Skip to main content
Japanese Journal of Cancer Research : Gann logoLink to Japanese Journal of Cancer Research : Gann
. 1999 Oct;90(10):1117–1129. doi: 10.1111/j.1349-7006.1999.tb00686.x

Analysis of a Chronic Myelogenous Leukemia Patient Vaccinated with Leukemic Dendritic Cells Following Autologous Peripheral Blood Stem Cell Transplantation

Shin‐ichiro Fujii 1,, Kanako Shimizu 2, Koji Fujimoto 1, Tetsuyuki Kiyokawa 1, Taizo Shimomura 2, Osamu Taniguchi 3, Moritoshi Kinoshita 3, Fumio Kawano 1
PMCID: PMC5925998  PMID: 10595741

Abstract

Dendritic cells (DCs) are believed to be the most potent antigen‐presenting cells and may be important in the induction of anti‐leukemia specific T cell responses. In this preliminary clinical study, a patient with chronic phase chronic myelogenous leukemia (CML) was vaccinated with autologous leukemic DCs following autologous peripheral blood stem cell transplantation (PBSCT). In an in vitro study, leukemic DCs were generated using granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), tumor necrosis factor‐α, and interleukin‐4 from granulocyte colony‐stimulating factor (G‐CSF)‐mobilized PBSC fraction of this patient, and were found to be Phl+, and to possess the morphologic and phenotypic characteristics of mature DCs. These cells could also elicit antigen‐specific immune responses, including a vigorous cytotoxicity specific to CML cells. In the clinical experiment, we obtained evidence that infused leukemic DCs could induce T cell clones expressing the same T cell receptor usage as a cytotoxic T cell line, suggesting that the immune repertoire includes tumor‐reactive T cells. These cytotoxic T lymphocytes are activated in vivo. The vaccination of leukemic DC caused a decrease in the number of Phl+ cells in the peripheral blood and bone marrow. These results indicate that the activity is an immunologically mediated phenomenon and vaccination therapy with leukemic DC following autologous PBSCT may be effective in treating CML.

Keywords: Dendritic cells, Vaccination, Chronic myelogenous leukemia chronic phase, T cell receptor usage, Peripheral blood stem cell transplantation

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

REFERENCES

  • 1. ) Hehlmann , R. , Heimpel , H. , Hasford , J. , Kolb , H. J. , Pralle , H. , Hossfeld , D. K. , Quisser , W. , Loffler , H. , Hochhaus , A. , Heinze , B. , Georgii , A. , Bartram , C. R. , Griesshammer , M. , Bergmann , H. , Walther , F. , Fett , W. , Kleeberg , U. R. and Kabisch , A.Randomized comparison of interferon‐α with busulfan and hydroxyurea in chronic myelogenous leukemia . Blood , 84 , 4064 – 4077 ( 1994. ). [PubMed] [Google Scholar]
  • 2. ) Shimomura , T. , Fujii , S‐I. , Ezaki , I. , Osato , M. , Fujimoto , K. , Takatsuki , K. , Yamamoto , K. and Kawakita , M.Characterisation of T cell receptor chain mRNA expression in IFN‐α‐responsive chronic myelogenous leukaemia patients . Br. J. Haematol. , 105 , 173 – 180 ( 1999. ). [PubMed] [Google Scholar]
  • 3. ) Reiffers , J. , Mahon , F. X. , Boiron , J. M. , Faberes , C. , Marit , G. , Cony‐Makhoul , P. and Broustet , A.Autografting in chronic myeloid leukemia: an overview . Leukemia , 10 , 385 – 388 ( 1996. ). [PubMed] [Google Scholar]
  • 4. ) Bhatia , R. , Verfaillie , C. M. , Miller , J. S and McGlave , P. B.Autologous transplantation therapy for chronic myelogenous leukemia . Blood , 89 , 2623 – 2634 ( 1997. ). [PubMed] [Google Scholar]
  • 5. ) Carella , A. M. , Simonsson , B. , Link , H. , Lennard , A. , Boogaerts , M. , Gorin , N. , Tomas‐Martinez , J. , Dabouz‐Harrouche , F. , Gautier , L. and Badri , N.Mobilization of Philadelphia‐negative peripheral blood progenitor cells with chemotherapy and rhuG‐CSF in chronic myelogenous leukemia patients with a poor response to interferon‐alpha . Br. J. Haematol. , 101 , 111 – 118 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 6. ) Chervenick , P. A. , Ellis , L. D. , Pan , S. F. and Lawson , A. L.Human leukemic cells: in vitro growth of colonies containing the Philadelphia (Ph) chromosome . Science , 174 , 1134 – 1136 ( 1971. ). [DOI] [PubMed] [Google Scholar]
  • 7. ) Brion , A. , Charbord , P. , Flesch , M. , Deconinck , E. , Deschaseux , M. , Racadot , E. W. and Cahn , J. Y.Autografting with cultured marrow in CML: problem of hematopoietic reconstitution . Bone Marrow Transplant . 15 , S22 ( 1995. ). [Google Scholar]
  • 8. ) Carella , A. M. , Frassoni , F. , Podesta , M. , Pungolino , E. , Pollicardo , N. , Ferrero , R. and Soracco , M.Idarubicin, intermediate‐dose cytarabine, etoposide, and granulocyte‐colony‐stimulating factor are able to recruit CD34+/HLADR‐ cells during early hematopoietic recovery in accelerated and chronic phases of chronic myeloid leukemia . J. Hematother. , 3 , 199 – 202 ( 1994. ). [DOI] [PubMed] [Google Scholar]
  • 9. ) Shlomchik , W. D. and Emerson , S. G.The immunobiology of T cell therapies for leukemias . Acta Haematol. , 96 , 189 – 213 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 10. ) Thomas , R. , Davis , L. S. and Lipsky , P. E.Comparative accessory cell function of human peripheral blood dendritic cells and monocytes . J. Immunol. , 151 , 6840 – 6852 ( 1993. ). [PubMed] [Google Scholar]
  • 11. ) Hart , D. N. J.Dendritic cells: unique leukocyte populations which control the primary immune response . Blood , 90 , 3245 – 3287 ( 1997. ). [PubMed] [Google Scholar]
  • 12. ) Herbst , B. , Kohler , G. , Mackensen , A. , Veelken , H. , Analysis of Immune and Clinical Responses to Dendritic Cell Therapy Mertelsmann, R. and Lindemann, A. CD34+ peripheral blood progenitor cell and monocyte derived dendritic cells: a comparative analysis . Br. J. Haematol. , 99 , 490 – 499 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 13. ) Choudhury , A. , Gajewski , J. L. , Liang , J. C. , Popat , U. , Claxton , D. F. , Kliche , K.‐O. , Andreeff , M. and Champlin , R. E.Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome‐positive chronic myelogenous leukemia . Blood , 89 , 1133 – 1142 ( 1997. ). [PubMed] [Google Scholar]
  • 14. ) Bentz , M. , Cabot , G. , Moos , M. , Speicher , M. R. , Ganser , A. , Lichter , P. and Dohner , H.Detection of chimeric BCR‐ABL genes on bone marrow samples and blood smears in chronic myeloid and acute lymphoblastic leukemia by in situ hybridization . Blood , 83 , 1922 – 1928 ( 1994. ). [PubMed] [Google Scholar]
  • 15. ) Fujii , S‐I. , Fujimoto , K. , Shimizu , K. , Ezaki , T. , Kawano , F. , Takatsuki , K. , Kawakita , M. and Matsuno , K.Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients . Cancer Res. , 59 , 2150 – 2158 ( 1999. ). [PubMed] [Google Scholar]
  • 16. ) Lefkovits , I.“Immunology Methods Manuals” ( 1997. ). Academic Press; , San Diego , CA . [Google Scholar]
  • 17. ) Weidmann , E. , Brieger , J. , Jahn , B. , Hoelzer , D. , Bergmann , L. and Mitrou , P. S.Lactate dehydrogenase‐release assay: a reliable, nonradioactive technique for analysis of cytotoxic lymphocyte‐mediated lytic activity against blasts from acute myelocytic leukemia . Ann. Hematol. , 70 , 153 – 158 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 18. ) Cross , N. C. P. , Melo , J. V. , Feng , L. and Goldman , J. M.An optimized multiplex polymerase chain reaction (PCR) for detection of bcr‐abl fusion mRNA in hematological disorders . Leukemia , 8 , 186 – 189 ( 1994. ). [PubMed] [Google Scholar]
  • 19. ) Yamamoto , K. , Sakoda , H. , Nakajima , T. , Kato , T. , Okubo , M. , Dohi , M. , Mizushima , Y. , Ito , K. and Nishioka , K.Accumulation of multiple T cell clonotypes in the synovial lesions of patients with rheumatoid arthritis revealed by a novel clonality analysis . Int. Immunol. , 4 , 1219 – 1223 ( 1992. ). [DOI] [PubMed] [Google Scholar]
  • 20. ) Picker , L. J. , Singh , M. K. , Zdraveski , Z. , Treer , J. R. , Waldrop , S. L. , Bergstresser , P. R. and Maino , V. C.Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry . Blood , 86 , 1408 – 1419 ( 1995. ). [PubMed] [Google Scholar]
  • 21. ) Horowitz , M. M. , Gale , R. P. , Sondel , P. M. , Goldman , J. M. , Kersey , J. , Kolb , H. J. , Rimm , A. A. , Ringden , O. , Rozman , C. , Speck , B. , Truitt , R. L. , Zwaan , F. E. and Bortin , M. M.Graft‐versus‐leukemia reactions after bone marrow transplantation . Blood , 75 , 555 – 562 ( 1990. ). [PubMed] [Google Scholar]
  • 22. ) Hughes , T. P. , Morgan , G. J. , Martiat , P. and Goldman , J. M.Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse . Blood , 77 , 874 – 878 ( 1991. ). [PubMed] [Google Scholar]
  • 23. ) Giralt , S. , Hester , J. , Huh , Y. , Hirsh‐Ginsber , C. , Rondon , G. , Seong , D. , Lee , M. , Gajewski , J. , VanBesien , K. , Khouri , I. , Rakesha , M. , Przepiorka , D. , Korbling , M. , Talpaz , M. , Kantarjian , H. , Fischer , H. , Desseroth , A. and Champlin , R.CD8‐depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation . Blood , 86 , 4337 – 4343 ( 1995. ). [PubMed] [Google Scholar]
  • 24. ) Mayordomo , J. I. , Zorina , T. , Storkus , W. J. , Zitvogel , L. , Celluzzi , C. , Falo , L. D. , Melief , C. J. , Ildstad , S. T. , Kast , W. M. , Deleo , A. B. and Lotze , M. T.Bone marrow‐derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity . Nat. Med. , 1 , 1297 – 1302 ( 1995. ). [DOI] [PubMed] [Google Scholar]
  • 25. ) Hsu , F. F. , Benike , C. , Fagnoni , F. , Liles , T. M. , Czerwinski , D. , Taidi , B. , Engleman , E. G. and Levy , R.Vaccination of patients with B‐cell lymphoma using autologous antigen‐pulsed dendritic cells . Nat. Med. , 2 , 52 – 58 ( 1996. ). [DOI] [PubMed] [Google Scholar]
  • 26. ) Nestle , F. O. , Alijagic , S. , Gilliet , M. , Sun , Y. , Grabbe , S. , Dummer , R. , Burg , G. and Schadendorf , D.Vaccination of melanoma patients with peptide‐ or tumor lysate‐pulsed dendritic cells . Nat. Med. , 4 , 328 – 332 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 27. ) Fujii , S‐I. , Fujimoto , K. , Shimomura , T. , Yamamoto , K. , Hamada , H. and Kawakita , M.Activated dendritic cells from bone marrow cells of mice administered cytokine‐expressing tumor cells are associated with the enhanced survival of mice bearing syngeneic tumor . Blood , 93 , 1 – 9 ( 1999. ). [PubMed] [Google Scholar]
  • 28. ) Fujii , S‐I. , Fujimoto , K. , Osato , M. , Matsui , K. , Takatsuki , K. and Kawakita , M.Induction of antitumor cytotoxic activity using CD34+ cord blood cell‐derived and irradiated tumor cell‐primed dendritic cells . Int. J. Hematol. , 68 , 169 – 182 ( 1998. ). [DOI] [PubMed] [Google Scholar]
  • 29. ) Smit , W. M. , Rijnbeek , M. , van Bergen , C. A. M. , de Paus , R. A. , Vervenne , H. A. W. , van de Keur , M. , Willemze , R. and Falkenburg , J. H. F.Generation of dendritic cells expressing bcr‐abl from CD34‐positive chronic myeloid leukemia precursor cells . Hum. Immunol. , 53 , 216 – 223 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 30. ) Lim , S. H. and Coleman , S.Chronic myeloid leukemia as an immunological target . Am. J. Hematol. , 54 , 61 – 67 ( 1997. ). [DOI] [PubMed] [Google Scholar]
  • 31. ) Papadopoulos , K. P. , Suciu‐Foca , N. , Hesdorffer , C. S. , Tugulea , S. , Maffei , A. and Harris , P. E.Naturally processed tissue‐ and differentiation stage‐specific autologous peptides bound by HLA class I and II molecules of chronic myeloid leukemia blasts . Blood , 90 , 4938 – 4946 ( 1997. ). [PubMed] [Google Scholar]
  • 32. ) Ishiyama , M. , Tominaga , H. , Shiga , M. , Sakamoto , K. , Ohkura , Y. , Ueno , K. and Ueno , K.Novel cell proliferation and cytotoxicity assays using a tetrazolium salt that produces a water‐soluble formazan dye . In Vitro Toxicol. , 8 , 187 – 190 ( 1995. ). [Google Scholar]

Articles from Japanese Journal of Cancer Research : Gann are provided here courtesy of Wiley

RESOURCES