Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1998 Nov;89(11):1144–1153. doi: 10.1111/j.1349-7006.1998.tb00509.x

Relationship between Protein Levels and Gene Expression of Dihydropyrimidine Dehydrogenase in Human Tumor Cells during Growth in Culture and in Nude Mice

Teiji Takechi 1, Hiroyuki Okabe 1, Akio Fujioka 1, Yuko Murakami 1, Masakazu Fukushima 1
PMCID: PMC5921712  PMID: 9914783

Abstract

Protein levels and gene expression of dihydropyrimidine dehydrogenase (DPD), the rate‐limiting enzyme for degradation of 5‐fluorouracil, were studied in two human tumor cell lines (fibrosarcoma HT‐1080 and pancreatic carcinoma MIAPaCa‐2) in various growth phases of the cultured cells and of tumor xenografts implanted into nude mice. DPD catalytic activity and DPD protein content in cytosolic preparations were determined by means of radioenzymatic assay and western blot analysis, respectively. Relative DPD mRNA expression was determined by using a semi‐quantitative reverse transcription‐polymerase chain reaction in which glyceraldehyde‐3‐phosphate dehydrogenase mRNA was used as an internal standard. DPD activity and protein content in cultures of both cell lines increased in proportion to cell density (DPD activities ranged from undetectable to 84 pmol/min/mg protein in the HT‐1080 cells and from undetectable to 335 pmol/min/mg protein in the MIAPaCa‐2 cells). DPD mRNA levels, on the other hand, tended to decrease slightly during cell growth. DPD activity and protein content in HT‐1080 tumor xenografts increased during growth in proportion to tumor weight (DPD activities ranged from 7 to 131 pmol/min/mg protein), but DPD mRNA levels did not correlate with tumor weight. DPD activity and protein content in MIAPaCa‐2 tumor xenografts did not change much, and seemed to have already plateaued, since the tumors were small (weighing about 30 mg). These findings suggest that DPD protein expression during tumor growth is controlled at the post‐transcriptional level.

Keywords: Dihydropyrimidine dehydrogenase, 5‐Fluorouracil sensitivity, Tumor growth, Semi‐quantitative RT‐PCR, Post‐transcriptional control

Full Text

The Full Text of this article is available as a PDF (168.0 KB).

REFERENCES

  • 1. ) Heggie , G. D. , Sommadossi , J. P. , Cross , D. S. , Huster , W. J. and Diasio , R. B.Clinical pharmacokinetics of 5‐fluorouracil and its metabolites in plasma, urine and bile . Cancer Res. , 47 , 2203 – 2206 ( 1987. ). [PubMed] [Google Scholar]
  • 2. ) Etienne , M. C. , Cheradame , S. , Fischel , J. L. , Formento , P. , Dassonville , O. , Renee , N. , Schneider , M. , Thyss , A. , Demard , F. and Milano , G.Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity . J. Clin. Oncol. , 13 , 1663 – 1670 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 3. ) Milano , G. , Fischel , J. L. , Spector , T. , Etienne , M. C. and Formento , P.Enhancement of fluorouracil cytotoxicity by inhibiting dihydropyrimidine dehydrogenase activity with 5‐ethynyluracil . Proc. Am. Assoc. Cancer Res. , 36 , 292 ( 1995. ). [Google Scholar]
  • 4. ) Porter , D. J. T. , Chestnut , W. G. , Merrill , B. M. and Spector , T.Mechanism‐based inactivation of dihydropyrimidine dehydrogenase by 5‐ethynyluracil . J. Biol. Chem. , 267 , 5236 – 5242 ( 1992. ). [PubMed] [Google Scholar]
  • 5. ) Spector , T. , Harrington , J. A. and Porter , D. J. T.5‐Ethynyluracil (776C85): inactivation of dihydropyrimidine dehydrogenase in vivo . Biochem. Pharmacol. , 46 , 2243 – 2248 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Takechi , T. , Uchida , J. , Fujioka , A. and Fukushima , M.Enhancing 5‐fluorouracil cytotoxicity by inhibiting dihydropyrimidine dehydrogenase activity with uracil in human tumor cells . Int. J. Oncol. , 11 , 1041 – 1044 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Takechi , T. , Uchida , J. , Takeda , S. and Fukushima , M.Enhancement of 5‐fluorouracil cytotoxicity by dihydropyrimidine dehydrogenase inhibitor, 5‐chloro‐2,4‐dihydroxypyridine . Proc. Jpn. Cancer Assoc. , 87 ( Suppl. ), 639 ( 1996. ) ( in Japanese ). [Google Scholar]
  • 8. ) Tatsumi , K. , Fukushima , M. , Shirasaka , T. and Fujii , S.Inhibitory effects of pyrimidine, barbituric acid and pyridine derivatives on 5‐fluorouracil degradation in rat liver extracts . Jpn. J. Cancer Res. , 78 , 748 – 755 ( 1987. ). [PubMed] [Google Scholar]
  • 9. ) McLeod , H. L. , Sludden , J. , Murray , G. I. , Keenan , R. A. , Davidson , A. I. , Park , K. , Koruth , M. and Cassidy , J.Characterization of dihydropyrimidine dehydrogenase in human colorectal tumours . Br. J. Cancer , 77 , 461 – 465 ( 1998. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. ) Williams , C. S. and Tuchman , M.Correlations of dihydropyrimidine dehydrogenase, thymidine phosphorylase and thymidine kinase activities in strongly and weakly malignant cultured murine neuroblastoma cells . Int. J. Cancer , 43 , 901 – 904 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 11. ) Rasheed , S. , Walter , A. , Nelson‐Rees , W. A. , Toth , E. M. , Arnstein , P. and Gardner , M. B.Characterization of a newly derived human sarcoma cell line (HT‐1080) . Cancer , 33 , 1027 – 1033 ( 1974. ). [DOI] [PubMed] [Google Scholar]
  • 12. ) Yunis , A. A. , Arimura , G. K. and Russin , D. J.Human pancreatic carcinoma (MIAPaCa‐2) in continuous culture: sensitivity to asparaginase . Int. J. Cancer , 19 , 218 – 235 ( 1977. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Naguib , F. N. M. , el Kouni , M. H. and Cha , S.Enzymes of uracil catabolism in normal and neoplastic human tissues . Cancer Res. , 45 , 5405 – 5412 ( 1985. ). [PubMed] [Google Scholar]
  • 14. ) Ikenaka , K. , Shirasaka , T. , Kitano , S. and Fujii , S.Effect of uracil on metabolism of 5‐fluorouracil in vitro . Gann , 70 , 353 – 359 ( 1979. ). [PubMed] [Google Scholar]
  • 15. ) Yokota , H. , Fernandez‐Salguero , P. , Furuya , H. , Lin , K. , McBride , O. W. , Podschun , B. , Schnackerz , K. D. and Gonzalez , F. J.cDNA cloning and chromosome mapping of human dihydropyrimidine dehydrogenase, an enzyme associated with 5‐fluorouracil toxicity and congenital thymine uraciluria . J. Biol. Chem. , 269 , 23192 – 23196 ( 1994. ). [PubMed] [Google Scholar]
  • 16. ) Tokunaga , K. , Nakamura , Y. , Sakata , K. , Fujimori , K. , Ohkubo , M. , Sawada , K. and Sakiyama , S.Enhanced expression of a glyceraldehyde‐3‐phosphate dehydrogenase gene in human lung cancers . Cancer Res. , 47 , 5616 – 5619 ( 1987. ). [PubMed] [Google Scholar]
  • 17. ) Johnson , M. R. , Wang , K. , Tillmanns , S. , Albin , N. and Diasio , R. B.Structural organization of the human dihydropyrimidine dehydrogenase gene . Cancer Res. , 57 , 1660 – 1663 ( 1997. ). [PubMed] [Google Scholar]
  • 18. ) Ercolani , L. , Florence , B. , Denaro , M. and Alexander , M.Isolation and complete sequence of a functional human glyceraldehyde‐3‐phosphate dehydrogenase gene . J. Biol. Chem. , 263 , 15335 – 15341 ( 1988. ). [PubMed] [Google Scholar]
  • 19. ) Thein , S. L. and Wallace , R. B.“Human Genetic Diseases: A Practical Approach ,” pp. 33 – 50 ( 1986. ). IRL Press; , Herndon , VA . [Google Scholar]
  • 20. ) Carmichael , J. , DeGraff , W. G. , Gazdar , A. F. , Minna , J. D. and Mitchell , J. B.Evaluation of a tetrazolium‐based semiautomated colorimetric assay: assessment of chemosensitivity testing . Cancer Res. , 47 , 936 – 942 ( 1987. ). [PubMed] [Google Scholar]
  • 21. ) Sabath , D. E. , Broome , H. E. and Prystowsky , M. B.Glyceraldehyde‐3‐phosphate dehydrogenase mRNA is a major interleukin 2‐induced transcript in a cloned T‐helper lymphocyte . Gene , 91 , 185 – 191 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 22. ) Murphy , L. D. , Herzog , C. E. , Rudick , J. B. , Fojo , A. T. and Bates , S. E.Use of the polymerase chain reaction in the quantitation of mdr‐1 gene expression . Biochemistry , 29 , 10351 – 10356 ( 1990. ). [DOI] [PubMed] [Google Scholar]
  • 23. ) Dukas , K. , Sarfati , P. , Vaysse , N. and Pradayrol , L.Quantitation of changes in the expression of multiple genes by simultaneous polymerase chain reaction . Anal. Biochem. , 215 , 66 – 72 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 24. ) Iijima , K. , Yoshikawa , N. and Nakamura , H.Activation‐induced expression of vascular permeability factor by human peripheral T cells: a non‐radioisotopic semiquantitative reverse transcription‐polymerase chain reaction assay . J. Immunol. Methods , 196 , 199 – 209 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Heukels‐Dully , M. J. and Niermeijer , M. F.Variation in lysosomal enzyme activity during growth in culture of human fibroblasts and amniotic fluid cells . Exp. Cell Res. , 97 , 304 – 312 ( 1976. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Dimanche‐Boitrel , M. T. , Pelletier , H. , Genne , P. , Petit , J. M. , Le Grimellec , C. , Canal , P. , Ardiet , C. , Bastian , G. and Chauffert , B.Confluence‐dependent resistance in human colon cancer cells: role of reduced drug accumulation and low intrinsic chemosensitivity of resting cells . Int. J. Cancer , 50 , 677 – 682 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Pestalozzi , B. C. , McGinn , C. J. , Kinsella , T. J. , Drake , J. C. , Glennon , M. C. , Allegra , C. J. and Johnston , P. G.Increased thymidylate synthase protein levels are principally associated with proliferation but not cell cycle phase in asynchronous human cancer cells . Br. J. Cancer , 71 , 1151 – 1157 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. ) Queener , S. F. , Morris , H. P. and Weber , G.Dihydrouracil dehydrogenase activity in normal, differentiating, and regenerating liver and in hepatomas . Cancer Res. , 31 , 1004 – 1009 ( 1971. ). [PubMed] [Google Scholar]
  • 29. ) Phillips , R. M. and Clayton , M. R. K.Plateau‐phase cultures: an experimental model for identifying drugs which are bioactivated within the microenvironment of solid tumours . Br. J. Cancer , 75 , 196 – 201 ( 1997. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. ) Dimanche‐Boitrel , M. T. , Garrido , C. and Chauffert , B.Kinetic resistance to anticancer agents . Cytotechnology , 12 , 347 – 356 ( 1993. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) De Vita , V. T.The relationship between tumor mass and resistance to chemotherapy . Cancer , 51 , 1209 – 1220 ( 1983. ). [DOI] [PubMed] [Google Scholar]
  • 32. ) Jain , R. K.Delivery of novel therapeutic agents in tumors: physiological barriers and strategies . J. Natl. Cancer Inst. , 81 , 570 – 576 ( 1989. ). [DOI] [PubMed] [Google Scholar]
  • 33. ) Van Laar , J. A. M. , Rustum , Y. M. , Van der Wilt , C. L. , Smid , K. , Kuiper , C. M. , Pinedo , H. M. and Peters , G. J.Tumor size and origin determine the antitumor activity of cisplatin or 5‐fluorouracil and its modulation by leucovorin in murine colon carcinomas . Cancer Chemother. Pharmacol. , 39 , 79 – 89 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 34. ) Lenz , H. J. , Leichman , C. G. , Danenberg , K. D. , Danenberg , P. V. , Groshen , S. , Cohen , H. , Laine , L. , Crookes , P. , Silberman , H. , Baranda , J. , Garcia , Y. , Li , J. and Leichman , L.Thymidylate synthase mRNA level in adenocarcinoma of the stomach: a predictor for primary tumor response and overall survival . J. Clin. Oncol. , 14 , 176 – 182 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 35. ) Leichman , C. G. , Lenz , H. J. , Leichman , L. , Danenberg , K. , Baranda , J. , Groshen , S. , Baswell , W. , Metzger , R. , Tan , M. and Danenberg , P. V.Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted‐infusion fluorouracil and weekly leucovorin . J. Clin. Oncol. , 15 , 3223 – 3229 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 36. ) Ahnen , D. J. , Feigl , P. , Quan , G. , Fenoglio‐Preiser , C. , Lovato , L. C. , Bunn , P. A. , Jr. , Stemmerman , G. , Wells , J. D. , Macdonald , J. S. and Meyskens , F. L. , Jr.Ki‐ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study . Cancer Res. , 58 , 1149 – 1158 ( 1998. ). [PubMed] [Google Scholar]
  • 37. ) Tuchman , M. , Von Roemeling , R. , Lanning , R. M. , Sothern , R. B. and Hrushesky , W. J. M.Sources of variability of dihydropyrimidine dehydrogenase activity in human blood mononuclear cells . In“Annual Review of Chronopharmacology ,” Vol. 5 , ed. Reinberg A. , Smolensky M. and Lebrecque G. , pp. 399 – 402 ( 1988. ). Pergamon Press; , New York . [Google Scholar]
  • 38. ) Harris , B. E. , Song , R. , Soong , S.‐J. and Diasio , R. B.Relationship between dihydropyrimidine dehydrogenase activity and plasma 5‐fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5‐fluorouracil by protracted continuous infusion . Cancer Res. , 50 , 197 – 201 ( 1990. ). [PubMed] [Google Scholar]
  • 39. ) Milano , G. and Etienne , M. C.Individualizing therapy with 5‐fluorouracil related to dihydropyrimidine dehydrogenase: theory and limits . Ther. Drug Monit. , 18 , 335 – 340 ( 1996. ). [DOI] [PubMed] [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES