Abstract
By using a retrovirus‐derived system we generated derivatives of the human colon adenocarcinoma cell line LS174T (ATCC CL 188) that stably overexpress a full‐length cDNA encoding the β1 isoform of bovine phosphoinositides‐specific phospholipase C (PI‐PLC). This was confirmed by the elevated levels of catalytic activity to release phosphoinositides from phosphatidylinositol (PI‐PLC) or phosphatidylinositol‐bis‐phosphate (PIP2‐PLC), and the enhanced expressions of messenger RNA and protein. PI‐PLC β1 overexpresser clones grew to form cell clumps floating in liquid medium, whereas the pMV7‐introduced control clones displayed morphologic characteristics that were very similar to those of the parent LS174T cell line. Three individual PI‐PLC β1 overexpresser cell lines displayed increased doubling time (18.0 h, 21.5 h, and 23.8 h) when compared with 4 individual pMV7‐introduced control cell lines (13.1 h, 10.7 h, 12.9 h, and 9.3 h). Anchorage‐independent growth ability in soft agar medium was dramatically suppressed by overexpression of PLC β1, and the ability of PLC‐overproducer clones to form aggregates when cultured in liquid medium was dramatically enhanced when compared with that of pMV7‐introduced control clones. Tumorigenicity of PLC β1‐overproducers was much weaker than that of vector‐transduced control clones. The spontaneous release of carcinoembryonic antigen from PLC β1‐overproducer clones was much higher than that from pMV7 control clones. The ability of PLC β1‐overproducer clones to form aggregates during suspension culture was much stronger than that of the control clones. These results provide the first evidence that elevated levels of endogenous PI‐PLC β1 suppress tumor cell growth, but enhance the ability to form cell aggregates and to release carcinoembryonic antigen, an intercellular adhesion molecule.
Keywords: Phospholipase C β1, Overexpression, Carcinoembryonic antigen, Cell aggregation, Colon adenocarcinoma
Full Text
The Full Text of this article is available as a PDF (399.3 KB).
REFERENCES
- 1. ) Nishizuka , Y.Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C . Science , 258 , 607 – 614 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Berridge , M. J.Inositol triphosphate and calcium signaling . Nature , 361 , 315 – 325 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Rhee , S. G. and Choi , K. D.Regulation of inositol phospholipid‐specific phospholipase C isozymes . J. Biol. Chem. , 267 , 12393 – 12396 ( 1992. ). [PubMed] [Google Scholar]
- 4. ) Lee , C.‐W. , Park , D. J. , Lee , K.‐H. , Kim , C. G. and Rhee , S. G.Purification, molecular cloning, and sequencing of phospholipase C‐β4 . J. Biol. Chem. , 268 , 21318 – 21327 ( 1993. ). [PubMed] [Google Scholar]
- 5. ) Rhee , S. G. and Bae , Y. S.Regulation of phosphoinositide‐specific phospholipase C isozymes . J. Biol. Chem. , 272 , 15045 – 15048 ( 1997. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Ullrich , A. and Schlessinger , J.Signal transduction by receptors with tyrosine kinase activity . Cell , 61 , 203 – 212 ( 1990. ). [DOI] [PubMed] [Google Scholar]
- 7. ) Foster , D. A.Intracellular signaling mediated by protein‐tyrosine kinases: networking through phospholipid metabolism . Cell. Signal , 5 , 389 – 399 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 8. ) Morrison , D. K. , Kaplan , D. R. , Rhee , S. G. and Williams , L. T.Platelet‐derived growth factor (PDGF)‐dependent association of phospholipase C‐γ with the PDGF receptor signaling complex . Mol. Cell. Biol. , 10 , 2359 – 2366 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. ) Mohammadi , M. , Honegger , A. M. , Rotin , D. , Fischer , R. , Bellot , F. , Li , W. , Dionne , C. A. , Jaye , M. , Rubinstein , M. and Schlessinger , J.A tyrosine‐phosphorylated carboxy‐terminal peptide of the fibroblast growth factor receptor (Fig) is a binding site for the SH2 domain of phospholipase C‐γl . Mol. Cell. Biol. , 11 , 5068 – 5078 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. ) Mayer , B. J. and Baltimore , D.Signalling through SH2 and SH3 domains . Trends Cell Biol. , 3 , 8 – 13 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Ross , E. M. and Berstein , G.Regulation of the M1 muscarinic receptor‐Gq pathway by nucleotide exchange and GTP hydrolysis . Life Sci. , 52 , 413 – 419 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 12. ) Lee , C. H. , Park , D. , Wu , D. , Rhee , S. G. and Simon , M. I.Members of the Gqα subunit gene family activate phospholipase C β isozymes . J. Biol. Chem. , 267 , 16044 – 16047 ( 1992. ). [PubMed] [Google Scholar]
- 13. ) John , D.‐Y. , Lee , H.‐H. , Park , D. , Lee , C.‐W. , Lee , K.‐H. , Yoo , O. J. and Rhee , S. G.Cloning, sequencing, purification, and Gq‐dependent activation of phospholipase C‐β3 . J. Biol. Chem. , 268 , 6654 – 6661 ( 1993. ). [PubMed] [Google Scholar]
- 14. ) Park , D. , John , D.‐Y. , Lee , C.‐W. , Lee , K.‐H. and Rhee , S. G.Activation of phospholipase C isozymes by G protein βγ subunits . J. Biol. Chem. , 268 , 4573 – 4576 ( 1993. ). [PubMed] [Google Scholar]
- 15. ) Carozzi , A. , Camps , M. , Gierschik , P. and Parker , P. J.Activation of phosphatidylinositol lipid‐specific phospholipase C‐β3 by G‐protein βγ subunits . FEBS Lett. , 315 , 340 – 342 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 16. ) Nomoto , K. , Morotomi , M. , Miyake , M. , Xhu , D.‐B. , LoGerfo , P. R. and Weinstein , I. B.The effect of bile acids on phospholipase C activity in extracts of normal human colon mucosa and primary colon tumors . Mol. Carcinog. , 9 , 87 – 94 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Nomoto , K. , Tomita , N. , Miyake , M. , Xhu , D.‐B. , LoGerfo , P. R. and Weinstein , I. B.Expression of phospholipases γ1, β1 and δ1 in primary human colon carcinomas and colon carcinoma cell lines . Mol. Carcinog. , 12 , 146 – 152 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 18. ) Robertson , J. B. , Hurd , S. D. , Koch , M. O. and Arteaga , C. L.Increased phospholipase C (PLC)‐γ1 activity in human non‐small cell lung (NSCLC) and renal (RCC) carcinomas correlates with elevated EGF receptor levels . Proc. Am. Assoc. Cancer Res. , 33 , 89 ( 1992. ). [Google Scholar]
- 19. ) Arteaga , C. L. , Johnson , M. D. , Todderud , G. , Coffey , R. J. , Carpenter , G. and Page , D. L.Elevated content of the tyrosine kinase substrate phospholipase C‐γ1 in primary human breast carcinomas . Proc. Natl. Acad. Sci. USA , 88 , 10435 – 10439 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. ) Nor , D.‐Y. , Lee , Y. H. , Kim , S. S. , Kim , Y. I. , Ryu , S.‐H. , Suh , P.‐G. and Park , J.‐G.Elevated content of phospholipase C‐γ1 in colorectal cancer tissues . Cancer , 73 , 36 – 41 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Park , J.‐G. , Lee , Y. H. , Kim , S. S. , Park , K. J. , Noh , D.‐Y. , Ryu , S. H. and Suh , P.‐G.Overexpression of phospholipase C‐γ1 in familial adenomatous polyposis . Cancer Res. , 54 , 2240 – 2244 ( 1994. ). [PubMed] [Google Scholar]
- 22. ) Allen , L. F. , Lefkowitz , R. J. , Caron , M. G. and Cotecchia , S.G‐Protein coupled receptor genes as protooncogenes: constitutively activating mutations of the α1B‐adrenergic receptor enhance mitogenesis and tumorigenicity . Proc. Natl. Acad. Sci. USA , 88 , 11354 – 11358 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. ) Gutkind , J. S. , Novotny , E. A. , Brann , M. R. and Robbins , K. C.Muscarinic acetylcholine receptor subtypes as agonist dependent oncogenes . Proc. Natl. Acad. Sci. USA , 88 , 4703 – 4708 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. ) Julius , D. , Livelli , T. J. , Jessell , T. M. and Axel , R.Ectopic expression of the serotonin 1C receptor and the triggering of malignant transformation . Science , 244 , 1057 – 1062 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 25. ) Kirschmeier , P. , Housey , G. , Johnson , M. , Perkins , A. and Weinstein , I. B.Construction and characterization of a retroviral vector demonstrating efficient expression of cloned cDNA sequences . DNA , 7 , 219 – 225 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 26. ) Trainer , D. L. , Kline , T. , McCabe , F. L. , Faucette , L. F. , Feld , J. , Chakin , M. , Anzano , M. , Rieman , D. , Hoffstein , S. , Li , D.‐J. , Gennaro , D. , Buscarino , C. , Lynch , M. , Poste , G. and Greig , R.Biological characterization and oncogene expression in human colorectal carcinoma cell lines . Int. J. Cancer , 41 , 287 – 296 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 27. ) Kahn , S. M. , O'Driscoll , K. R. , Jiang , W. , Borner , C. , Xu , D.‐B. , Blackwood , M. A. , Zhang , Y.‐J. , Nomoto , K. and Weinstein , I. B.Suppression of mitogenic activity by stable expression of the regulatory domain of PKC β . Carcinogenesis , 15 , 2919 – 2925 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Hofmann , S. L. and Majerus , P. W.Identification and properties of two distinct phosphatidylinositol‐specific phospholipase C enzymes from sheep seminal vesicular glands . J. Biol. Chem. , 257 , 6461 – 6469 ( 1982. ). [PubMed] [Google Scholar]
- 29. ) Bligh , E. and Dyer , W.A rapid method for total lipid extraction and purification . Can. J. Biochem. Physiol. , 37 , 911 – 917 ( 1959. ). [DOI] [PubMed] [Google Scholar]
- 30. ) Chirgwin , J. M. , Przybyla , A. E. , MacDonald , R. J. and Rutter , W. J.Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease . Biochemistry , 18 , 5295 – 5299 ( 1979. ). [DOI] [PubMed] [Google Scholar]
- 31. ) Church , G. M. and Gilbert , W.Genomic sequencing . Proc. Natl. Acad. Sci. USA , 81 , 1991 – 1995 ( 1984. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. ) Benchimol , S. , Fuks , A. , Jothy , S. , Beauchemin , N. , Shirota , K. and Stanners , C. P.Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule . Cell , 57 , 327 – 334 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 33. ) Bordier , C.Phase separation of integral membrane proteins in Triton X‐114 solution . J. Biol. Chem. , 256 , 1604 – 1607 ( 1981. ). [PubMed] [Google Scholar]
- 34. ) Kalinec , G. , Nazarali , A. J. , Hermouet , S. , Xu , N. and Gutkind , J. S.Mutated α subunit of the Gq protein induces malignant transformation in NIH 3T3 cells . Mol. Cell. Biol. , 12 , 4687 – 4693 ( 1992. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. ) Guillem , J. G. , Hsieh , L. L. , O'Toole , K. M. , Forde , K. A. , Logerfo , P. and Weinstein , I. B.Altered levels of protein kinase C and Ca2+‐dependent protein kinases in human colon carcinomas . Cancer Res. , 48 , 3964 – 3971 ( 1988. ). [PubMed] [Google Scholar]
- 36. ) Kopp , R. , Noelke , B. , Sauter , G. , Schildberg , F. W. , Paumgartner , G. and Pfeiffer , A.Altered protein kinase C activity in biopsies of human colon adenomas and carcinomas . Cancer Res. , 51 , 205 – 210 ( 1991. ). [PubMed] [Google Scholar]
- 37. ) Kusunoki , M. , Sakanoue , Y. , Hatada , T. , Yanagi , H. , Yamamura , T. and Utsunomiya , J.Protein kinase C activity in human colon adenoma and colorectal carcinoma . Cancer Res. , 69 , 24 – 30 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 38. ) Baum , C. L. , Wali , R. K. , Sitrin , M. D. , Bolt , M. J. G. and Brasitus , T. A.1, 2‐Dimethylhydrazine‐induced alterations in protein kinase C activity in the rat preneoplastic colon . Cancer Res. , 50 , 3915 – 3920 ( 1990. ). [PubMed] [Google Scholar]
- 39. ) Phan , S.‐C. , Morotomi , M. , Guillem , J. G. , Logerfo , P. and Weinstein , I. B.Decreased levels of 1,2‐sn‐diacylglycerol in human colon tumors . Cancer Res. , 51 , 1571 – 1573 ( 1991. ). [PubMed] [Google Scholar]
- 40. ) Sauter , G. , Nerlich , A. , Spengler , U. , Kopp , R. and Pfeiffer , A.Low diacylglycerol values in colonic adenomas and colorectal cancer . Gut , 31 , 1041 – 1045 ( 1991. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. ) Choi , P. M. , Tchou‐Wong , K.‐M. and Weinstein , I. B.Overexpression of protein kinase C in HT29 colon cancer cells causes growth inhibition and tumor suppression . Mol. Cell. Biol. , 10 , 4650 – 4657 ( 1990. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. ) Brazill , D. T. , Lindsey , D. F. , Bishop , J. D. and Gomer , R. H.Cell density sensing mediated by a G protein‐coupled receptor activating phospholipase C . J. Biol. Chem. , 273 , 8161 – 8168 ( 1998. ). [DOI] [PubMed] [Google Scholar]
- 43. ) Teixeira , M. M. , Giembycz , M. A. , Lindsay , M. A. and Hellewell , P. G.Pertussis toxin shows distinct early signaling events in platelet‐activating factor‐, leukotriene B4‐, and C5a‐induced eosinophil homotypic aggregation in vitro. and recruitment in vivo . Blood , 89 , 4566 – 4573 ( 1997. ). [PubMed] [Google Scholar]
- 44. ) Rogers , G. T.Carcinoembryonic antigens and related glycoproteins: molecular aspects and specificity . Biochim. Biophys. Acta , 695 , 227 – 249 ( 1983. ). [DOI] [PubMed] [Google Scholar]
- 45. ) Wanebo , H. J. , Rao , B. , Pinsky , C. M. , Hoffman , R. G. , Stearns , M. , Schwartz , M. K. and Oettgen , H. F.Preoperative carcinoembryonic antigen level as a prognostic indicator in colorectal cancer . N. Engl. J. Med. , 299 , 448 – 451 ( 1978. ). [DOI] [PubMed] [Google Scholar]
- 46. ) Fletcher , R. H.Carcinoembryonic antigen . Ann. Intern. Med. , 104 , 66 – 73 ( 1986. ). [DOI] [PubMed] [Google Scholar]
- 47. ) Phil , E. , McNaughtean , J. , Ward , H. A. and Nairn , R. C.Immunohistological patterns of carcinoembryonic antigen in colorectal carcinoma: correlation with staging and blood levels . Pathology , 12 , 7 – 13 ( 1980. ). [DOI] [PubMed] [Google Scholar]
- 48. ) Goslin , R. , O'Brien , M. J. , Steele , G. , Mayer , R. , Wilson , R. , Corson , J. M. and Zamcheck , N.Correlation of plasma CEA and CEA tissue staining in poorly differentiated colorectal cancer . Am. J. Med. , 71 , 246 – 253 ( 1981. ). [DOI] [PubMed] [Google Scholar]
- 49. ) Sack , T. L. , Gum , J. R. , Low , M. G. and Kim , Y. S.Release of carcinoembryonic antigen from human colon cancer cells by phosphatidylinositol‐specific phospholipase C . J. Clin. Invest. , 82 , 586 – 593 ( 1988. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. ) Low , M. G. and Saltiel , A. R.Structural and functional roles of glycosylphosphatidylinositol in membranes . Science , 239 , 268 – 275 ( 1988. ). [DOI] [PubMed] [Google Scholar]
- 51. ) Kitsuki , H. , Katano , M. , Morisaki , T. and Torisu , M.CEA‐mediated homotypic aggregation of human colorectal carcinoma cells in a malignant effusion . Cancer Lett. , 88 , 7 – 13 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 52. ) Turbide , C. , Rojas , M. , Stanners , C. P. and Beauchemin , N.A mouse carcinoembryonic antigen gene family member is a calcium‐dependent cell adhesion molecule . J. Biol. Chem. , 266 , 309 – 315 ( 1991. ). [PubMed] [Google Scholar]
- 53. ) Gouin , E. , Ouary , M. , Pogu , S. and Sai , P.Release of carcinoembryonic antigen from human tumor cells by phosphatidylinositol‐specific phospholipase C: highly effective extraction and upregulation from LS174T colonic adenocarcinoma cells . Arch. Biochem. Biophys. , 306 , 125 – 132 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 54. ) Jessup , J. M. and Tomas , P.Carcinoembryonic antigen: function in metastasis by human colorectal carcinoma . Cancer Metastasis Rev. , 8 , 263 – 280 ( 1989. ). [DOI] [PubMed] [Google Scholar]