaped cells (migratory cells). DFMO treatment increased the number of cells that remained round without migration (nonmigratory cells). Exogenous putrescine, but not spermidine or spermine, induced transformation of all nonmigratory cells to migratory cells with a concomitant increase in their intracellular Ca2+ level, [Ca2+]i. The putrescine‐induced increase in their [Ca2+]i preceded their transformation and these effects of putrescine were not affected by antagonists of the voltage‐gated Ca2+ channel, but were completely suppressed by ryanodine, which also suppressed the invasiveness of the control cells. The DFMO‐induced decreases in both [Ca2+]i and the invasiveness of the cells were restored by thapsigargin, which elevated [Ca2+]i by inhibiting endoplasmic Ca2+‐ATPase, indicating that thapsigargin mimics the effects of putrescine. These results support the idea that putrescine is a cofactor for Ca2+ release through the Ca2+ channel in the endoplasmic reticulum that is inhibited by ryanodine, this release being initiated by cell adhesion and being a prerequisite for tumor cell invasion.
Keywords: Putrescine, Tumor invasion, Difluoromethylornithine, Ryanodine, Thapsigargin
Full Text
The Full Text of this article is available as a PDF (138.8 KB).
REFERENCES
- 1. ) Jänne , J. , Pösö , H. and Raina , A.Polyamines in rapid growth and cancer . Biochim. Biophys. Acta , 473 , 241 – 293 ( 1978. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Löwkvist , B. , Oredsson , S. M. , Holm , I. , Emanuelsson , H. and Heby , O.Inhibition of polyamine synthesis reduces the growth rate and delays the expression of differentiated phenotypes in primary cultures of embryonic mesoderm from chick . Cell Tissue Res. , 249 , 151 – 160 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Pegg , A. E.Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy . Cancer Res. , 48 , 759 – 774 ( 1988. ). [PubMed] [Google Scholar]
- 4. ) Jänne , J. , Alhonen , L. and Leinonem , P.Polyamines: from molecular biology to clinical application . Ann. Med. , 23 , 241 – 259 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Pohjanpelto , P. , Virtanen , I. and Höttä , E.Polyamine starvation causes disappearance of actin filaments and microtubules in polyamine‐auxotrophic CHO cells . Nature , 293 , 475 – 477 ( 1981. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Trout , J. J. , Lu , C. Y. , Goldstone , A. D. , Iqbal , Z. and Koenig , H.Polyamines mediate coronary transcapillary macromolecular transport in the calcium paradox . J. Mol. Cell. Cardiol. , 26 , 369 – 377 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 7. ) Johnson , L. R. , Brockway , P. D. , Madsen , K. , Hardin , J. A. and Gall , D. G.Polyamines alter intestinal glucose transport . Am. J. Physiol. , 268 , G416 – G423 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Subramaniam , S. and McGonigle , P.Regional heterogeneity of polyamine effects on the N‐methyl‐d‐aspartate receptor in rat brain . J. Neurochem. , 60 , 2276 – 2284 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Marvizon , J.‐C. and Baudry , M.Allosteric interactions and modulator requirement for NMDA receptor function . Eur. J. Phamacol. , 269 , 165 – 175 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Ashida , Y. , Kido , J. , Kinoshita , F. , Nishino , M. , Shinkai , K. , Akedo , H. and Inoue , H.Putrescine‐dependent invasive capacity of rat ascites hepatoma cells . Cancer Res. , 52 , 5313 – 5316 ( 1992. ). [PubMed] [Google Scholar]
- 11. ) Andersson , G. and Heby , O.Polyamine and nucleic acid concentrations in Ehrlich ascites carcinoma cells and liver of tumor‐bearing mice at various stages of tumor growth . J. Natl. Cancer Inst. , 48 , 165 – 172 ( 1972. ). [PubMed] [Google Scholar]
- 12. ) Kubota , S. , Ohsawa , N. and Takaku , F.Effects of d, l‐α‐difluoromethylornithine on the growth and metastasis of B16 melanoma in vivo . Int. J. Cancer , 39 , 244 – 247 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 13. ) Sunkara , P. S. and Rosenberger , A. L.Antimetastatic activity of d, l‐α‐difluoromethylornithine, an inhibitor of polyamine biosynthesis, in mice . Cancer Res. , 47 , 933 – 935 ( 1987. ). [PubMed] [Google Scholar]
- 14. ) Nakaike , S. , Kashiwagi , K. , Terao , K. , Iio , K. and Igarashi , K.Combined use of α‐difluoromethylornithine and an inhibitor of S‐adenosylmethionine decarboxylase in mice bearing P388 leukemia or Lewis lung carcinoma . Jpn. J. Cancer Res. (Gann) , 79 , 501 – 508 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. ) Casero , R. A. , Jr. and Pegg , A. E.Spermidine/spermine N1‐acetyltransferase: the turning point in polyamine metabolism . FASEB J. , 7 , 653 – 661 ( 1993. ). [PubMed] [Google Scholar]
- 16. ) Inoue , H. , Asada , A. , Kato , Y. and Takeda , Y.Interconversion of aliphatic polyamines in isoproterenol‐stimulated mouse parotid glands . J. Biochem. , 84 , 719 – 725 ( 1987. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Shinki , T. , Tanaka , H. , Kadofuku , T. , Sato , T. and Suda , T.Major pathway for putrescine synthesis induced by 1α,25‐dihydroxyvitamin D3 in chick duodenum . Gastroenterology , 96 , 1494 – 1501 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 18. ) Zoli , M. , Pedrazzi , P. , Zini , I. and Agnati , L. F.Spermidine/spermine N1‐acetyltransferase mRNA levels show marked and region‐specific changes in the early phase after transient forebrain ischemia . Mol. Brain Res. , 38 , 122 – 134 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Shappell , N. W. , Fogel‐Petrovic , M. F. and Porter , C. W.Regulation of spermidine/spermine N1‐acetyltransferase by intracellular polyamine pools: evidence for a functional role in polyamine homeostasis . FEBS Lett. , 321 , 179 – 183 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 20. ) Kido , J. , Ashida , Y. , Shinkai , K. , Akedo , H. , Isoai , A. , Kumagai , H. and Inoue , H.Effects of methylthiodeoxyadenosine and its analogs on in vitro invasion of rat ascites hepatoma cells and methylation of their phospholipids . Jpn. J. Cancer Res. , 82 , 1104 – 1111 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. ) Akedo , H. , Shinkai , K. , Mukai , M. , Mori , Y. , Tateishi , R. , Tanaka , K. , Yamamoto , R. and Morishita , T.Interaction of rat ascites hepatoma cells with cultured mesothelial cell layers: a model for tumor invasion . Cancer Res. , 46 , 2416 – 2422 ( 1986. ). [PubMed] [Google Scholar]
- 22. ) Luckhoff , A.Measuring cytosolic free calcium concentration in endothelial cells with indo‐1: the pitfall of using the ratio of two fluorescence intensities recorded at different wavelengths . Cell Calcium , 7 , 233 – 248 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Wier , W. G. , Yue , D. T. and Marban , E.Effects of ryanodine on intracellular Ca2+ transients in mammalian cardiac muscle . Fed. Proc. , 44 , 2989 – 2993 ( 1985. ). [PubMed] [Google Scholar]
- 24. ) Christensen , S. B. , Andersen , A. , Poulsen , J.‐C. J. and Treiman , M.Derivatives of thapsigargin as probes of its binding site on endoplasmic reticulum Ca2+ ATPase: stereo‐selectivity and important functional groups . FEBS Lett. , 335 , 345 – 348 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Horio , M. , Lovelace , E. , Pastan , I. and Gottesman , M. M.Agents which reverse multidrug‐resistance are inhibitors of [3H]vinblastine transport by isolated vesicles . Biochim. Biophys. Acta , 1061 , 106 – 110 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Taylor , J. M. and Simpson , R. U.Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse . Cancer Res. , 52 , 2413 – 2418 ( 1992. ). [PubMed] [Google Scholar]
- 27. ) Pancrazio , J. J. , Oie , H. K. and Kim , Y. I.Voltage‐sensitive calcium channels in a human small‐cell lung cancer cell line . Acta Physiol. Scand. , 144 , 463 – 468 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Huet , S. , Chapey , C. and Robert , J.Reversal of multidrug resistance by a new lipophilic cationic molecule, S9788: comparison with 11 other MDR‐modulating agents in a model of doxorubicin‐resistant rat glioblastoma cells . Eur. J. Cancer , 29A , 1377 – 1383 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 29. ) Todd , D. G. and Mikkelsen , R. B.Ionizing radiation induces a transient increase in cytosolic free [Ca2+] in human epithelial tumor cells . Cancer Res. , 54 , 5224 – 5230 ( 1994. ). [PubMed] [Google Scholar]
- 30. ) Lee , H. C. , Aarhus , R. , Graeff , R. , Gurnack , M. E. and Walseth , T. F.Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin . Nature , 370 , 307 – 309 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 31. ) Thorn , P. , Gerasimenko , O. and Petersen , O. H.Cyclic ADP‐ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells . EMBO J. , 13 , 2038 – 2043 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. ) Sitsapesan , R. , McGarry , S. J. and Williams , A. J.Cyclic ADP‐ribose, the ryanodine receptor and Ca2+ release . Trends Pharmacol. Sci. , 16 , 386 – 391 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 33. ) Gromada , J. , Jorgensen , T. D. and Dissing , S.Cyclic ADP‐ribose and inositol 1,4,5‐triphosphate mobilize Ca2+ from distinct intracellular pools in permeabilized lacrimal acinar cells . FEBS Lett. , 360 , 303 – 306 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 34. ) Yue , C. , White , K. L. , Reed , W. A. and Bunch , T. D.The existence of inositol 1,4,5‐trisphosphate and ryanodine receptors in mature bovine oocytes . Development (Camb.) , 121 , 2645 – 2654 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 35. ) Gerasimenko , O. V. , Gerasimenko , J. V. , Belan , P. V. and Petersen , O. H.Inositol trisphosphate and cyclic ADP‐ribose‐mediated release of Ca2+ from single isolated pancreatic zymogen granules . Cell , 84 , 473 – 480 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 36. ) Chini , E. N. and Dousa , T. P.Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca2+‐releasing agonist, in rat tissues . Biochem. Biophys. Res. Commun. , 209 , 167 – 174 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 37. ) Genazzani , A. A. and Galione , A.Nicotinic acid‐adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin‐insensitive pool . Biochem. J. , 315 , 721 – 725 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. ) Aarhus , R. , Dickey , D. M. , Graeff , R. M. , Gee , K. R. , Walseth , T. F. and Lee , H. C.Activation and inactivation of Ca2+ release by NAADP+ . J. Biol. Chem. , 271 , 8513 – 8516 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 39. ) Bourguignon , L. Y. W. , Chu , A. , Jin , H. and Brandt , N. R.Ryanodine receptor‐ankyrin interaction regulates internal Ca2+ release in mouse T‐lymphoma cells . J. Biol. Chem. , 270 , 17917 – 17922 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 40. ) Chini , E. N. , Beers , K. W. , Chini , C. C. and Dousa , T. P.Specific modulation of cyclic ADP‐ribose‐induced Ca2+ release by polyamines . Am. J. Physiol. , 269 , C1042 – C1047 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 41. ) Swärd , K. , Nilsson , B.‐O. and Hellstrand , P.Polyamines increase Ca2+ sensitivity in permeabilized smooth muscle of guinea pig ileum . Am. J. Physiol. , 266 , C1754 – C1763 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 42. ) Ventura , C. , Ferroni , C. , Flamigni , F. , Stefanelli , C. and Capogrossi , M. C.Polyamine effects on [Ca2+]i homeostasis and contractility in isolated rat ventricular cardiomyocytes . Am. J. Physiol. , 267 , H587 – H592 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 43. ) Gomez , M. and Hellstrand , P.Effects of polyamines on voltage‐activated calcium channels in guinea‐pig intestinal smooth muscle . Pflugers Arch. Eur. J. Physiol. , 430 , 501 – 507 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 44. ) Pritchard , G. A. , Fahey , J. M. , Minocha , S. C. , Conaty , C. and Miller , L. G.Polyamine potentiation and inhibition of NMDA‐mediated increases of intracellular free Ca2+ in cultured chick cortical neurons . Eur. J. Pharmacol. , 266 , 107 – 115 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 45. ) Sayers , L. G. and Michelangeli , F.The inhibition of the inositol 1,4,5‐trisphosphate receptor from rat cerebellum by spermine and other polyamines . Biochem. Biophys. Res. Commun. , 197 , 1203 – 1208 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 46. ) Mernissi‐Arifi , K. , Imbs , I. , Schlewer , G. and Spiess , B.Complexation of spermine and spermidine by myo‐inositol 1,4,5‐tris(phosphate) and related compounds: biological significance . Biochim. Biophys. Acta , 1289 , 404 – 410 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 47. ) Khan , N. A. , Moulinoux , J.Ph. and Deschaux , P.Putrescine modulation of depolarization‐induced [3H]serotonin release from fish brain synaptosomes . Neurosci. Lett. , 212 , 45 – 8 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 48. ) Shinki , T. , Tanaka , H. , Takito , J. , Yamaguchi , A. , Nakamura , Y. , Yoshiki , S. and Suda , T.Putrescine is involved in the vitamin D action in chick intestine . Gastroenterology , 100 , 113 – 122 ( 1991. ). [DOI] [PubMed] [Google Scholar]
- 49. ) Schliwa , M.Proteins associated with cytoplasmic actin . Cell , 25 , 587 – 590 ( 1981. ). [DOI] [PubMed] [Google Scholar]
- 50. ) Lauffenburger , D. A. and Horwitz , A. F.Cell migration: a physically integrated molecular process . Cell , 84 , 359 – 369 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 51. ) Mitchison , T. J. and Cramer , L. P.Actin‐based cell motility and cell locomotion . Cell , 84 , 371 – 379 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 52. ) McCormack , S. A. , Viar , M. J. and Johnson , L. R.Polyamines are necessary for cell migration by a small intestinal crypt cell line . Am. J. Physiol. , 264 , G367 – G374 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 53. ) McCormack , S. A. , Wang , J.‐Y. and Johnson , L. R.Polyamine deficiency causes reorganization of F‐actin and tropomyosin in IEC‐6 cells . Am. J. Physiol. , 267 , C715 – C722 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 54. ) Kusama , T. , Nakamori , S. , Ohigashi , H. , Mukai , M. , Shinkai , K. , Ishikawa , O. , Imaoka , S. , Matsumoto , Y. and Akedo , H.Enhancement of in vitro tumor‐cell transcellular migration by tumor‐cell‐secreted endothelial‐cell‐retraction factor . Int. J. Cancer , 63 , 112 – 118 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 55. ) Kohn , E. C. , Jacobs , W. , Kim , Y. S. , Alessandro , R. , Stetler‐Stevenson , W. G. and Liotta , L. A.Calcium influx modulates expression of matrix metalloproteinase‐2 (72‐kDa type IV collagenase, gelatinase A) . J. Biol. Chem. , 269 , 21505 – 21511 ( 1994. ). [PubMed] [Google Scholar]
