Abstract
Previously, we demonstrated that inostamycin, an inhibitor of phosphatidylinositol turnover, caused cell cycle arrest at the G1 phase, inhibiting the expression of cyclins D1 and E in normal cells. In the present study, we examined the effects of inostamycin on cell cycle progression and apoptosis in human small cell lung carcinoma Ms‐1 cells. Treatment of exponentially proliferating Ms‐1 cells with low concentrations of inostamycin caused cells to accumulate in the G1 phase. We found that inostamycin decreased cyclin D1, and increased cyclin‐dependent kinase inhibitors such as p21WAF1 and p27KIP1 in Ms‐1 cells. On the other hand, higher concentrations of inostamycin induced morphological apoptosis and DNA fragmentation in Ms‐1 cells without affecting the expression of p53, Bcl‐2 and Bax. Inostamycin‐induced apoptosis was suppressed by an inhibitor of caspase‐3, and a 17 kDa fragment of activated caspase‐3 was detected following inostamycin treatment. Therefore, caspase‐3(‐like) would appear to be involved in inostamycin‐induced apoptosis. On the other hand, an inhibitor of caspase‐3(‐like) proteases did not affect the inhibitory effect of inostamycin on cyclin D1 expression, suggesting that caspase‐3(‐like) proteases were not responsible for inostamycin‐induced G1 arrest.
Keywords: Inostamycin, Cyclin D1, Caspase‐3, p27KIP1
Full Text
The Full Text of this article is available as a PDF (417.0 KB).
REFERENCES
- 1. ) Hunter , T. and Pines , J.Cyclins and cancer II: cyclin D and CDK inhibitors come of age . Cell , 79 , 573 – 582 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 2. ) Lees , E.Cyclin dependent kinase regulation . Curr. Opin. Cell Biol. , 7 , 773 – 780 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 3. ) Kamb , A.Cell‐cycle regulators and cancer . Trends Genet. , 11 , 136 – 140 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 4. ) Sheaff , R. J. and Robert , J. M.Lessons in p16 from phylum falconium . Curr. Biol. , 5 , 28 – 31 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 5. ) Hengartner , M. O. and Horvitz , H. R.Programmed cell death in Caenorhabditis elegans . Curr. Opin. Genet. Dev. , 4 , 581 – 586 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 6. ) Yuan , J. , Shaham , S. , Ledoux , S. , Ellis , H. M. and Horvitz , H. R.The C. elegans cell death gene ced‐3 encodes a protein similar to mammalian interleukin‐β‐converting enzyme . Cell , 75 , 641 – 652 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 7. ) Vaux , D. L. and Strasser , A.The molecular biology of apoptosis . Proc. Natl. Acad. Sci. USA , 93 , 2239 – 2244 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. ) Alnemri , E. S. , Livingston , D. J. , Nicholson , D. W. , Salvesen , G. , Thornberry , N. A. , Wong , W. W. and Yuan , J.Human ICE/CED‐3 protease nomenclature . Cell , 87 , 171 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 9. ) Nicholson , D. W. , Ali , A. , Thornberry , N. A. , Vaillancourt , J. P. , Ding , C. K. , Gallant , M. , Gareau , Y. , Griffin , P. R. , Labelle , M. , Lazebnik , Y. A. , Munday , N. A. , Raju , S. M. , Smulson , M. E. , Yamin , T.‐T. , Yu , V. L. and Miller , D. K.Identification and inhibition of the ICE/CED‐3 protease necessary for mammalian apoptosis . Nature , 376 , 37 – 43 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 10. ) Hengartner , M. O. and Horvitz , H. R.C. elegans cell‐survival gene ced‐9 encodes a functional homolog of the mammalian protooncogene bcl‐2 . Cell , 76 , 665 – 676 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 11. ) Reed , J. C.Bcl‐2 and regulation of programmed cell death . J. Cell Biol. , 124 , 1 – 6 ( 1994. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. ) Oltvai , Z. N. and Korsmeyer , S. J.Checkpoints of dueling dimers foil death wishes . Cell , 79 , 189 – 192 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 13. ) Boise , L. H. , Gottschalk , A. R. , Quintans , J. and Thompson , C. B.Cloning and expression of vertebrate apoptosis gene bcl‐X and use of gene or BCL‐X protein in diagnosis and therapy . Curr. Top. Microbiol. Immunol. , 200 , 107 – 121 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 14. ) Lee , S. , Christakos , S. and Small , M. B.Apoptosis and signal transduction: clues to a molecular mechanism . Curr. Opin. Cell Biol. , 5 , 286 – 291 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 15. ) Imoto , M. , Umezawa , K. , Takahashi , Y. , Naganawa , H. , Iitaka , Y. , Nakamura , H. , Koizumi , Y. , Sasaki , Y. , Hamada , M. , Sawa , T. and Takeuchi , T.Isolation and structure determination of inostamycin, a novel inhibitor of phosphatidylinositol turnover . J. Nat. Prod. , 53 , 825 – 829 ( 1990. ). [Google Scholar]
- 16. ) Imoto , M. , Taniguchi , Y. and Umezawa , K.Inhibition of CDP‐DG: inositol transferase by inostamycin . J. Biochem. , 112 , 299 – 302 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 17. ) Imoto , M. , Morii , T. , Deguchi , A. and Umezawa , K.Involvement of phosphatidylinositol synthesis in the regulation of S phase induction . Exp. Cell Res. , 215 , 228 – 233 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 18. ) Deguchi , A. , Imoto , M. and Umezawa , K.Inhibition of G1 cyclin expression in normal rat kidney cells by inostamycin, a phosphatidylinositol synthesis inhibitor . J. Biochem. , 120 , 1118 – 1122 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 19. ) Fernandes‐Alnemri , T. , Armstrong , R. C. , Krebs , J. , Srinivasula , S. M. , Wang , L. , Bullrich , F. , Fritz , L. C. , Trapani , J. A. , Tomaselli , K. J. , Litwack , G. and Alnemri , E. S.In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD‐like domains . Proc. Natl. Acad. Sci. USA , 93 , 7464 – 7469 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. ) Helin , K. , Lees , J. A. , Vidal , M. , Dyson , N. , Harlow , E. and Fattaey , A. A.cDNA encoding a pRB‐binding protein with properties of the transcription factor E2F . Cell , 70 , 337 – 350 ( 1992. ). [DOI] [PubMed] [Google Scholar]
- 21. ) Krek , W. , Ewen , M. E. , Shirodkar , S. , Arany , Z. , KaelinJr. , W. G. and Livingston , D. M.Negative regulation of the growth‐promoting transcription factor E2F‐1 by a stably bound cyclin A‐dependent protein kinase . Cell , 78 , 161 – 172 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 22. ) Baldin , V. , Lukas , J. , Marcote , M. J. , Pagano , M. and Draetta , G.Cyclin D1 is a nuclear protein required for cell cycle progression in G1 . Genes Dev. , 7 , 812 – 821 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 23. ) Quelle , D. E. , Ashmun , R. A. , Shurtleff , S. A. , Kato , J. , Bar‐Sagi , D. , Roussel , M. F. and Sherr , C. J.Overexpression of mouse D‐type cyclins accelerates G1 phase in rodent fibroblasts . Genes Dev. , 7 , 1559 – 1571 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 24. ) Lukas , J. , Jadayel , D. , Bartkova , J. , Nacheva , E. , Dyer , M. J. , Strauss , M. and Bartek , J.BCL‐1/cyclin D1 oncoprotein oscillates and subverts the G1 phase control in B‐cell neoplasms carrying the t(11;14) translocation . Oncogene , 9 , 2159 – 2167 ( 1994. ). [PubMed] [Google Scholar]
- 25. ) Ohtani , K. , DeGregori , J. and Nevins , J. R.Regulation of the cyclin E gene by transcriptional factor E2F1 . Proc. Natl. Acad. Sci. USA , 92 , 12146 – 12510 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. ) Botz , J. , Zerfass‐Thome , K. , Spitkovsky , D. , Delius , H. , Vogt , B. , Eilers , M. , Hatzigeorgiou , A. and Jansen‐Durr , P.Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter . Mol. Cell. Biol. , 16 , 3401 – 3409 ( 1996. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. ) Polyak , K. , Lee , M.‐H. , Erdjument‐Bromage , H. , Tempst , P. and Massague , J.Cloning of p27KIP1, a cyclin‐dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals . Cell , 78 , 59 – 66 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 28. ) Toyoshima , H. and Hunter , T.p27, a novel inhibitor of G1 cyclin‐cdk protein kinase activity, is related to p21 . Cell , 78 , 67 – 74 ( 1994. ). [DOI] [PubMed] [Google Scholar]
- 29. ) Reynisdottir , I. , Polyak , K. , Iavarone , A. and Massague , J.Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF‐β . Genes Dev. , 9 , 1831 – 1845 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 30. ) El‐Deiry , W. S. , Tokino , T. , Velculescu , V. E. , Levy , D. B. , Parsons , R. , Trent , J. M. , Lin , D. , Mercer , E. , Kinzler , K. W. and Vogelstein , B.WAF1, a potential mediator of p53 tumor suppression . Cell , 75 , 817 – 825 ( 1993. ). [DOI] [PubMed] [Google Scholar]
- 31. ) Takahashi , T. , Nau , M. M. , Chiba , I. , Birrer , M. J. , Rosenberg , R. K. , Vinocour , M. , Levitt , M. , Pass , H. , Gazdar , A. F. and Minna , J. D.p53: a frequent target for genetic abnormalities in lung cancer . Science , 246 , 491 – 494 ( 1989. ). [DOI] [PubMed] [Google Scholar]
- 32. ) Sameshima , Y. , Matsuno , Y. , Hirohashi , S. , Shimosato , Y. , Mizoguchi , H. , Sugimura , T. , Terada , M. and Yokota , J.Alterations of the p53 gene are common and critical events for the maintenance of malignant phenotypes in small‐cell lung carcinoma . Oncogene , 7 , 451 – 457 ( 1992. ). [PubMed] [Google Scholar]
- 33. ) Chin , Y. E. , Kitagawa , M. , Su , W.‐C. S. , You , Z.‐H. , Iwamoto , Y. and Fu , X.‐Y.Cell growth arrest and induction of cyclin‐dependent kinase inhibitor p21WAF1/CIP1 mediated by STAT1 . Science , 272 , 719 – 722 ( 1996. ). [DOI] [PubMed] [Google Scholar]
- 34. ) Pagano , M. , Tam , S. W. , Theodoras , A. M. , Beer‐Romero , P. , Sal , G. D. , Chau , V. , Yew , P. R. , Draetta , G. F. and Rolfe , M.Role of the ubiquitin‐proteasome pathway in regulating abundance of the cyclin‐dependent kinase inhibitor p27 . Science , 269 , 682 – 685 ( 1995. ). [DOI] [PubMed] [Google Scholar]
- 35. ) Kuniyasu , H. , Yasui , W. , Kitahara , K. , Naka , K. , Yokozaki , H. , Akama , Y. , Hamamoto , T. , Tahara , H. and Tahara , E.Growth inhibitory effect of interferon‐β is associated with the induction of cyclin‐dependent kinase inhibitor p27Kip1 in a human gastric carcinoma cell line . Cell Growth Differ. , 8 , 47 – 52 ( 1997. ). [PubMed] [Google Scholar]
- 36. ) Kwon , T. K. , Buchholz , M. A. , Chrest , F. J. and Nordin , A. A.Staurosporine‐induced G1 arrest is associated with the induction and accumulation of cyclin‐dependent kinase inhibitors . Cell Growth Differ. , 7 , 1305 – 1313 ( 1996. ). [PubMed] [Google Scholar]
- 37. ) Shibata , Y. , Nishimura , S. , Okuyama , A. and Nakamura , T.p53‐independent induction of apoptosis by cyclin‐dependent kinase inhibition . Cell Growth Differ. , 7 , 887 – 891 ( 1996. ). [PubMed] [Google Scholar]
- 38. ) Dou , Q. P. , An , B. and Will , P. L.Induction of a retinoblastoma phosphatase activity by anticancer drugs accompanies p53‐independent G1 arrest and apoptosis . Proc. Natl. Acad. Sci. USA , 92 , 9019 – 9023 ( 1995. ). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. ) Chresta , C. M. , Masters , J. R. W. and Hickman , J. A.Hypersensitivity of human testicular tumors to etoposide‐induced apoptosis is associated with functional p53 and a high Bax:Bcl‐2 ratio . Cancer Res. , 56 , 1834 – 1841 ( 1996. ). [PubMed] [Google Scholar]
- 40. ) Enari , M. , Talanian , R. V. , Wong , W. W. and Nagata , S.Sequential activation of ICE‐like and CPP32‐like proteases during Fas‐mediated apoptosis . Nature , 380 , 723 – 726 ( 1996. ). [DOI] [PubMed] [Google Scholar]